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Objectives

• Understand the algebraic specification of abstract 
data types

• Be familiar with abstract data type mechanisms 
and modules

• Understand separate compilation in C, C++ 
namespaces, and Java packages

• Be familiar with Ada packages

• Be familiar with modules in ML
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Objectives (cont’d.)

• Learn about modules in earlier languages

• Understand problems with abstract data type 
mechanisms

• Be familiar with the mathematics of abstract data 
types
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Introduction

• Data type: a set of values, along with certain 
operations on those values

• Two kinds of data types: predefined and user-
defined

• Predefined data types: 
– Insulate the user from the implementation, which is 

machine dependent

– Manipulated by a set of predefined operations

– Use is completely specified by predetermined 
semantics
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Introduction (cont’d.)

• User-defined data types:
– Built from data structures using language's built-in 

data types and type constructors

– Internal organization is visible to the user

– No predefined operations

• Would be desirable to have a mechanism for 
constructing data types with as many 
characteristics of a built-in type as possible

• Abstract data type (or ADT): a data type for 
constructing user-defined data types
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Introduction (cont’d.)

• Important design goals for data types include 
modifiability, reusability, and security

• Encapsulation:
– Collection of all definitions related to a data type in 

one location

– Restriction on the use of the type to the operations 
defined at that location

• Information hiding: separation and suppression of 
implementation details from the data type’s 
definition
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Introduction (cont’d.)

• There is sometimes confusion between a 
mechanism for constructing types and the 
mathematical concept of a type

• Mathematical models are often given in terms of an 
algebraic specification

• Object-oriented programming emphasizes the 
concept of entities to control their own use during 
execution

• Abstract data types do not provide the level of active 
control that represents true object-oriented 
programming
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Introduction (cont’d.)

• The notion of an abstract data type is independent 
of the language paradigm used to implement it

• Module: a collection of services that may or may 
not include data type(s)
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The Algebraic Specification 
of Abstract Data Types
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• Function notation is used to specify the operations 
of the data type f:XY

• Signature for complex data type:
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• This specification lacks any notion of semantics, or 
the properties that the operations must actually 
possess

• In mathematics, semantic properties of functions 
are often described by equations or axioms
– Examples of axioms: associativity, commutative, and 

distributive laws

• Axioms can be used to define semantic properties 
of complex numbers, or the properties can be 
derived from those of the real data type
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• Example: complex addition can be based on real 
addition

– This allows us to prove arithmetic properties of 
complex numbers using the corresponding properties 
of reals

• A complete algebraic specification of type complex 
combines signature, variables, and equational 
axioms
– Called the algebraic specification
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• The equational semantics give a clear indication of 
implementation behavior

• Finding an appropriate set of equations, however, 
can be difficult

• Note that the arrow in the syntactic specification 
separates a function’s domain and range, while 
equality is of values returned by functions

• A specification can be parameterized with an 
unspecified data type
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The Algebraic Specification 
of Abstract Data Types (cont’d.)
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• createq: a constant
– Could be viewed as a function of no parameters that 

always returns the same value – that of a new queue 
that has been initialized to empty

• Error axioms: axioms that specify error values
– Provide limitations on the operations
– Example: frontq(createq) = error

• Note that the dequeue operation does not return 
the front element; it simply throws it away
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• Equations specifying the semantics of the 
operations can be used as a specification of the 
properties of an implementation

• There is no mention of memory or of assignment
– These specifications are in purely functional form

• In practice, abstract data type implementations 
often replace the functional behavior with an 
equivalent imperative one

• Finding an appropriate axiom set for an algebraic 
specification can be difficult
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• Can make some judgments about the kind and 
number of axioms needed by looking at the syntax of 
the operations

• Constructor: an operation that creates a new object 
of the data type

• Inspector: an operation that retrieves previously 
constructed values
– Predicates: return Boolean values
– Selectors: return non-Boolean values

• In general, we need one axiom for each combination 
of an inspector with a constructor
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The Algebraic Specification 
of Abstract Data Types (cont’d.)

• Example: 
– The queue’s axiom combinations are:

– Indicates that six rules are needed
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Abstract Data Type Mechanisms

• A mechanism for expressing abstract data types 
must have a way of separating the signature of the 
ADT from its implementation
– Must guarantee that any code outside the ADT 

definition cannot use details of the implementation 
and must operate on a value of the defined type only 
through the provided operations

• ML has a special ADT mechanism called abstype
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Abstract Data Type Mechanisms 
(cont’d.)
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Abstract Data Type Mechanisms 
(cont’d.)

• ML translator responds with a description of the 
signature of the type:

• Since ML has parametric polymorphism, the Queue 
type can be parameterized by the type of the 
element to be stored in the queue
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Abstract Data Type Mechanisms 
(cont’d.)
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Abstract Data Type Mechanisms 
(cont’d.)

• ML allows user-defined operators, called infix 
functions
– Can use special symbols

– Cannot reuse the standard operator symbols

• Example: we have defined the addition operator on 
complex number to have the name +: as an infix 
operator with a precedence level of 6 (same as built-in 
additive operators)
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Abstract Data Type Mechanisms 
(cont’d.)

• The Complex type can be used as follows:
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Modules

• A pure ADT mechanism does not address the 
entire range of situations where an ADT-like 
abstraction mechanism is useful in a language

• It makes sense to encapsulate the definitions and 
implementations of a set of standard functions that 
are closely related and hide the implementation 
details
– Such a package is not associated directly with a data 

type and does not fit the format of an ADT 
mechanism
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Modules (cont’d.)

• Example: a complier is a set of separate pieces

• Module: a program unit with a public interface and 
a private implementation

• As a provider of services, modules can export any 
mix of data types, procedures, variables, and 
constants
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Modules (cont’d.)

• Modules assist in the control of name proliferation
– They usually provide additional scope features

• A module exports only names that its interface 
requires, keeping hidden all others

• Names are qualified by the module name to avoid 
accidental name clashes
– Typically done by using the dot notation

• A module can document dependencies on other 
modules by requiring explicit import lists whenever 
code from other modules is used
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Separate Compilation in C and C++

• C does not have any module mechanisms
– Has separate compilation and name control features 

that can be used to simulate modules

• Typical organization of a queue data structure in C:
– Type and function specifications in a header file 
queue.h would include type definitions and function 
declarations without bodies (called prototypes)

– This file is used as a specification of the queue ADT 
by textually including it in client code and 
implementation code using the C preprocessor 
#include directive
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Separate Compilation in C and C++ 
(cont’d.)
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Separate Compilation in C and C++ 
(cont’d.)
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Separate Compilation in C and C++ 
(cont’d.)

• Definition of the Queue data type is hidden in the 
implementation by defining Queue to be a pointer 
type
– Leaves the actual queue representation structure as 

an incomplete type
– Eliminates the need to have the entire Queue 

structure declared in the header file

• The effectiveness of this mechanism depends 
solely on convention
– Neither compilers nor linkers enforce any protections 

or checks for out-of-date source code
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C++ Namespaces and Java Packages

• namespace mechanism in C++ provides support for 
the simulation of modules in C
– Allows the introduction of a named scope explicitly
– Helps avoid name clashes among separately compiled 

libraries

• Three ways to use the namespace:
– Use the scope resolution operator (::)
– Write a using declaration for each name from the 

namespace
– “Unqualify” all names in the namespace with a single 
using namespace declaration
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C++ Namespaces and Java Packages 
(cont’d.)

• Java has a namespace-like mechanism called the 
package:
– A group of related classes

• Can reference a class in a package by:
– Qualifying the class name with the dot notation
– Using an import declaration for the class or the entire 
package

• Java compiler can access any other public Java code 
that is locatable using the search path

• Compiler will check for out-of date source files and 
recompile all dependent files automatically
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Ada Packages

• Ada’s module mechanism is the package
– Used to implement modules and parametric 

polymorphism

• Package is divided into two parts:
– Package specification: the public interface to the 

package, and corresponds to the signature of an ADT 
– Package body

• Package specifications and package bodies 
represent compilation units in Ada and can be 
compiled separately
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Ada Packages (cont’d.)

• Any declarations in a private section are 
inaccessible to a client

• Type names can be given in the public part of a 
specification, but the actual type declaration must 
be given in the private part of the specification

• This violates the two criteria for abstract data type 
mechanisms:
– The specification is dependent on the implementation
– Implementation details are divided between the 

specification and the implementation
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Ada Packages (cont’d.)

• Packages in Ada are automatically namespaces in 
the C++ sense

• Ada has a use declaration analogous to the using 
declaration of C++ that dereferences the package 
name automatically

• Generic packages: implement parameterized 
types
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Ada Packages (cont’d.)
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Modules in ML

• In addition to the abstract definition, ML has a more 
general module facility consisting of three 
mechanisms:
– Signature: an interface definition

– Structure: an implementation of the signature

– Functions: functions from structures to structures, 
with structure parameters having “types” given by 
signatures

• Signatures are defined using the sig and end 
keywords
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Modules in ML (cont’d.)

Programming Languages, Third Edition 42



Modules in ML (cont’d.)
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Modules in ML (cont’d.)
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Modules in ML (cont’d.)

• ML signatures and structures satisfy most of the 
requirements for abstract data types

• Main difficulty is that client code must explicitly 
state the implementation to be used in terms of the 
module name
– Code cannot be written to depend only on the 

signature, with the actual implementation structure to 
be supplied externally to the code

– This is because ML has no explicit or implicit 
separate compilation or code aggregation 
mechanism
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Modules in Earlier Languages

• Historically, modules and abstract data type 
mechanisms began with Simula67

• Languages that contributed significantly to module 
mechanisms in Ada and ML include CLU, Euclid, 
Modula-2, Mesa, and Cedar
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Euclid

• In the Euclid programming language, modules are 
types

• Must declare an actual object of the type to use it

• When module types are used in a declaration, a 
variable of the module type is created, or instantiated

• Can have two different instantiations of a module 
simultaneously

• This differs from Ada or ML, where modules are 
objects instead of types, with a single instantiation of 
each
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Euclid (cont’d.)
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CLU

• In CLU, modules are defined using the cluster 
mechanism

• The data type is defined directly as a cluster

• When we define a variable, its type is not a cluster 
but what is given by the rep declaration

• A cluster in CLU refers to two different things:
– The cluster itself

– Its internal representation type
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CLU (cont’d.)
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CLU (cont’d.)

• cvt (for convert) converts from the external type 
(with no explicit structure) to the internal rep type 
and back again
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Modula-2

• In Modula-2, the specification and implementation 
of an abstract data type are separated into a 
DEFINITION MODULE and an IMPLEMENTATION 
MODULE

• DEFINITION MODULE: contains only definitions or 
declarations
– These are the only declarations that are exported 

(usable by other modules)
• IMPLEMENTATION MODULE: contains the 

implementation code
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Modula-2 (cont’d.)
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Modula-2 (cont’d.)

• A client module uses a data type by importing it 
and its functions from the data type’s module

• Modula-2 uses the dereferencing FROM clause
– Imported items must be listed by name in the 
IMPORT statement

– No other items (imported or locally declared) may 
have the same names as those imported 
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Problems with Abstract Data Type 
Mechanisms

• Abstract data type mechanisms use separate 
compilation facilities to meet protection and 
implementation independence requirements

• ADT mechanism is used as an interface to 
guarantee consistency of use and implementation

• But ADT mechanisms are used to create types and 
associate operations to types, while separate 
compilation facilities are providers of services
– Services may include variables, constants, or other 

programming language entities
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Problems with Abstract Data Type 
Mechanisms (cont’d.)

• Thus, compilation units are in one sense more 
general than ADT mechanisms

• They are less general in that the use of a 
compilation unit to define a type does not identify 
the type with the unit
– Thus, not a true type declaration

• Also, units are static entities that retain their identity 
only before linking
– Can result in allocation and initialization problems
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Problems with Abstract Data Type 
Mechanisms (cont’d.)

• Using separate compilation units to implement 
abstract data types is therefore a compromise in 
language design

• It is a useful compromise
– Reduces the implementation question for ADTs to 

one of consistency checking and linkage
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Modules Are Not Types

• In C, Ada, and ML, problems arise because a 
module must export a type as well as operations

• Would be helpful to define a module to be a type
– Would prevent the need to arrange to protect the 

implementation details with an ad hoc mechanism 
such as incomplete or private declarations

• ML makes this distinction by containing both an 
abstype and a module mechanism

• Module mechanism is more general, but a type 
must be exported
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Modules Are Not Types (cont’d.)

• abstype is a data type, but its implementation 
cannot be separated from its specification
– Access to the details of the implementation is 

prevented

• Clients of the abstype implicitly depend on the 
implementation
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Modules Are Static Entities

• An attractive possibility for implementing an 
abstract data type is to simply not reveal a type at 
all
– Avoids possibility of clients depending in any way on 

implementation details

– Prevents clients from misuse of a type

• Can create a package specification in Ada in which 
the actual data type is buried in the implementation
– This is pure imperative programming
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Modules Are Static Entities (cont’d.)

• Normally this would imply that only one entity of 
that data type could be in the client
– Otherwise, the entire code must be replicated

• This is due to the static nature of most module 
mechanisms

• In Ada, the generic package mechanism offers a 
way to obtain several entities of the same type by 
using multiple instantiations of the same generic 
package
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Modules Are Static Entities (cont’d.)
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Modules That Export Types Do Not 
Adequately Control Operations on 

Variables of Such Types
• In the C and Ada examples given, variables of an 

abstract type had to be allocated and initialized by 
calling a procedure in the implementation
– The exporting module cannot guarantee that the 

initializing procedure is called before the variable is 
used

• Also allows copies to be made and deallocations 
performed outside the control of the module
– Without the user being aware of the consequences
– Without the ability to return deallocated memory to 

available storage
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Modules That Export Types Do Not 
Control Operations (cont’d.)

• In C, x:=y performs assignment by sharing the 
object pointed to by y
– x=y tests pointer equality, which is not correct when 
x and y are complex numbers

• In Ada, we can use a limited private type as a 
mechanism to control the use of assignment and 
equality
– Clients are prevented from using the usual 

assignment and equality operations
– Package ensures that equality is performed correctly 

and that assignment deallocates garbage
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Modules That Export Types Do Not 
Control Operations (cont’d.)
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Modules That Export Types Do Not 
Control Operations (cont’d.)

• C++ allows overloading of assignment and equality

• Object-oriented languages use constructors to 
solve the initialization problem

• ML limits the data type in an abstype or struct 
specification to types that do not permit the equality 
operation
– Type parameters that allow equality testing must be 

written with a double apostrophe ‘’a instead of a 
single apostrophe ‘a
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• In ML, types that allow equality must be specified as 
eqtype
• Example:

Modules That Export Types Do Not 
Control Operations (cont’d.)
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Modules Do Not Always Adequately 
Represent Their Dependency on 

Imported Types
• Modules often  depend on the existence of certain 

operations on type parameters
– May also call functions whose existence is not made 

explicit in the module specification

• Example: data structures such as binary search 
tree, priority queue, or ordered list all required an 
order operation such as the less-than arithmetic 
operation “<“

• C++ templates mask such dependencies in 
specifications
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Modules Do Not Always Represent 
Their Dependency (cont’d.)

• Example: in C++ code
– Template min function specification

– Implementation shows the dependency 
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Modules Do Not Always Represent 
Their Dependency (cont’d.)

• In Ada, can specify this requirement using 
additional declarations in the generic part of a 
package declaration:

• Instantiation must provide the lessThan function:
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Modules Do Not Always Represent 
Their Dependency (cont’d.)

• Such a requirement is called constrained 
parameterization

• ML allows structures to be explicitly parameterized 
by other structures
– This feature is called a functor (a function on 

structures)
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Modules Do Not Always Represent 
Their Dependency (cont’d.)

• The functor can be applied to create a new 
structure:

• This makes explicit the appropriate dependencies, 
but at the cost of requiring an extra structure to be 
defined that encapsulates the required features
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Modules Do Not Always Represent 
Their Dependency (cont’d.)



Module Definitions Include No 
Specification of the Semantics of the 

Provided Operations
• In almost all languages, no specification of the 

behavior of the available operations of an abstract 
data type is required

• The Eiffel object-oriented language does allow the 
specification of semantics
– Semantic specifications are given by preconditions, 

postconditions, and invariants

• Preconditions and postconditions establish what 
must be true before and after the execution of a 
procedure
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Module Definitions Include No 
Specification of Semantics (cont’d.)

• Invariants establish what must be true about the 
internal state of the data in an abstract data type

• Example: the enqueue operation in Eiffel:
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Module Definitions Include No 
Specification of Semantics (cont’d.)

• require section establishes preconditions
• ensure section establishes postconditions

• These requirements correspond to the algebraic 
axioms:
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The Mathematics 
of Abstract Data Types

• An abstract data type is said to have existential 
type
– It asserts the existence of an actual type that meets 

its requirements

• An actual type is a set with operations of the 
appropriate form
– A set and operations that meet the specification are 

a model for the specification

• It is possible for no model to exist, or many models
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The Mathematics 
of Abstract Data Types (cont’d.)

• Potential types are called sorts, and potential sets 
of operations are called signatures
– Thus a sort is the name of a type not yet associated 

with any actual set of values

– A signature is the name and type of an operation or 
set of operations that exists only in theory

• A model is then an actualization of a sort and its 
signature and is called an algebra

• Algebraic specifications are often written using the 
sort-signature terminology
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The Mathematics 
of Abstract Data Types (cont’d.)
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The Mathematics 
of Abstract Data Types (cont’d.)

• We would like to be able to construct a unique 
algebra for the specification to represent the type

• Standard method to do this:
– Construct the free algebra of terms for a sort

– Form the quotient algebra of the equivalence 
relation generated by the equational axioms

• Free algebra of terms consists of all legal 
combinations of operations
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The Mathematics 
of Abstract Data Types (cont’d.)

• Example: free algebra for sort queue(integer) and 
signature shown earlier includes:

• Note that the axioms for a queue imply that some 
terms are actually equal:
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The Mathematics 
of Abstract Data Types (cont’d.)
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• In the free algebra, no axioms are true
– To make them true (to construct a type that models 

the specification), must use axioms to reduce the 
number of distinct elements in the free algebra

• This can be done by constructing an equivalence 
relation == from the axioms
– “==“ is an equivalence relation if it is symmetric, 

transitive, and reflexive:



The Mathematics 
of Abstract Data Types (cont’d.)

• Given an equivalence relation == and a free 
algebra F, there is a unique well-defined algebra 
F/== such that x=y in F/== if and only if x==y in F
– The algebra F/== is called the quotient algebra of F 

by ==

– There is a unique “smallest” equivalence relation 
making the two sides of every equation equivalent 
and hence equal in the quotient algebra

• The quotient algebra is usually taken to be the data 
type defined by an algebraic specification

Programming Languages, Third Edition 85



The Mathematics 
of Abstract Data Types (cont’d.)

• This algebra has the property that the only terms 
that are equal are those that are provably equal 
from the axioms

• This algebra is called the initial algebra 
represented by the specification
– Using it results in what are called initial semantics

• In general, axiom systems should be consistent 
and complete
– Another desirable property is independence: no 

axiom is implied by other axioms
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The Mathematics 
of Abstract Data Types (cont’d.)

• Deciding on an appropriate set of axioms is 
generally a difficult process

• Final algebra: an approach that assumes that any 
two data values that cannot be distinguished by 
inspector operations must be equal
– The associated semantics are called final semantics

• A final algebra is also essentially unique

• Principle of extensionality in mathematics:
– Two things are equal precisely when all their 

components are equal
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