
Programming Languages
Third Edition

Chapter 13
Parallel Programming

Objectives

• Understand the nature of parallel processing

• Understand the relationship of parallel processing
to programming languages

• Understand threads

• Understand semaphores

• Understand monitors

Programming Languages, Third Edition 2

Objectives (cont’d.)

• Understand message passing

• Become familiar with parallelism in non-imperative
languages

Programming Languages, Third Edition 3

Introduction

• Parallel processing: executing many computations
in parallel

• Multiprogramming: many processes share a single
processor, thus appearing to execute
simultaneously (pseudoparallelism)

• True parallelism: many processors are connected
to run in concert
– Multiprocessor system: a single system

incorporates all the processors
– Distributed system: a group of standalone

processors connected by high-speed links
Programming Languages, Third Edition 4

Introduction (cont’d.)

• Implementation of parallel processing is not simple,
and parallel systems are relatively uncommon

• High-speed networks, including the Internet,
present new possibilities for using physically distant
computers in parallel processing

• Organized networks of independent computers can
be viewed as a kind of distributed system for
parallel processing

• A comprehensive study of parallel processing is
beyond the scope of this course

Programming Languages, Third Edition 5

Introduction (cont’d.)

• Programming languages have affected and been
affected by parallelism in several ways

• Languages have been used to:
– Express algorithms to solve parallel processing

issues

– Write operating systems for parallel processing

– Harness the capabilities of multiple processors to
solve application problems efficiently

– Implement and express communication across
networks

Programming Languages, Third Edition 6

Introduction (cont’d.)

• Must also consider the basic ways that
programmers have used programming languages to
express parallelism

• Must distinguish parallelism as expressed in a
language, and the parallelism that actually exists in
the underlying hardware

• Programs that are written with parallel programming
constructs do not necessarily result in actual parallel
processing
– May be implemented by pseudoparallelism, even in a

system with multiple processors

Programming Languages, Third Edition 7

Introduction (cont’d.)

• Parallel programming is sometimes called
concurrent programming
– Emphasizes the fact that parallel constructs express

only the potential for parallelism

Programming Languages, Third Edition 8

Introduction to Parallel Processing

Programming Languages, Third Edition 9

• Process: the fundamental notion of parallel
processing
• The basic unit of code executed by a processor

• An instance of a program or program part that
has been scheduled for independent execution

• Jobs: an earlier name for processes
• In the early days, jobs were executed sequentially

in batch fashion

• Only one process in existence at a time

Introduction to Parallel Processing
(cont’d.)

• With the advent of pseudoparallelism, processes
could exist simultaneously in one of three states:
– Executing: in possession of the processor

– Blocked: waiting for some activity, such as I/O, to
complete

– Waiting: ready for the processor and waiting for it

• The operating system needs to apply some
algorithm to schedule processes and manage
waiting and blocked processes
– Principal method for this is the hardware interrupt

Programming Languages, Third Edition 10

Introduction to Parallel Processing
(cont’d.)

• Heavyweight process: corresponds to the earlier
notion of a program in execution
– Full-fledged independent entity, together with all the

memory and other resources allocated to an entire
program

• Lightweight process: shares its resources with the
program it comes from
– Does not have an independent existence
– Also called a thread
– Can be very efficient since there is less overhead in

their creation and management

Programming Languages, Third Edition 11

Introduction to Parallel Processing
(cont’d.)

• In true parallel processing, each processor may
individually be assigned to a process
– Each processor may or may not be assigned its own

queues for maintaining blocked and waiting
processes

• Two primary requirements for the organization of
processors in a parallel processing system:
– Must be a way for processors to synchronize their

activity

– Must be a way for processors to communicate data
among themselves

Programming Languages, Third Edition 12

Introduction to Parallel Processing
(cont’d.)

• Single-instruction, multiple-data (SIMD)
systems: central control by one processor, with
each other processor executing the same
instructions on their respective registers or data
sets
– Are multiprocessing rather than distributed systems

– May be synchronous, operating at the same speed,
with the controlling processor determining when
each instruction is executed

Programming Languages, Third Edition 13

Introduction to Parallel Processing
(cont’d.)

• Multiple-instruction, multiple-data (MIMD)
systems: processors operator at different speeds
and are asynchronous
– May be either multiprocessor or distributed

processor systems

– Synchronization of the processors is a critical
problem

• Hybrid systems are also possible

Programming Languages, Third Edition 14

Programming Languages, Third Edition 15

Introduction to Parallel Processing
(cont’d.)

• Shared-memory system: one central memory is
shared by all processors
– By nature, this is a multiprocessor rather than a

distributed system

• In a shared-memory system:
– Processors communicate through changes made to

shared memory

– Each processor must have exclusive access to those
areas of memory that it is changing, to avoid race
conditions

Programming Languages, Third Edition 16

Introduction to Parallel Processing
(cont’d.)

• Race condition: when different processes modify
the same memory in unpredictable ways
– Solving the mutual exclusion problem typically

means blocking processes when one is already
accessing shared data, using a locking mechanism

• Deadlock: occurs when processes end up waiting
for each other to unblock
– Detecting or preventing deadlock is a difficult

problem in parallel processing

Programming Languages, Third Edition 17

Introduction to Parallel Processing
(cont’d.)

• Distributed-memory system: each processor has
its own independent memory
– In distributed-memory systems, each processor has

its own memory that is inaccessible to other
processors

• Distributed processors have a communication
problem
– Each must be able to send and receive messages

from all other processes asynchronously

– Processes may block while waiting for a needed
message

Programming Languages, Third Edition 18

Introduction to Parallel Processing
(cont’d.)

• Communication depends on the configuration of
links between processors
– Processors may be connected in sequence, and

need to forward information to other processors
farther along the link

– If few processors, they may be fully linked to each
other

• Deadlock problems in a distributed-memory system
are also extremely difficult
– Each process may have little information about the

status of other processes
Programming Languages, Third Edition 19

Introduction to Parallel Processing
(cont’d.)

Programming Languages, Third Edition 20

Programming Languages, Third Edition 21

Introduction to Parallel Processing
(cont’d.)

• It is possible for a system to be a hybrid between a
shared and distributed-memory system
– Each processor maintains some private memory in

addition to the shared memory

– Processors have some communication links
separate from shared memory

• It is the task of the operating system to integrate
the operation of processors and to shield the user
from needing to know too much about the
configuration

Programming Languages, Third Edition 22

Introduction to Parallel Processing
(cont’d.)

• In general, an operating system should provide:
– A means of creating and destroying processes

– A means of managing the number of processors
used by processes

– On a shared-memory system, a mechanism for
ensuring mutual exclusion of processes to shared
memory (for process synchronization and
communication)

– On a distributed-memory system, a mechanism for
creating and maintaining communication channels
between processors

Programming Languages, Third Edition 23

Parallel Processing
and Programming Languages

• Some programming languages use the shared-
memory model
– They provide facilities for mutual exclusion, usually

via a built-in thread mechanism or thread library

• Some languages assume the distributed model
– They provide communication facilities

• A few languages include both models

• A language may not include parallel mechanisms in
its definition at all
– Parallel facilities may be provided in other ways

Programming Languages, Third Edition 24

Parallel Processing and Programming
Languages (cont’d.)

• We will discuss two approaches to shared-memory
models:
– Threads

– Semaphores and monitors

• We will discuss message passing for the
distributed model

• Two standard problems in parallel processing will
be used to demonstrate these mechanisms:
– Bounded buffer problem

– Parallel matrix multiplication

Programming Languages, Third Edition 25

Parallel Processing and Programming
Languages (cont’d.)

• Bounded buffer problem: assumes that two or more
processes are cooperating in a computational or
input-output scenario
– One process produces values consumed by the other,

using an intermediate buffer or buffer process
– No value must be produced until there is room to store

it in the buffer
– A value is consumed only after it has been produced

• This involves both communication and
synchronization

• Also called the producer-consumer problem

Programming Languages, Third Edition 26

Parallel Processing and Programming
Languages (cont’d.)

• Parallel matrix multiplication: an algorithmic
application in which the use of parallelism can
cause significant speedups

• Matrices are essentially two-dimensional arrays

• Example: with both dimensions of size N:

Programming Languages, Third Edition 27

Parallel Processing and Programming
Languages (cont’d.)

• The standard way of multiplying two matrices a and
b to form a third matrix c is done using nested
loops:

• If performed sequentially, this computation requires
N3 steps

Programming Languages, Third Edition 28

Parallel Processing and Programming
Languages (cont’d.)

• If we assign a separate process to compute each
c[i][j], and each process executes on a
separate processor, then the computation requires
only N steps
– This is the simplest form of the algorithm, because

there are no write conflicts and no need to enforce
mutual exclusion in accessing the matrices as
shared memory

– There is a synchronization problem to ensure that c
is not used until all processes have completed

Programming Languages, Third Edition 29

Parallel Programming without Explicit
Language Facilities

• One approach to parallelism is simply not to express
it explicitly in a language

• This is easiest in functional, logic, and object-
oriented languages
– They have a certain amount of inherent parallelism

implicit in the language constructs

• Language translators may be able to automatically
use operating system utilities to assign different
processors to different parts of a program
– Manual facilities are still needed to make full, optimal

use of parallel processors
Programming Languages, Third Edition 30

Parallel Programming without Explicit
Language Facilities (cont’d.)

• Second approach: the translator may offer
compiler options to allow explicit indication of
areas where parallelism is called for
– One of the most effective places is in the use of

nested loops, since each repetition of the inner loop
is relatively independent of the others

• Example: compiler option in FORTRAN

Programming Languages, Third Edition 31

Programming Languages, Third Edition 32

Parallel Programming without Explicit
Language Facilities (cont’d.)

• Third approach: provide a library of functions to
perform parallel processing
– This is a way of passing the facilities provided by an

operating system directly to the programmer

• If a standard parallel library is required by a
language, then it is the same as including parallel
facilities in the language definition

• Example: using library functions in C to provide
parallel processing for the matrix multiplication
problem

Programming Languages, Third Edition 33

Programming Languages, Third Edition 34

Parallel Programming without Explicit
Language Facilities (cont’d.)

• Fourth approach: rely on operating system features
directly to run programs in parallel

• Requires that a parallel program be split into
separate, independently executable pieces that are
set up to communicate via operating system
mechanisms
– Allows only program-level parallelism

• Example: use of pipes in Unix to string programs
together

Programming Languages, Third Edition 35

Process Creation and Destruction

• A language with explicit mechanisms for parallel
processing must have a construct for creating new
processes

• Two basic ways to create new processes

• First approach: split the current process into two or
more processes that continue to execute copies of
the same program
– One process is called the parent, while the others are

called children
– Processes can execute different code by testing some

condition, but the basic program is the same

Programming Languages, Third Edition 36

Process Creation and Destruction
(cont’d.)

• This process resembles SIMD organization and is
called SPMD programming (single program multiple
data)

• SPMD programs may execute different segments of
their common code
– Do not necessarily operate synchronously, thus need

process synchronization

• Second approach: a segment of code (usually a
procedure) is explicitly associated with each new
process
– Different processes have different code

Programming Languages, Third Edition 37

Process Creation and Destruction
(cont’d.)

• This approach is called MPMD programming

• Fork-join model: a process creates several child
processes, each with its own code (fork), and then
waits for the children to complete (a join)

• Granularity of processes: relates to the size of the
code that can become a separate process:
– Fine-grained: individual statements can become

processes and be executed in parallel
– Medium-grained: procedures are assigned to

processes
– Large-grained: whole programs are processes

Programming Languages, Third Edition 38

Process Creation and Destruction
(cont’d.)

• Granularity can be an efficiency issue:
– Many small-grained processes can incur significant

overhead in creation and management

– Large-grained processes may have difficulty
exploiting all opportunities for parallelism

• Threads can be very efficient
– Represent fine-grained or medium-grained

parallelism without the overhead of full-blown
process creation

Programming Languages, Third Edition 39

Process Creation and Destruction
(cont’d.)

Programming Languages, Third Edition 40

• Two questions for process creation mechanisms:
– Does the parent process suspend execution while its

children are executing, or does it continue to execute
alongside them?

– What memory, if any, does a parent share with its
children, or the children share among themselves?

– A parallel programming language also needs a method
for process termination

– Process may simply terminate when done

– Process may need to wait for a condition to be met
– Process may need to be selected for continuing

Statement-Level Parallelism

• parbegin-parend block: a construct for indicating
parallel execution for statements

• Example: in Occam:

– Statements are all executed in parallel

– Assumes that the main process is suspended
– All processes of the Si share all variables not locally

declared within an Si

Programming Languages, Third Edition 41

Statement-Level Parallelism (cont’d.)

• forall construct in Fortran95: indicates parallel
execution of each iteration of a loop

• Example:

Programming Languages, Third Edition 42

Procedure-Level Parallelism

• When a procedure is associated with a process,
the mechanism has this form:

– p is a declared procedure
– x is a process designator

• Alternate way is to use declarations to associated
procedures to processes:

Programming Languages, Third Edition 43

Procedure-Level Parallelism (cont’d.)

• Scope of x can be used as the region where x is
active
– x begins executing when the scope of its declaration

is entered
– x is terminated on exit from its scope (if not already

completed)

• This is the method used by Ada
– A process is called a task in Ada

Programming Languages, Third Edition 44

Program-Level Parallelism

• In this method of process creation, only whole
programs can become processes
– Typically in MPMD style
– A program creates a complete copy of itself

• Example: fork call of the UNIX operating system
– Creates a child process that is an exact copy of the

calling process, including all variables and
environment data at the moment of the fork

– The return value of the fork call indicates whether
the process is the parent or child, which can be used
to determine which code to execute

Programming Languages, Third Edition 45

Program-Level Parallelism (cont’d.)

• Example:

• A process can be terminated by a call to exit

• Process synchronization can be achieved by calls
to wait, which suspends a parent until a child
terminates

• Example: parallel matrix multiplication in C code:

Programming Languages, Third Edition 46

Program-Level Parallelism (cont’d.)

Programming Languages, Third Edition 47

Programming Languages, Third Edition 48

Threads

• Threads can be an efficient mechanism for fine- or
medium-grained parallelism in the shared memory
model

• Java has a widely used thread implementation

Programming Languages, Third Edition 49

Threads in Java

• Threads are built into the Java Language
– Thread class is part of java.lang package
– Reserved word synchronize is used to establish

mutual exclusion for threads

• To create a thread, instantiate a Thread object and
define a run method in one of these ways:
– Extend Thread through inheritance and override the

empty Thread.run method
– Instantiate an object of a class that implements the
Runnable interface and pass it to the Thread
constructor

Programming Languages, Third Edition 50

Threads in Java (cont’d.)

• Example:

Programming Languages, Third Edition 51

Threads in Java (cont’d.)

• Example:

Programming Languages, Third Edition 52

Threads in Java (cont’d.)

• start method: begins running a thread and calls
the run method
– Main program continues to execute, but entire

program will not finish execution until all of its
threads complete

• join method: used to cause a thread to wait for
another thread to finish before continuing

Programming Languages, Third Edition 53

Threads in Java (cont’d.)

• interrupt method: sets an internal flag in the
thread object that received the interrupt
– Thread can test whether some other thread called its

interrupt method

– Allows a thread to continue to execute some cleanup
code before actually exiting

Programming Languages, Third Edition 54

Threads in Java (cont’d.)

• Any method such as join that blocks the current
thread has a timeout version
– Java runtime system makes no attempt to discover

or prevent deadlock; it is up to the programmer

• Java threads will share some memory or other
resources by passing objects to be shared to
constructors on the Runnable objects used to
create threads

Programming Languages, Third Edition 55

Threads in Java (cont’d.)

Programming Languages, Third Edition 56

• Queue q is shared between threads t1 and t2

• Need a mechanism for ensuring mutual exclusion

Threads in Java (cont’d.)

Programming Languages, Third Edition 57

• synchronize keyword is used for method
synchronization

• Example:

Threads in Java (cont’d.)

• Every object in Java has a single lock available to
threads

• When a thread attempts to execute a synchronized
method, it must first acquire the lock on the object
– If lock is held by another thread, it must wait

– After exiting the method, it releases the lock
• wait() method: used to manually stall a thread

based on a testable condition
• notify() or notifyAll() method: used to wake

up a thread in a waiting condition

Programming Languages, Third Edition 58

Threads in Java (cont’d.)

Programming Languages, Third Edition 59

A Bounded Buffer Example in Java

• Bounded buffer example: the producer reads
characters from standard input and inserts them
into a buffer

• The consumer removes characters from the buffer
and writes them to standard output

• Additional requirements:
– Producer thread will continue to read until an end of

file is encountered, whence it will exit

– Consumer thread will continue to write until the
producer has ended and the buffer is empty

Programming Languages, Third Edition 60

Semaphores

• Semaphore: a mechanism to provide mutual
exclusion and synchronization in a shared-memory
model
– Is a shared integer variable that can be accessed

only via three operations: InitSem, Signal, and
Delay

• Delay operation: tests the semaphore for a positive
value
– Decrements it if it is positive

– Suspends the calling process if it is zero or negative

Programming Languages, Third Edition 61

Semaphores (cont’d.)

• Signal operation: tests whether processes are waiting
– Causes one of them to continue if so
– Increments the semaphore if not

• Signal is analogous to notify in Java, and Delay is
analogous to wait

• The system must ensure that each of these
operations executes atomically (by only one process
at a time)

Programming Languages, Third Edition 62

Semaphores (cont’d.)

• Can ensure mutual exclusion by defining a critical
region

• Critical region: a region of code that can be
executed by only one process at a time

• Example:

• Semaphores are sometimes called locks
– Can also be used to synchronize processes

Programming Languages, Third Edition 63

Semaphores (cont’d.)

• An important question is the method used to
choose a suspended process for continued
execution when a call to Signal is made

• Possibilities include:
– Making a random choice

– Using a first in, first out strategy

– Using some sort of priority system

• This choice has a major effect on the behavior of
concurrent programs using semaphores

Programming Languages, Third Edition 64

Semaphores (cont’d.)

Programming Languages, Third Edition 65

A Bounded Buffer Using Semaphores

• Semaphores can be used to enforce
synchronization and mutual exclusion

• Use of semaphores can eliminate the need for
Java synchronization mechanisms:
– Synchronized methods
– Calls to wait and notifyAll

Programming Languages, Third Edition 66

A Bounded Buffer Using Semaphores
(cont’d.)

Programming Languages, Third Edition 67

Programming Languages, Third Edition 68

Difficulties with Semaphores

• Although semaphores themselves are protected,
there is no protection against their incorrect use by
programmers

• Example: failure to create a critical region:

• Example: this process will likely block at the
second Delay and never resume execution:

Programming Languages, Third Edition 69

Difficulties with Semaphores (cont’d.)

• Example: can cause deadlock:
– If Process 1 executes Delay(S1)

at the same time that Process 2
executes Delay(S2), then each
will block waiting for the other to
issue a Signal

– Deadlock has occurred

• The monitor was invented to
remove some of these insecurities
in the use of semaphores

Programming Languages, Third Edition 70

Implementation of Semaphores

Programming Languages, Third Edition 71

• Semaphores are generally implemented with some
form of hardware support

• Example: TestAndSet machine instruction on a single-
processor system tests a memory location and
simultaneously increments or decrements the location if
the test succeeds

• Assuming TestAndSet returns the value of its location
parameter and decrements its location parameter if it is
> 0, we can implement Signal and Delay with this code:

Implementation of Semaphores
(cont’d.)

• This implementation causes a blocked process to
busy-wait or spin in a while loop until S becomes
positive again through a call to Signal by another
process
– Semaphores implemented this way are sometimes

called spin-locks

• Leaves unresolved the order in which waiting
processes are reactivated
– May be random, or in some order imposed by the

operating system

Programming Languages, Third Edition 72

Implementation of Semaphores
(cont’d.)

• A waiting process may be preempted by many
incoming calls to Delay from new processes, and
never get to execute despite calls to Signal
– This situation is called starvation

• Starvation is prevented by using a scheduling
system that is fair
– Guarantees that every process will execute within a

finite period of time

• Avoiding starvation is more difficult than avoidance
of deadlocks

Programming Languages, Third Edition 73

Implementation of Semaphores
(cont’d.)

• Modern shared-memory systems often provide
facilities for semaphores that do not require busy-
waiting
– Semaphores are special memory locations

accessible by only one processor at a time, with a
queue to store the processes that are waiting for it

Programming Languages, Third Edition 74

Monitors

Programming Languages, Third Edition 75

• Monitor: an abstract data type mechanism with the
added property of mutual exclusion
• It encapsulates shared data and operations on

these data

• At most, one process at a time can be using any
of the monitor’s operations

• Monitor has an associated wait queue to track
processes that are waiting to use its operations

Monitors (cont’d.)

Programming Languages, Third Edition 76

Monitors (cont’d.)

• Monitor must also provide condition variables to
handle situations like the bounded buffer problem

• Condition variables: shared variables within the
monitor resembling semaphores
– Each has a queue of processes waiting for the

condition
– Each has associated suspend and continue

operations

• If a condition queue is empty, a call to continue will
have no effect

• Suspend always suspends the current process
Programming Languages, Third Edition 77

Monitors (cont’d.)

• When a continue call is issued to a waiting process
by a process currently in the monitor, there are two
choices:
– Suspended process just awakened by the continue

call must wait until the calling process has left the
monitor

– Process that issues the continue call must suspend
until the awakened process has left the monitor

• It is possible to imitate the behavior of a monitor
using semaphores

Programming Languages, Third Edition 78

Monitors (cont’d.)

• Monitors and semaphores are equivalent in terms
of the kinds of parallelism they can express

• Monitors provide a more structured mechanism for
concurrency than semaphores, and they ensure
mutual exclusion
– They cannot guarantee the absence of deadlock

• Java and Ada have monitor-like mechanisms

Programming Languages, Third Edition 79

Java Synchronized Objects
as Monitors

• Java objects whose methods are synchronized are
essentially monitors
– Sometimes called synchronized objects

• Java provides an entry queue for each synchronized
object
– A thread inside the synchronized object has a lock on

the object

• These Java queues do not operate in a fair fashion

• Any unsynchronized methods may be executed
without acquiring the lock or going through the entry
queue

Programming Languages, Third Edition 80

Java Synchronized Objects
as Monitors (cont’d.)

• Java’s synchronized objects do not have separate
condition variables
– Only one wait queue per synchronized object for any

and all conditions

• Java wait and sleep calls are suspend operations

• Java notify and notifyAll calls are continue
operations

• When a thread comes off the wait queue, it must
again acquire the object’s lock
– Awakened threads in Java must wait for the awakening

thread to exit the synchronized code

Programming Languages, Third Edition 81

The Java Lock and Condition
Interfaces

• java.util.concurrent.locks package: includes
interfaces and classes that support a more
authentic monitor mechanism
– Programmer represents a monitor as an explicit lock

object associated with a shared data resource
• lock method: acquires the lock
• unlock method: releases the lock
• await method: wait for an explicit condition object

• Multiple condition objects can be associated with a
single lock

Programming Languages, Third Edition 82

The Java Lock and Condition
Interfaces (cont’d.)

• Each condition object has its own queue of threads
waiting on it

• When a method is finished, it can signal other
threads waiting on a condition object by using the
signal or signalAll methods

Programming Languages, Third Edition 83

The Java Lock and Condition
Interfaces (cont’d.)

Programming Languages, Third Edition 84

The Java Lock and Condition
Interfaces (cont’d.)

Programming Languages, Third Edition 85

Ada95 Concurrency and Monitors

• Concurrency in Ada is provided by independent
processes called tasks

• A task is declared using specification and body
declaration similar to the package mechanism

Programming Languages, Third Edition 86

Ada95 Concurrency and Monitors
(cont’d.)

• An Ada task begins to execute as soon as the
scope of its declaration is entered

• When the end of the scope of the task declaration
is reached, the program waits for the task to
terminate before continuing execution

• Can declare task types and variables

Programming Languages, Third Edition 87

Ada95 Concurrency and Monitors
(cont’d.)

• Ada95 has monitors, called protected objects
– Correspond to synchronized objects in Java

Programming Languages, Third Edition 88

Ada95 Concurrency and Monitors
(cont’d.)

• Three kinds of operations within a protected object:
– Functions
– Procedures
– Entries

• Functions may not change the local state of a
protected object but can be executed by any number
of callers

• Procedures and entries may only be executed by a
single caller at a time

• No functions can execute simultaneously with a
procedure or entry

Programming Languages, Third Edition 89

Ada95 Concurrency and Monitors
(cont’d.)

Programming Languages, Third Edition 90

Ada95 Concurrency and Monitors
(cont’d.)

• A procedure can always be executed, while an
entry can only be executed under a certain
condition, called the entry barrier
– If the entry barrier is closed (false), the task is

suspended and placed in a wait queue for that entry

• Ada-protected object entries correspond to monitor
condition variables

• Ada runtime system automatically recomputes the
entry barrier at appropriate times and wakes a
waiting task

Programming Languages, Third Edition 91

Message Passing

• Message passing: a mechanism for process
synchronization and communication using the
distributed model of parallel processing

• In its most basic form, it consists of two operations,
send and receive

• Example: in C code:

– Assumes every sender knows its receiver and vice
versa

– Must have names within scope of each other

Programming Languages, Third Edition 92

Message Passing (cont’d.)

• Less restrictive form of send and receive removes
the requirement to name sender and receiver

• Example: in C code:

– A sent message will go to any process willing to
receive it, and a message will be received from any
sender

• Commonly, a name is required for the send but not
for the receive

Programming Languages, Third Edition 93

Message Passing (cont’d.)

• Other questions to be answered revolve around
synchronization of processes communicating with
send and receive
– Must a sender wait for a receiver to be ready before

sending a message, or can the sender continue to
execute even if there is no available receiver? If so,
are messages stored in a buffer for later receipt?

– Must a receiver wait until a message is available to
be sent, or can a receiver receive a null message
and continue to execute?

Programming Languages, Third Edition 94

Message Passing (cont’d.)

• Rendezvous mechanism: when both sender and
receiver must wait until the other is ready
– If messages are buffered, must determine if there is

a size limit on the buffer, and who manages the
buffer

• Mailbox mechanism: a separate process manages
the buffer, where processes drop off and receive
messages from named (or numbered) mailboxes
– Mailbox may be assigned an owner process that

manages it

Programming Languages, Third Edition 95

Message Passing (cont’d.)

• Control facilities: permit processes to test for
messages, to accept messages only on certain
conditions, and to select specific messages

• Various forms of message passing include:
– Hoare’s Communicating Sequential Processes

(CSP) language framework and occam language
– Remote Procedure Call (RPC) or Remote Method

Invocation (RMI) in Java
– CORBA (Common Object Request Broker

Architecture)
– COM (Common Object Model)

Programming Languages, Third Edition 96

Task Rendezvous in Ada

• Ada tasks can pass messages to each other via a
rendezvous mechanism

• Task entries: define rendezvous points

• A task exports entry names to the outside world

• Entries do not have code bodies but must appear
inside an accept statement that provides the code
to be executed

Programming Languages, Third Edition 97

Task Rendezvous in Ada (cont’d.)

• Accept statements can only appear inside the
body of a task
– Caller of an entry waits for the task to reach a

corresponding accept statement

– A task that reaches an accept statement waits for a
corresponding call

• Each entry has an associated queue to maintain
processes that are waiting for an accept statement
to be executed
– This is a FIFO queue

Programming Languages, Third Edition 98

Task Rendezvous in Ada (cont’d.)

Programming Languages, Third Edition 99

Task Rendezvous in Ada (cont’d.)

• A task that operates as a server for other client
tasks will maintain a set of entries that it will accept
and wait for one of these entries to be called

• A select statement is used for the set of entries
– All conditions in the select statement are evaluated

– Those that are true have the corresponding select
alternatives tagged as open

– An open accept statement is selected for execution if
another task has executed an entry call for its entry

Programming Languages, Third Edition 100

Programming Languages, Third Edition 101

Task Rendezvous in Ada (cont’d.)

• Termination of tasks in Ada can occur in two ways:
– Task executes to completion and has not created

any child processes that are still executing

– Task is waiting with an open terminate alternative in
a select statement, and its master has executed to
completion

• Master: the block of the parent task in which a task
was created
– All tasks created by the same master must also have

terminated or be waiting at a terminate alternative
(they will all terminate simultaneously)

Programming Languages, Third Edition 102

Task Rendezvous in Ada (cont’d.)

• Tasks cannot have functions that return values
– Must return values through parameters in entries

Programming Languages, Third Edition 103

Programming Languages, Third Edition 104

Programming Languages, Third Edition 105

Programming Languages, Third Edition 106

Programming Languages, Third Edition 107

Parallelism in Non-Imperative
Languages

• Parallel processing in functional or logic
programming languages is still in an experimental
and research phase

• A number of good implementations of research
proposals exist, including MultiLisp, Qlisp, Parlog,
and FGHC

• Erlang: a non-imperative language that supports
message-passing

Programming Languages, Third Edition 108

And-Parallelism

• In and-parallelism, a number of values are
computed in parallel by child processes, while the
parent process waits for them to finish and return
their values

• Example: a process calls a function in Lisp:

– Can create six parallel processes to compute the
values of f, a, … e

– Suspends execution until all values are computed
– Then calls the (function) value of f with the returned

values of a through e as arguments
Programming Languages, Third Edition 109

And-Parallelism (cont’d.)

• In a let-binding:
– The values of e1, e2, and e3 can be computed in

parallel

• In Prolog:
– p1 through pn can be executed in parallel
– q succeeds if all the pi succeed

• Noninterference is guaranteed since the evaluation
of arguments in a purely functional language
causes no side effects

• Most functional languages are not pure, however

Programming Languages, Third Edition 110

And-Parallelism (cont’d.)

• Example: in Prolog:

– Cannot be executed in parallel since each of the first
two goals contribute instantiations to the last

– Synchronization is needed here

Programming Languages, Third Edition 111

Or-Parallelism

• In or-parallelism, execution of several alternatives
can occur in parallel, with the first to finish (or
succeed) causing all other alternative processes to
be ignored (and to terminate)

• Example: in Lisp:

• Or-parallelism makes the cond into a
nondeterministic construct, which may change the
overall behavior of the program if the order of
evaluation is significant

Programming Languages, Third Edition 112

Or-Parallelism (cont’d.)

• In Prolog, a system may try to satisfy alternative
clauses for a goal simultaneously

• Example: if there are two or more clauses for the
same predicate:

– The correct execution of a program may depend on the
order in which the alternatives are tried

• Synchronization and order problems are difficult to
solve automatically by a translator

• Some language designers have included some
manual parallel constructs

Programming Languages, Third Edition 113

Parallelism in Lisp

• And-parallelism is most often implemented in Lisp

• MultiLisp offers parallel evaluation of function calls
with the pcall construct:
– Provides parallel evaluation of its subexpressions

• Future: a construct that returns a point to the value of
a not-yet-finished parallel computation

• Example: in MultiLisp:
– Allows execution of f to proceed before the values of a

and b have been computed
– When the values are needed, it suspends evaluation

until they are available

Programming Languages, Third Edition 114

Parallelism in Prolog

• The more natural form for Prolog is or-parallelism,
although both forms have been implemented

• Or-parallelism fits well with the semantics of logic
programming
– Often performed automatically by a parallel Prolog

system

• One version of and-parallelism uses guarded Horn
clauses to eliminate backtracking

• Example:
– The g1,…gn are guards that are executed first and

prohibited from establishing instantiations

Programming Languages, Third Edition 115

Parallelism in Prolog (cont’d.)

• If the guards succeed, the system commits to this
clause for h, and the p1,…pm are executed in
parallel
– Such a system is FGHC (flat guarded Horn clauses)

• Example: FGHC program

– Generates lists of integers

Programming Languages, Third Edition 116

Parallelism in Prolog (cont’d.)

• FGHC places severe constraints on variable
instantiation and thus on unification
– A significant reduction in the expressiveness of the

language

• Variable annotations: specify the kind of
instantiations allowed and when they may occur

• Parlog: a language that does this

• Mode declaration: distinguishes input variables
from output variables
– “?” for input and “^” for output

Programming Languages, Third Edition 117

Parallelism in Prolog (cont’d.)

• Example: quicksort in Parlog:

Programming Languages, Third Edition 118

Parallelism in Prolog (cont’d.)

• Parlog selects an alternative from among clauses
by the usual unification process and also by using
guards
– It then commits to one alternative

Programming Languages, Third Edition 119

Parallelism with Message Passing
in Erlang

• Erlang: developed by Ericcson for distributed, fault-
tolerant, real-time applications needed in the
telecommunications industry
– Uses strict evaluation and dynamic typing
– Its syntax is similar to that of Haskell, with powerful

pattern-matching capability

• Erlang’s additional features include:
– Variable binding via single assignment
– Distinguishes between atoms and variables
– Supports concurrency and parallelism based on

message passing

Programming Languages, Third Edition 120

Parallelism with Message Passing
in Erlang (cont’d.)

• Absence of side effects and the presence of
message passing produces a very simple model of
parallel programming in Erlang

• Erlang implementation includes an interactive
interpreter and a compiler

Programming Languages, Third Edition 121

Parallelism with Message Passing
in Erlang (cont’d.)

• Example: in Erlang code:

Programming Languages, Third Edition 122

Parallelism with Message Passing
in Erlang (cont’d.)

• Pattern matching and variable binding form the
basis of function applications in Erlang
– Example: creates a geometry module:

–

– Example: compiles and tests the geometry module

Programming Languages, Third Edition 123

Parallelism with Message Passing
in Erlang (cont’d.)

• Functions can be passed as arguments to other
functions, with mapping:

• fun: a special type of function, used like lambda to
build an anonymous function to pass as an
argument

Programming Languages, Third Edition 124

Parallelism with Message Passing
in Erlang (cont’d.)

• An Erlang process is a lightweight software object
that runs independently of any other process
– Communicates with other processes via messages

• Spawn: creates a new process

• Send: sends messages to other processes

• Receive: receives messages

• A function can act as a server that executes in its
own process
– A client makes a request of this server

Programming Languages, Third Edition 125

Parallelism with Message Passing
in Erlang (cont’d.)

Programming Languages, Third Edition 126

Programming Languages, Third Edition 127

Parallelism with Message Passing
in Erlang (cont’d.)

• Interactions between processes are not always
tightly coupled
– A process may hand off work to other processes and

go on without waiting for a response

– A process may wait longer than is desirable to
receive a message (if the server has a problem)

• Receiver process can include an after clause to
time out the receive operation

Programming Languages, Third Edition 128

Parallelism with Message Passing
in Erlang (cont’d.)

• Example: receive operation:

• Mailbox: a queue-like data structure associated
with a process

Programming Languages, Third Edition 129

Parallelism with Message Passing
in Erlang (cont’d.)

• To remove a message from its mailbox, the
process’s receive operation must be able to match
the message to one of its patterns
– It a match occurs, the message is removed from the

mailbox and discarded, and the expressions in the
clause are executed

– If not, the message is removed and put at the rear of
the process’s save queue

• If the mailbox becomes empty or a timeout occurs,
the process is suspended until a new message
arrives

Programming Languages, Third Edition 130

Parallelism with Message Passing
in Erlang (cont’d.)

• When a new message arrives, the process itself is
rescheduled for execution to examine the message
– If a match, all messages in the saved queue are

transferred to the mailbox in their original order

• Erlang includes resources for developing
distributed applications to run on a network of
independent computers

• Independent processes are embedded in software
objects called nodes, which allow messages to be
sent and received across a network of machines

Programming Languages, Third Edition 131

	Programming Languages Third Edition
	Objectives
	Objectives (cont’d.)
	Introduction
	Introduction (cont’d.)
	Slide 6
	Slide 7
	Slide 8
	Introduction to Parallel Processing
	Introduction to Parallel Processing (cont’d.)
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Parallel Processing and Programming Languages
	Parallel Processing and Programming Languages (cont’d.)
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Parallel Programming without Explicit Language Facilities
	Parallel Programming without Explicit Language Facilities (cont’d.)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Process Creation and Destruction
	Process Creation and Destruction (cont’d.)
	Slide 38
	Slide 39
	Slide 40
	Statement-Level Parallelism
	Statement-Level Parallelism (cont’d.)
	Procedure-Level Parallelism
	Procedure-Level Parallelism (cont’d.)
	Program-Level Parallelism
	Program-Level Parallelism (cont’d.)
	Slide 47
	Slide 48
	Threads
	Threads in Java
	Threads in Java (cont’d.)
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	A Bounded Buffer Example in Java
	Semaphores
	Semaphores (cont’d.)
	Slide 63
	Slide 64
	Slide 65
	A Bounded Buffer Using Semaphores
	A Bounded Buffer Using Semaphores (cont’d.)
	Slide 68
	Difficulties with Semaphores
	Difficulties with Semaphores (cont’d.)
	Implementation of Semaphores
	Implementation of Semaphores (cont’d.)
	Slide 73
	Slide 74
	Monitors
	Monitors (cont’d.)
	Slide 77
	Slide 78
	Slide 79
	Java Synchronized Objects as Monitors
	Java Synchronized Objects as Monitors (cont’d.)
	The Java Lock and Condition Interfaces
	The Java Lock and Condition Interfaces (cont’d.)
	Slide 84
	Slide 85
	Ada95 Concurrency and Monitors
	Ada95 Concurrency and Monitors (cont’d.)
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Message Passing
	Message Passing (cont’d.)
	Slide 94
	Slide 95
	Slide 96
	Task Rendezvous in Ada
	Task Rendezvous in Ada (cont’d.)
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Parallelism in Non-Imperative Languages
	And-Parallelism
	And-Parallelism (cont’d.)
	Slide 111
	Or-Parallelism
	Or-Parallelism (cont’d.)
	Parallelism in Lisp
	Parallelism in Prolog
	Parallelism in Prolog (cont’d.)
	Slide 117
	Slide 118
	Slide 119
	Parallelism with Message Passing in Erlang
	Parallelism with Message Passing in Erlang (cont’d.)
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131

