
Programming Languages
Third Edition

Chapter 11
Abstract Data Types and Modules

Objectives

• Understand the algebraic specification of abstract
data types

• Be familiar with abstract data type mechanisms
and modules

• Understand separate compilation in C, C++
namespaces, and Java packages

• Be familiar with Ada packages

• Be familiar with modules in ML

Programming Languages, Third Edition 2

Objectives (cont’d.)

• Learn about modules in earlier languages

• Understand problems with abstract data type
mechanisms

• Be familiar with the mathematics of abstract data
types

Programming Languages, Third Edition 3

Introduction

• Data type: a set of values, along with certain
operations on those values

• Two kinds of data types: predefined and user-
defined

• Predefined data types:
– Insulate the user from the implementation, which is

machine dependent

– Manipulated by a set of predefined operations

– Use is completely specified by predetermined
semantics

Programming Languages, Third Edition 4

Introduction (cont’d.)

• User-defined data types:
– Built from data structures using language's built-in

data types and type constructors

– Internal organization is visible to the user

– No predefined operations

• Would be desirable to have a mechanism for
constructing data types with as many
characteristics of a built-in type as possible

• Abstract data type (or ADT): a data type for
constructing user-defined data types

Programming Languages, Third Edition 5

Introduction (cont’d.)

• Important design goals for data types include
modifiability, reusability, and security

• Encapsulation:
– Collection of all definitions related to a data type in

one location

– Restriction on the use of the type to the operations
defined at that location

• Information hiding: separation and suppression of
implementation details from the data type’s
definition

Programming Languages, Third Edition 6

Introduction (cont’d.)

• There is sometimes confusion between a
mechanism for constructing types and the
mathematical concept of a type

• Mathematical models are often given in terms of an
algebraic specification

• Object-oriented programming emphasizes the
concept of entities to control their own use during
execution

• Abstract data types do not provide the level of active
control that represents true object-oriented
programming

Programming Languages, Third Edition 7

Introduction (cont’d.)

• The notion of an abstract data type is independent
of the language paradigm used to implement it

• Module: a collection of services that may or may
not include data type(s)

Programming Languages, Third Edition 8

The Algebraic Specification
of Abstract Data Types

Programming Languages, Third Edition 9

The Algebraic Specification
of Abstract Data Types (cont’d.)

• Function notation is used to specify the operations
of the data type f:XY

• Signature for complex data type:

Programming Languages, Third Edition 10

The Algebraic Specification
of Abstract Data Types (cont’d.)

• This specification lacks any notion of semantics, or
the properties that the operations must actually
possess

• In mathematics, semantic properties of functions
are often described by equations or axioms
– Examples of axioms: associativity, commutative, and

distributive laws

• Axioms can be used to define semantic properties
of complex numbers, or the properties can be
derived from those of the real data type

Programming Languages, Third Edition 11

The Algebraic Specification
of Abstract Data Types (cont’d.)

• Example: complex addition can be based on real
addition

– This allows us to prove arithmetic properties of
complex numbers using the corresponding properties
of reals

• A complete algebraic specification of type complex
combines signature, variables, and equational
axioms
– Called the algebraic specification

Programming Languages, Third Edition 12

Programming Languages, Third Edition 13

The Algebraic Specification
of Abstract Data Types (cont’d.)

• The equational semantics give a clear indication of
implementation behavior

• Finding an appropriate set of equations, however,
can be difficult

• Note that the arrow in the syntactic specification
separates a function’s domain and range, while
equality is of values returned by functions

• A specification can be parameterized with an
unspecified data type

Programming Languages, Third Edition 14

The Algebraic Specification
of Abstract Data Types (cont’d.)

Programming Languages, Third Edition 15

The Algebraic Specification
of Abstract Data Types (cont’d.)

• createq: a constant
– Could be viewed as a function of no parameters that

always returns the same value – that of a new queue
that has been initialized to empty

• Error axioms: axioms that specify error values
– Provide limitations on the operations
– Example: frontq(createq) = error

• Note that the dequeue operation does not return
the front element; it simply throws it away

Programming Languages, Third Edition 16

The Algebraic Specification
of Abstract Data Types (cont’d.)

• Equations specifying the semantics of the
operations can be used as a specification of the
properties of an implementation

• There is no mention of memory or of assignment
– These specifications are in purely functional form

• In practice, abstract data type implementations
often replace the functional behavior with an
equivalent imperative one

• Finding an appropriate axiom set for an algebraic
specification can be difficult

Programming Languages, Third Edition 17

The Algebraic Specification
of Abstract Data Types (cont’d.)

• Can make some judgments about the kind and
number of axioms needed by looking at the syntax of
the operations

• Constructor: an operation that creates a new object
of the data type

• Inspector: an operation that retrieves previously
constructed values
– Predicates: return Boolean values
– Selectors: return non-Boolean values

• In general, we need one axiom for each combination
of an inspector with a constructor

Programming Languages, Third Edition 18

The Algebraic Specification
of Abstract Data Types (cont’d.)

• Example:
– The queue’s axiom combinations are:

– Indicates that six rules are needed

Programming Languages, Third Edition 19

Abstract Data Type Mechanisms

• A mechanism for expressing abstract data types
must have a way of separating the signature of the
ADT from its implementation
– Must guarantee that any code outside the ADT

definition cannot use details of the implementation
and must operate on a value of the defined type only
through the provided operations

• ML has a special ADT mechanism called abstype

Programming Languages, Third Edition 20

Abstract Data Type Mechanisms
(cont’d.)

Programming Languages, Third Edition 21

Abstract Data Type Mechanisms
(cont’d.)

• ML translator responds with a description of the
signature of the type:

• Since ML has parametric polymorphism, the Queue
type can be parameterized by the type of the
element to be stored in the queue

Programming Languages, Third Edition 22

Abstract Data Type Mechanisms
(cont’d.)

Programming Languages, Third Edition 23

Abstract Data Type Mechanisms
(cont’d.)

• ML allows user-defined operators, called infix
functions
– Can use special symbols

– Cannot reuse the standard operator symbols

• Example: we have defined the addition operator on
complex number to have the name +: as an infix
operator with a precedence level of 6 (same as built-in
additive operators)

Programming Languages, Third Edition 24

Abstract Data Type Mechanisms
(cont’d.)

• The Complex type can be used as follows:

Programming Languages, Third Edition 25

Modules

• A pure ADT mechanism does not address the
entire range of situations where an ADT-like
abstraction mechanism is useful in a language

• It makes sense to encapsulate the definitions and
implementations of a set of standard functions that
are closely related and hide the implementation
details
– Such a package is not associated directly with a data

type and does not fit the format of an ADT
mechanism

Programming Languages, Third Edition 26

Modules (cont’d.)

• Example: a complier is a set of separate pieces

• Module: a program unit with a public interface and
a private implementation

• As a provider of services, modules can export any
mix of data types, procedures, variables, and
constants

Programming Languages, Third Edition 27

Modules (cont’d.)

• Modules assist in the control of name proliferation
– They usually provide additional scope features

• A module exports only names that its interface
requires, keeping hidden all others

• Names are qualified by the module name to avoid
accidental name clashes
– Typically done by using the dot notation

• A module can document dependencies on other
modules by requiring explicit import lists whenever
code from other modules is used

Programming Languages, Third Edition 28

Separate Compilation in C and C++

• C does not have any module mechanisms
– Has separate compilation and name control features

that can be used to simulate modules

• Typical organization of a queue data structure in C:
– Type and function specifications in a header file
queue.h would include type definitions and function
declarations without bodies (called prototypes)

– This file is used as a specification of the queue ADT
by textually including it in client code and
implementation code using the C preprocessor
#include directive

Programming Languages, Third Edition 29

Separate Compilation in C and C++
(cont’d.)

Programming Languages, Third Edition 30

Separate Compilation in C and C++
(cont’d.)

Programming Languages, Third Edition 31

Separate Compilation in C and C++
(cont’d.)

• Definition of the Queue data type is hidden in the
implementation by defining Queue to be a pointer
type
– Leaves the actual queue representation structure as

an incomplete type
– Eliminates the need to have the entire Queue

structure declared in the header file

• The effectiveness of this mechanism depends
solely on convention
– Neither compilers nor linkers enforce any protections

or checks for out-of-date source code

Programming Languages, Third Edition 32

C++ Namespaces and Java Packages

• namespace mechanism in C++ provides support for
the simulation of modules in C
– Allows the introduction of a named scope explicitly
– Helps avoid name clashes among separately compiled

libraries

• Three ways to use the namespace:
– Use the scope resolution operator (::)
– Write a using declaration for each name from the

namespace
– “Unqualify” all names in the namespace with a single
using namespace declaration

Programming Languages, Third Edition 33

Programming Languages, Third Edition 34

C++ Namespaces and Java Packages
(cont’d.)

• Java has a namespace-like mechanism called the
package:
– A group of related classes

• Can reference a class in a package by:
– Qualifying the class name with the dot notation
– Using an import declaration for the class or the entire
package

• Java compiler can access any other public Java code
that is locatable using the search path

• Compiler will check for out-of date source files and
recompile all dependent files automatically

Programming Languages, Third Edition 35

Ada Packages

• Ada’s module mechanism is the package
– Used to implement modules and parametric

polymorphism

• Package is divided into two parts:
– Package specification: the public interface to the

package, and corresponds to the signature of an ADT
– Package body

• Package specifications and package bodies
represent compilation units in Ada and can be
compiled separately

Programming Languages, Third Edition 36

Programming Languages, Third Edition 37

Ada Packages (cont’d.)

• Any declarations in a private section are
inaccessible to a client

• Type names can be given in the public part of a
specification, but the actual type declaration must
be given in the private part of the specification

• This violates the two criteria for abstract data type
mechanisms:
– The specification is dependent on the implementation
– Implementation details are divided between the

specification and the implementation

Programming Languages, Third Edition 38

Ada Packages (cont’d.)

• Packages in Ada are automatically namespaces in
the C++ sense

• Ada has a use declaration analogous to the using
declaration of C++ that dereferences the package
name automatically

• Generic packages: implement parameterized
types

Programming Languages, Third Edition 39

Ada Packages (cont’d.)

Programming Languages, Third Edition 40

Modules in ML

• In addition to the abstract definition, ML has a more
general module facility consisting of three
mechanisms:
– Signature: an interface definition

– Structure: an implementation of the signature

– Functions: functions from structures to structures,
with structure parameters having “types” given by
signatures

• Signatures are defined using the sig and end
keywords

Programming Languages, Third Edition 41

Modules in ML (cont’d.)

Programming Languages, Third Edition 42

Modules in ML (cont’d.)

Programming Languages, Third Edition 43

Modules in ML (cont’d.)

Programming Languages, Third Edition 44

Modules in ML (cont’d.)

• ML signatures and structures satisfy most of the
requirements for abstract data types

• Main difficulty is that client code must explicitly
state the implementation to be used in terms of the
module name
– Code cannot be written to depend only on the

signature, with the actual implementation structure to
be supplied externally to the code

– This is because ML has no explicit or implicit
separate compilation or code aggregation
mechanism

Programming Languages, Third Edition 45

Modules in Earlier Languages

• Historically, modules and abstract data type
mechanisms began with Simula67

• Languages that contributed significantly to module
mechanisms in Ada and ML include CLU, Euclid,
Modula-2, Mesa, and Cedar

Programming Languages, Third Edition 46

Euclid

• In the Euclid programming language, modules are
types

• Must declare an actual object of the type to use it

• When module types are used in a declaration, a
variable of the module type is created, or instantiated

• Can have two different instantiations of a module
simultaneously

• This differs from Ada or ML, where modules are
objects instead of types, with a single instantiation of
each

Programming Languages, Third Edition 47

Programming Languages, Third Edition 48

Euclid (cont’d.)

Programming Languages, Third Edition 49

CLU

• In CLU, modules are defined using the cluster
mechanism

• The data type is defined directly as a cluster

• When we define a variable, its type is not a cluster
but what is given by the rep declaration

• A cluster in CLU refers to two different things:
– The cluster itself

– Its internal representation type

Programming Languages, Third Edition 50

CLU (cont’d.)

Programming Languages, Third Edition 51

CLU (cont’d.)

• cvt (for convert) converts from the external type
(with no explicit structure) to the internal rep type
and back again

Programming Languages, Third Edition 52

Modula-2

• In Modula-2, the specification and implementation
of an abstract data type are separated into a
DEFINITION MODULE and an IMPLEMENTATION
MODULE

• DEFINITION MODULE: contains only definitions or
declarations
– These are the only declarations that are exported

(usable by other modules)
• IMPLEMENTATION MODULE: contains the

implementation code

Programming Languages, Third Edition 53

Modula-2 (cont’d.)

Programming Languages, Third Edition 54

Modula-2 (cont’d.)

• A client module uses a data type by importing it
and its functions from the data type’s module

• Modula-2 uses the dereferencing FROM clause
– Imported items must be listed by name in the
IMPORT statement

– No other items (imported or locally declared) may
have the same names as those imported

Programming Languages, Third Edition 55

Problems with Abstract Data Type
Mechanisms

• Abstract data type mechanisms use separate
compilation facilities to meet protection and
implementation independence requirements

• ADT mechanism is used as an interface to
guarantee consistency of use and implementation

• But ADT mechanisms are used to create types and
associate operations to types, while separate
compilation facilities are providers of services
– Services may include variables, constants, or other

programming language entities

Programming Languages, Third Edition 56

Problems with Abstract Data Type
Mechanisms (cont’d.)

• Thus, compilation units are in one sense more
general than ADT mechanisms

• They are less general in that the use of a
compilation unit to define a type does not identify
the type with the unit
– Thus, not a true type declaration

• Also, units are static entities that retain their identity
only before linking
– Can result in allocation and initialization problems

Programming Languages, Third Edition 57

Problems with Abstract Data Type
Mechanisms (cont’d.)

• Using separate compilation units to implement
abstract data types is therefore a compromise in
language design

• It is a useful compromise
– Reduces the implementation question for ADTs to

one of consistency checking and linkage

Programming Languages, Third Edition 58

Modules Are Not Types

• In C, Ada, and ML, problems arise because a
module must export a type as well as operations

• Would be helpful to define a module to be a type
– Would prevent the need to arrange to protect the

implementation details with an ad hoc mechanism
such as incomplete or private declarations

• ML makes this distinction by containing both an
abstype and a module mechanism

• Module mechanism is more general, but a type
must be exported

Programming Languages, Third Edition 59

Modules Are Not Types (cont’d.)

• abstype is a data type, but its implementation
cannot be separated from its specification
– Access to the details of the implementation is

prevented

• Clients of the abstype implicitly depend on the
implementation

Programming Languages, Third Edition 60

Modules Are Static Entities

• An attractive possibility for implementing an
abstract data type is to simply not reveal a type at
all
– Avoids possibility of clients depending in any way on

implementation details

– Prevents clients from misuse of a type

• Can create a package specification in Ada in which
the actual data type is buried in the implementation
– This is pure imperative programming

Programming Languages, Third Edition 61

Modules Are Static Entities (cont’d.)

• Normally this would imply that only one entity of
that data type could be in the client
– Otherwise, the entire code must be replicated

• This is due to the static nature of most module
mechanisms

• In Ada, the generic package mechanism offers a
way to obtain several entities of the same type by
using multiple instantiations of the same generic
package

Programming Languages, Third Edition 62

Modules Are Static Entities (cont’d.)

Programming Languages, Third Edition 63

Modules That Export Types Do Not
Adequately Control Operations on

Variables of Such Types
• In the C and Ada examples given, variables of an

abstract type had to be allocated and initialized by
calling a procedure in the implementation
– The exporting module cannot guarantee that the

initializing procedure is called before the variable is
used

• Also allows copies to be made and deallocations
performed outside the control of the module
– Without the user being aware of the consequences
– Without the ability to return deallocated memory to

available storage

Programming Languages, Third Edition 64

Modules That Export Types Do Not
Control Operations (cont’d.)

• In C, x:=y performs assignment by sharing the
object pointed to by y
– x=y tests pointer equality, which is not correct when
x and y are complex numbers

• In Ada, we can use a limited private type as a
mechanism to control the use of assignment and
equality
– Clients are prevented from using the usual

assignment and equality operations
– Package ensures that equality is performed correctly

and that assignment deallocates garbage

Programming Languages, Third Edition 65

Modules That Export Types Do Not
Control Operations (cont’d.)

Programming Languages, Third Edition 66

Modules That Export Types Do Not
Control Operations (cont’d.)

• C++ allows overloading of assignment and equality

• Object-oriented languages use constructors to
solve the initialization problem

• ML limits the data type in an abstype or struct
specification to types that do not permit the equality
operation
– Type parameters that allow equality testing must be

written with a double apostrophe ‘’a instead of a
single apostrophe ‘a

Programming Languages, Third Edition 67

• In ML, types that allow equality must be specified as
eqtype
• Example:

Modules That Export Types Do Not
Control Operations (cont’d.)

Programming Languages, Third Edition 68

Modules Do Not Always Adequately
Represent Their Dependency on

Imported Types
• Modules often depend on the existence of certain

operations on type parameters
– May also call functions whose existence is not made

explicit in the module specification

• Example: data structures such as binary search
tree, priority queue, or ordered list all required an
order operation such as the less-than arithmetic
operation “<“

• C++ templates mask such dependencies in
specifications

Programming Languages, Third Edition 69

Modules Do Not Always Represent
Their Dependency (cont’d.)

• Example: in C++ code
– Template min function specification

– Implementation shows the dependency

Programming Languages, Third Edition 70

Modules Do Not Always Represent
Their Dependency (cont’d.)

• In Ada, can specify this requirement using
additional declarations in the generic part of a
package declaration:

• Instantiation must provide the lessThan function:

Programming Languages, Third Edition 71

Modules Do Not Always Represent
Their Dependency (cont’d.)

• Such a requirement is called constrained
parameterization

• ML allows structures to be explicitly parameterized
by other structures
– This feature is called a functor (a function on

structures)

Programming Languages, Third Edition 72

Modules Do Not Always Represent
Their Dependency (cont’d.)

• The functor can be applied to create a new
structure:

• This makes explicit the appropriate dependencies,
but at the cost of requiring an extra structure to be
defined that encapsulates the required features

Programming Languages, Third Edition 73

Programming Languages, Third Edition 74

Programming Languages, Third Edition 75

Modules Do Not Always Represent
Their Dependency (cont’d.)

Module Definitions Include No
Specification of the Semantics of the

Provided Operations
• In almost all languages, no specification of the

behavior of the available operations of an abstract
data type is required

• The Eiffel object-oriented language does allow the
specification of semantics
– Semantic specifications are given by preconditions,

postconditions, and invariants

• Preconditions and postconditions establish what
must be true before and after the execution of a
procedure

Programming Languages, Third Edition 76

Module Definitions Include No
Specification of Semantics (cont’d.)

• Invariants establish what must be true about the
internal state of the data in an abstract data type

• Example: the enqueue operation in Eiffel:

Programming Languages, Third Edition 77

Module Definitions Include No
Specification of Semantics (cont’d.)

• require section establishes preconditions
• ensure section establishes postconditions

• These requirements correspond to the algebraic
axioms:

Programming Languages, Third Edition 78

The Mathematics
of Abstract Data Types

• An abstract data type is said to have existential
type
– It asserts the existence of an actual type that meets

its requirements

• An actual type is a set with operations of the
appropriate form
– A set and operations that meet the specification are

a model for the specification

• It is possible for no model to exist, or many models

Programming Languages, Third Edition 79

The Mathematics
of Abstract Data Types (cont’d.)

• Potential types are called sorts, and potential sets
of operations are called signatures
– Thus a sort is the name of a type not yet associated

with any actual set of values

– A signature is the name and type of an operation or
set of operations that exists only in theory

• A model is then an actualization of a sort and its
signature and is called an algebra

• Algebraic specifications are often written using the
sort-signature terminology

Programming Languages, Third Edition 80

The Mathematics
of Abstract Data Types (cont’d.)

Programming Languages, Third Edition 81

The Mathematics
of Abstract Data Types (cont’d.)

• We would like to be able to construct a unique
algebra for the specification to represent the type

• Standard method to do this:
– Construct the free algebra of terms for a sort

– Form the quotient algebra of the equivalence
relation generated by the equational axioms

• Free algebra of terms consists of all legal
combinations of operations

Programming Languages, Third Edition 82

The Mathematics
of Abstract Data Types (cont’d.)

• Example: free algebra for sort queue(integer) and
signature shown earlier includes:

• Note that the axioms for a queue imply that some
terms are actually equal:

Programming Languages, Third Edition 83

The Mathematics
of Abstract Data Types (cont’d.)

Programming Languages, Third Edition 84

• In the free algebra, no axioms are true
– To make them true (to construct a type that models

the specification), must use axioms to reduce the
number of distinct elements in the free algebra

• This can be done by constructing an equivalence
relation == from the axioms
– “==“ is an equivalence relation if it is symmetric,

transitive, and reflexive:

The Mathematics
of Abstract Data Types (cont’d.)

• Given an equivalence relation == and a free
algebra F, there is a unique well-defined algebra
F/== such that x=y in F/== if and only if x==y in F
– The algebra F/== is called the quotient algebra of F

by ==

– There is a unique “smallest” equivalence relation
making the two sides of every equation equivalent
and hence equal in the quotient algebra

• The quotient algebra is usually taken to be the data
type defined by an algebraic specification

Programming Languages, Third Edition 85

The Mathematics
of Abstract Data Types (cont’d.)

• This algebra has the property that the only terms
that are equal are those that are provably equal
from the axioms

• This algebra is called the initial algebra
represented by the specification
– Using it results in what are called initial semantics

• In general, axiom systems should be consistent
and complete
– Another desirable property is independence: no

axiom is implied by other axioms

Programming Languages, Third Edition 86

The Mathematics
of Abstract Data Types (cont’d.)

• Deciding on an appropriate set of axioms is
generally a difficult process

• Final algebra: an approach that assumes that any
two data values that cannot be distinguished by
inspector operations must be equal
– The associated semantics are called final semantics

• A final algebra is also essentially unique

• Principle of extensionality in mathematics:
– Two things are equal precisely when all their

components are equal

Programming Languages, Third Edition 87

	Programming Languages Third Edition
	Objectives
	Objectives (cont’d.)
	Introduction
	Introduction (cont’d.)
	Slide 6
	Slide 7
	Slide 8
	The Algebraic Specification of Abstract Data Types
	The Algebraic Specification of Abstract Data Types (cont’d.)
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Abstract Data Type Mechanisms
	Abstract Data Type Mechanisms (cont’d.)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Modules
	Modules (cont’d.)
	Slide 28
	Separate Compilation in C and C++
	Separate Compilation in C and C++ (cont’d.)
	Slide 31
	Slide 32
	C++ Namespaces and Java Packages
	Slide 34
	C++ Namespaces and Java Packages (cont’d.)
	Ada Packages
	Slide 37
	Ada Packages (cont’d.)
	Slide 39
	Slide 40
	Modules in ML
	Modules in ML (cont’d.)
	Slide 43
	Slide 44
	Slide 45
	Modules in Earlier Languages
	Euclid
	Slide 48
	Euclid (cont’d.)
	CLU
	CLU (cont’d.)
	Slide 52
	Modula-2
	Modula-2 (cont’d.)
	Slide 55
	Problems with Abstract Data Type Mechanisms
	Problems with Abstract Data Type Mechanisms (cont’d.)
	Slide 58
	Modules Are Not Types
	Modules Are Not Types (cont’d.)
	Modules Are Static Entities
	Modules Are Static Entities (cont’d.)
	Slide 63
	Modules That Export Types Do Not Adequately Control Operations on Variables of Such Types
	Modules That Export Types Do Not Control Operations (cont’d.)
	Slide 66
	Slide 67
	Slide 68
	Modules Do Not Always Adequately Represent Their Dependency on Imported Types
	Modules Do Not Always Represent Their Dependency (cont’d.)
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Module Definitions Include No Specification of the Semantics of the Provided Operations
	Module Definitions Include No Specification of Semantics (cont’d.)
	Slide 78
	The Mathematics of Abstract Data Types
	The Mathematics of Abstract Data Types (cont’d.)
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87

