
Programming Languages
Third Edition

Chapter 10
Control II – Procedures and

Environments

Objectives

• Understand the nature of procedure definition and
activation

• Understand procedure semantics

• Learn parameter-passing mechanisms

• Understand procedure environments, activations,
and allocation

• Understand dynamic memory management

Programming Languages, Third Edition 2

Objectives (cont’d.)

• Understand the relationship between exception
handling and environments

• Learn to process parameter modes in TinyAda

Programming Languages, Third Edition 3

Introduction

• Procedures and functions: blocks whose execution
is deferred and whose interfaces are clearly
specified

• Many languages make strong syntactic distinctions
between functions and procedures

• Can make a case for a significant semantic
distinction as well:
– Functions should produce a value only have no side

effects
– Procedures produce no values and operate by

producing side effects
Programming Languages, Third Edition 4

Introduction (cont’d.)

• Procedure calls are therefore statements, while
function calls are expressions

• Most languages do not enforce semantic
distinctions
– Functions can produce side effects as well as return

values

– Procedures may produce values through their
parameters while causing no side effects

• We will not make a significant distinction between
them since most languages do not

Programming Languages, Third Edition 5

Introduction (cont’d.)

• Functional languages generalize the notion of a
function
– Functions are first-class data objects themselves

• Functions require dynamic memory management,
including garbage collection

• Activation record: the collection of data needed to
maintain a single execution of a procedure

Programming Languages, Third Edition 6

Procedure Definition and Activation

• Procedure: a mechanism for abstracting a group
of actions or computations

• Body of the procedure: the group of actions

• Procedure name: represents the body

• A procedure is defined by providing a
specification (or interface) and a body

• Specification: includes the procedure name, types
and names of the formal parameters, and the
return value type (if any)

Programming Languages, Third Edition 7

Procedure Definition and Activation
(cont’d.)

• Example: in C++ code

• In some languages, a procedure specification can
be separated from its body
– Example:

Programming Languages, Third Edition 8

Procedure Definition and Activation
(cont’d.)

• You call (or activate) a procedure by stating its
name and providing arguments to the call which
correspond to its formal parameters
– Example:

• A call to a procedure transfers control to the
beginning of the body of the called procedure (the
callee)

• When execution reaches the end of the body, control
is returned to the caller
– May be returned before the end of the body by using a

return-statement

Programming Languages, Third Edition 9

Procedure Definition and Activation
(cont’d.)

• Example:

• In FORTRAN, procedures are called subroutines

• Functions: appear in expressions and compute
returned values

Programming Languages, Third Edition 10

Procedure Definition and Activation
(cont’d.)

• A function may or may not change its parameters
and nonlocal variables

• In C and C++, all procedures are implicitly
functions
– Those that do not return values are declared void

• In Ada and FORTRAN, different keywords are used
for procedures and functions

• Some languages allow only functions
– All procedures must have return values

– This is done in functional languages

Programming Languages, Third Edition 11

Procedure Definition and Activation
(cont’d.)

Programming Languages, Third Edition 12

Procedure Definition and Activation
(cont’d.)

• In ML, procedure and function declarations are
written in a form similar to constant declarations

• A procedure declaration creates a constant
procedure value and associates a symbolic name
with that value

Programming Languages, Third Edition 13

Procedure Definition and Activation
(cont’d.)

• A procedure communicates with the rest of the
program through its parameters and also through
nonlocal references (references to variables
outside the procedure body)

• Scope rules that establish the meanings of
nonlocal references were covered in Chapter 7

Programming Languages, Third Edition 14

Procedure Semantics

• Semantically, a procedure is a block whose
declaration is separated from its execution

• The environment determines memory allocation
and maintains the meaning of names during
execution
– Memory allocated for local objects of a block are

called the activation record (or stack frame)

– The block is said to be activated as it executes

• When a block is entered during execution, control
transfers into the block’s activation

Programming Languages, Third Edition 15

Procedure Semantics (cont’d.)

Programming Languages, Third Edition 16

• Example: in C code
– Blocks A and B are

executed as they are
encountered

• When a block is exited,
control transfers back to
the surrounding block,
and the activation record
of the exiting block is
released

Procedure Semantics (cont’d.)

Programming Languages, Third Edition 17

Procedure Semantics (cont’d.)

• Example: B is a procedure called from within A

Programming Languages, Third Edition 18

Procedure Semantics (cont’d.)

Programming Languages, Third Edition 19

Procedure Semantics (cont’d.)

• Defining environment (or static environment) of
B is the global environment

• Calling environment (or dynamic environment)
of B is the activation record of A

• For blocks that are not procedures, the defining
and calling environments are always the same

• A procedure can have any number of calling
environments during which it will retain the same
defining environment

Programming Languages, Third Edition 20

Procedure Semantics (cont’d.)

• A nonprocedure block communicates with its
surrounding block via nonlocal references
– Lexical scoping allows it to access all variables in the

surrounding block that are not redeclared in its own
declarations

• A procedure block can only communicate with its
defining block via references to nonlocal variables
– It has no way of directly accessing the variables in its

calling environment

– It communicates with its calling environment through
its parameters

Programming Languages, Third Edition 21

Procedure Semantics (cont’d.)

• Parameter list is declared with the definition of the
procedure
– Parameters do not take on any value until they are

replaced by arguments when the procedure is called

• Parameters are also called formal parameters,
while arguments are called actual parameters

• One could make the case that procedures should
communicate only using their parameters and
should never use or change a nonlocal variable
– To avoid dependencies (use) or side effects (change)

Programming Languages, Third Edition 22

Procedure Semantics (cont’d.)

• While this is a good rule for variables, it is not good
for functions and constants

• Closed form: procedures that depend only on
parameters and fixed language features

• Closure: the code of a function together with a
representation of its defining environment
– Can be used to resolve all outstanding nonlocal

references relative to the body of the function

– Runtime environment must compute closures for all
functions when needed

Programming Languages, Third Edition 23

Parameter-Passing Mechanisms

• The nature of the bindings of arguments to
parameters affects the semantics of procedure calls

• Languages differ significantly in the kinds of
parameter-passing mechanisms available and the
range of permissible implementation effects

• Four mechanisms will be discussed:
– Pass by value

– Pass by reference
– Pass by value-result

– Pass by name

Programming Languages, Third Edition 24

Pass by Value

• Pass by value: most common mechanism for
parameter passing
– Arguments are evaluated at time of call, and their

values become the values of the parameters

• In the simplest form of pass by value, value
parameters behave as constant values during
execution of the procedure

• Pass by value: a process in which all parameters in
the procedure body are replaced by the
corresponding argument values

Programming Languages, Third Edition 25

Pass by Value (cont’d.)

• This mechanism is usually the only mechanism
used in functional languages

• It is the default mechanism in C++ and Pascal and
essentially the only mechanism in C and Java

• They use a slightly different interpretation of pass by
value
– Parameters are viewed as local variables of the

procedure, with initial values given by argument
values

– Value parameters may be assigned but cause no
changes outside the procedure

Programming Languages, Third Edition 26

Pass by Value (cont’d.)

• In Ada, in parameters may not be assigned

• Pass by value does not imply that changes outside
the procedure cannot occur through the use of
parameters
– A pointer or reference type parameter contains an

address as its value, and this can be used to change
memory outside the procedure

• Example: in C code

Programming Languages, Third Edition 27

Pass by Value (cont’d.)

• Note: assigning directly to the pointer parameter
does not change the argument outside the
procedure

• In some languages, certain values are implicitly
pointers or references
– Example: in C, arrays are implicitly pointers, so an

array value parameter can be used to change values
stored in the array

Programming Languages, Third Edition 28

Pass by Value (cont’d.)

• In Java, object types are implicitly pointers, so an
object parameter can be used to change its data
– Direct assignments to parameters are not allowed

Programming Languages, Third Edition 29

Pass by Reference

• Pass by reference: passes the location of the
variable, making the parameter an alias for the
argument
– Any changes to the parameter occur to the argument

as well

• Is the default for FORTRAN
– Can be specified in C++ by using an ampersand (&)

after the data type

– Can be specified in Pascal by using the var keyword
before the variable name

Programming Languages, Third Edition 30

Pass by Reference (cont’d.)

• Example:
– After a call to inc(a) the value of a has increased

by 1 so that a side effect has occurred

Programming Languages, Third Edition 31

Pass by Reference (cont’d.)

• Example: multiple aliasing is also possible
– Inside procedure yuck after the call, x, y, and a all

refer to the same variable, namely a

Programming Languages, Third Edition 32

Pass by Reference (cont’d.)

• Can achieve pass by reference in C by passing a
reference or location explicitly as a pointer

– Note the necessity of explicitly taking the address of
variable a and then explicitly dereferencing it again
in the body of inc

Programming Languages, Third Edition 33

Pass by Reference (cont’d.)

• How should reference arguments that are not
variables be handled?

• Example: in C++ code

– FORTRAN creates a temporary integer location,
initializes it to the value 2, then applies the inc
function

– This is an error in C++ and Pascal

Programming Languages, Third Edition 34

Pass by Value-Result

• Pass by value-result:
– Value of the argument is copied and used in the

procedure

– Final value of the parameter is copied back out to
the argument location when the procedure exits

– Also called copy-in, copy-out, or copy-restore

• Pass by value-result can only be distinguished from
pass by reference when using aliasing

Programming Languages, Third Edition 35

Pass by Value-Result (cont’d.)

• Example: in C code
– If pass by reference, a has

value 3 after p is called

– If pass by value-result, a
has value 2 after p is
called

Programming Languages, Third Edition 36

Pass by Value-Result (cont’d.)

• Issues that must be addressed include:
– Order in which results are copied back to arguments

– Whether locations of arguments are calculated only
on entry and stored, or are recalculated on exit

• Another option is the pass by result mechanism:
– There is no incoming value, only an outgoing one

Programming Languages, Third Edition 37

Pass by Name
and Delayed Evaluation

• Pass by name: introduced in Algol60
– Intended as a kind of advanced inlining process for

procedures

– Is essentially equivalent to normal order delayed
evaluation

– Is difficult to implement and has complex interactions
with other language constructs, especially arrays
and assignment

• It should be understood as a basis for the lazy
evaluation studied in Chapter 3

Programming Languages, Third Edition 38

Pass by Name
and Delayed Evaluation (cont’d.)

• In pass by name, the argument is not evaluated
until its actual use as a parameter in the called
procedure
– The name of the argument replaces the name of the

parameter to which it corresponds

• The text of an argument at the point of call is
viewed as a function, which is evaluated every time
the corresponding parameter name is reached in
the procedure
– However, the argument is always evaluated in the

environment of the caller

Programming Languages, Third Edition 39

Pass by Name
and Delayed Evaluation (cont’d.)

• Example: in C code
– The result of this code is to

set a[2] to 3, leaving a[1]
unchanged

Programming Languages, Third Edition 40

Programming Languages, Third Edition 41

Pass by Name
and Delayed Evaluation (cont’d.)

• Historically, the interpretation of pass by name
arguments as functions to be evaluated when the
procedure was called referred to the arguments as
thunks

• Pass by name is problematic when side effects are
desired

• Can exploit call by name in certain circumstances
– Jensen’s device: uses pass by name to apply an

operation to an entire array

Programming Languages, Third Edition 42

Pass by Name
and Delayed Evaluation (cont’d.)

• Example: Jensen’s device in C code:

– If a and index are pass by name parameters, this
code will compute the sum of all elements x[0]
through x[9]:

Programming Languages, Third Edition 43

Parameter-Passing Mechanism
vs. Parameter Specification

• Ada has two notions of parameter communication, in
parameters and out parameters
– Any parameter can be declared in, out, or in out
– in parameter represents an incoming value only
– out parameter specifies an outgoing value only
– in out parameter specifies both incoming and

outgoing value

• Any parameter implementation can be used, as long
as the appropriate values are communicated properly
– An in value on entry and an out value on exit

Programming Languages, Third Edition 44

Parameter-Passing Mechanism
vs. Parameter Specification (cont’d.)

• Any program that violates these protocols is
erroneous
– in parameter cannot legally be assigned a new

value
– out parameter cannot legally be used by the

procedure

• A translator can prevent many violations of
parameter specifications

Programming Languages, Third Edition 45

Type Checking of Parameters

• In strongly typed languages, procedure calls must be
checked to ensure that arguments agree in type and
number with the specified parameters

• This means that:
– Procedures may not have a variable number of

parameters
– Rules must be stated for type compatibility between

parameters and arguments

• For pass by reference, parameters usually must have
the same type
– This can be relaxed for pass by value

Programming Languages, Third Edition 46

Procedure Environments, Activations,
and Allocation

• The environment for a block-structured language
with lexical scope can be maintained in a stack-
based fashion
– Activation record is created on the environment stack

when a block is entered, and released when the
block is exited

• Same structure can be extended to procedure
activations in which the defining and calling
environments differ

• Closure is necessary to resolve nonlocal references

Programming Languages, Third Edition 47

Procedure Environments, Activations,
and Allocation (cont’d.)

• Must understand this execution model to fully
understand the behavior of programs
– Semantics of procedure calls are embedded in this

model

• A completely stack-based environment is not
adequate to deal with procedure variables and
dynamic creation of procedures
– Languages with these facilities (particularly

functional languages) must use a more complex fully
dynamic environment with garbage collection

Programming Languages, Third Edition 48

Fully Static Environments

• In Fortran77, all memory allocation can be
performed at load time

• All variable locations are fixed throughout program
execution

• Function and procedure definitions cannot be
nested
– All procedures/functions are global

• Recursion is not allowed

• All information associated with a function or
subroutine can be statically allocated

Programming Languages, Third Edition 49

Fully Static Environments (cont’d.)

• Each procedure or function has a fixed activation
record containing space for local variables and
parameters

• Global variables are defined by COMMON
statements
– They are determined by pointers to a common area

Programming Languages, Third Edition 50

Fully Static Environments (cont’d.)

Programming Languages, Third Edition 51

Fully Static Environments (cont’d.)

Programming Languages, Third Edition 52

Programming Languages, Third Edition 53

Stack-Based Runtime Environments

• In a block-structured language with recursion,
activations of procedure blocks cannot be allocated
statically
– A procedure may be called again before its previous

activation is exited, so a new activation must be
created on each procedure entry

• A pointer to the current activation is required, since
each procedure has no fixed location for its
activation record
– Usually kept in a register called the environment

pointer, or ep

Programming Languages, Third Edition 54

Stack-Based Runtime Environments
(cont’d.)

• Must also maintain a pointer to the activation
record of the block from which the current
activation was entered
– If a procedure call, this is the activation of the caller

• The ep must be restored to point to the previous
activation
– Previous location’s pointer is called the control link

(or dynamic link)

Programming Languages, Third Edition 55

Stack-Based Runtime Environments
(cont’d.)

Programming Languages, Third Edition 56

• Example: in C code

Stack-Based Runtime Environments
(cont’d.)

Programming Languages, Third Edition 57

Stack-Based Runtime Environments
(cont’d.)

• The fields in each
activation record
need to contain this
information:

Programming Languages, Third Edition 58

Stack-Based Runtime Environments
(cont’d.)

• Local variables are allocated in the current
activation record, in the same order each time,
because they are static

• Each variable is thus allocated the same position in
the activation record relative to the beginning of the
record
– This is called the offset of the local variable

Programming Languages, Third Edition 59

Stack-Based Runtime Environments
(cont’d.)

Programming Languages, Third Edition 60

Stack-Based Runtime Environments
(cont’d.)

• Since procedures cannot be nested in FORTRAN
or C, nonlocal references outside a procedure are
actually global and are allocated statically
– No additional structures are required in the activation

stack

• When nested procedures are permitted, nonlocal
references to local variables are permissible in a
surrounding procedure scope

Programming Languages, Third Edition 61

Stack-Based Runtime Environments
(cont’d.)

Programming Languages, Third Edition 62

Stack-Based Runtime Environments
(cont’d.)

• To achieve lexical scope, a procedure must
maintain a link to its lexical or defining
environment
– This link is called the access link (or static link)

• Each activation record needs an access link field

• When blocks are deeply nested, it may be
necessary to follow multiple access links to find a
nonlocal reference

Programming Languages, Third Edition 63

Programming Languages, Third Edition 64

• Example: in Ada code
– To access x from inside q,

must follow the access
link in the activation
record of q

– Then use the access link
to the activation record of
p

– Then follow the access
link to the global
environment

Stack-Based Runtime Environments
(cont’d.)

Programming Languages, Third Edition 65

Stack-Based Runtime Environments
(cont’d.)

• This process is called access chaining

• The number of access links that must be followed
corresponds to the difference in nesting levels (or
nesting depth) between the accessing
environment and the defining environment of the
variable being accessed

• Closure (the procedure code together with the
mechanism for resolving nonlocal references) is
significantly more complex

Programming Languages, Third Edition 66

Stack-Based Runtime Environments
(cont’d.)

• Closure requires two pointers:
– Code or instruction pointer (ip)

– Access link, or environment pointer of its defining
environment (ep)

• Closure will be denoted by <ep, ip>

Programming Languages, Third Edition 67

Programming Languages, Third Edition 68

Programming Languages, Third Edition 69

Dynamically Computed Procedures &
Fully Dynamic Environments

• The use of <ep, ip> closures for procedures is
suitable even for languages with procedures that
are passed as parameters, as long as these
parameters are value parameters
– The procedure passed as a parameter is passed as

an <ep, ip> pair

– Its access link is the ep part of the closure

• This approach is used in Ada and Pascal

• A stack-based environment does have limitations

Programming Languages, Third Edition 70

Dynamically Computed Procedures &
Fully Dynamic Environments (cont’d.)

• Any procedure that can return a pointer to a local
object will result in a dangling reference when the
procedure is exited

• Example: in C code

– The assignment addr = dangle() will cause addr
to point to an unsafe location in the activation stack

Programming Languages, Third Edition 71

Dynamically Computed Procedures &
Fully Dynamic Environments (cont’d.)

• Java does not allow this

• Ada95 makes it an error by stating the Access-type
Lifetime Rule:
– An attribute x’access yielding a result belonging to

an access type T is only allowed if x can remain in
existence at least as long as T

• If procedures can be created dynamically and
returned from other procedures, they become first-
class values
– This flexibility is usually desired in a functional

language

Programming Languages, Third Edition 72

Dynamically Computed Procedures &
Fully Dynamic Environments (cont’d.)

• A stack-based environment cannot be used, since
the closure of a locally defined procedure will have
an ep pointing to the current activation record

• If this closure is available outside the activation of
the creating procedure, the ep will point to an
activation record that no longer exists

Programming Languages, Third Edition 73

Programming Languages, Third Edition 74

Dynamically Computed Procedures &
Fully Dynamic Environments (cont’d.)

• After executing the following code:

– If we now execute this code:

– We should get 400 for newBalance1 and 50 for
newBalance2

– If the two instances of the local currentBalance
variable have disappeared from the environment, these
calls will not work

Programming Languages, Third Edition 75

Dynamically Computed Procedures &
Fully Dynamic Environments (cont’d.)

• In LISP, functions and procedures are first-class
values
– No nongeneralities or nonorthogonalities should

exist

• Fully dynamic environment: activation records are
deleted only when they can no longer be reached
from within the executing program

• Must be able to reclaim unreachable storage
– Two methods for this are reference counts and

garbage collection

Programming Languages, Third Edition 76

Dynamically Computed Procedures &
Fully Dynamic Environments (cont’d.)

• The structure of activation records becomes
treelike instead of stacklike
– Control links to the calling environment no longer

necessarily point to the immediately preceding
activation

• This is the model under which Scheme and other
functional languages execute

Programming Languages, Third Edition 77

Dynamically Computed Procedures &
Fully Dynamic Environments (cont’d.)

Programming Languages, Third Edition 78

Dynamic Memory Management

• In a typical imperative language such as C,
automatic allocation and deallocation of storage
occurs only for activation records on a stack

• Explicit dynamic allocation and use of pointers is
available under manual programmer control using a
memory heap separate from the stack
– Automatic garbage collection is desirable for the

heap

• Any language that does not apply significant
restrictions to the use of procedures and functions
must provide automatic garbage collection

Programming Languages, Third Edition 79

Dynamic Memory Management
(cont’d.)

• Two categories of automatic memory management:
– Reclamation of storage no longer used (previously

called garbage collection)

– Maintenance of free space available for allocation

Programming Languages, Third Edition 80

Maintaining Free Space

• The free space in a contiguous block of memory
provided to an executing program is maintained by
using a list of free blocks
– Can be done via a linked list

Programming Languages, Third Edition 81

Maintaining Free Space (cont’d.)

Programming Languages, Third Edition 82

Maintaining Free Space (cont’d.)

Programming Languages, Third Edition 83

Maintaining Free Space (cont’d.)

• Coalescing: process of joining immediately
adjacent blocks of free memory to form the largest
contiguous block of free memory

• A free list can become fragmented
– This may cause the allocation of a large block to fail

• Memory must occasionally be compacted by
moving all free blocks together and coalescing
them into one block

• Storage compaction involves considerable
overhead

Programming Languages, Third Edition 84

Maintaining Free Space (cont’d.)

Programming Languages, Third Edition 85

Reclamation of Storage

• Two main methods for recognizing when a block of
storage is no longer referenced:
– Reference counting
– Mark and sweep

• Reference counting: an eager method of
reclamation
– Each block of allocated storage contains a field that

stores the count of references to that block from other
blocks

– When count drops to 0, the block can be returned to
the free list

Programming Languages, Third Edition 86

Reclamation of Storage (cont’d.)

• Drawbacks of reference counting:
– Extra memory required to keep the counts

– Effort to maintain the counts is fairly large, because
reference counts must be decremented recursively

– Circular references can cause unreferenced memory
to never be deallocated

Programming Languages, Third Edition 87

Reclamation of Storage (cont’d.)

• Mark and sweep: a lazy method that puts off
reclaiming any storage until the allocator runs out
of space
– It looks for all storage that can be referenced

– Moves all unreferenced storage back to the free list

• Mark and sweep occurs in two passes:
– First pass follows all pointers recursively and marks

each block of storage reached

– Second pass sweeps linearly through memory,
returning unmarked blocks to the free list

Programming Languages, Third Edition 88

Reclamation of Storage (cont’d.)

• Drawback of mark and sweep:
– Double pass through memory causes a significant

delay in processing, which can occur every few
minutes

• An alternative is to split available memory into two
halves and allocate storage only from one half at a
time
– During marking pass, reached blocks are copied to

the other half
– Called stop and copy
– Does little to improve processing delays

Programming Languages, Third Edition 89

Reclamation of Storage (cont’d.)

• Generational garbage collection: invented in
1980s
– Adds a permanent storage area to the prior scheme

– Allocated objects that survive long enough are
copied into permanent space and never deallocated
during subsequent reclamations

– Reduces the amount of memory to be searched

• This method works very well, especially with a
virtual memory system

Programming Languages, Third Edition 90

Exception Handling and Environments

• Raising and handling exceptions are similar to
procedure calls and can be implemented in similar
ways

• There are some differences, however:
– An activation cannot be created on the stack for

raising an exception, since the stack may be
unwound when searching for a handler

– A handler must be found and called dynamically

– Exception type information must be retained since
the handler actions are based on the exception type,
not the exception value

Programming Languages, Third Edition 91

Exception Handling and Environments
(cont’d.)

• When an exception is raised, no activation record
is created
– The exception object and its type information is

stored in a known location, such as a register

– A jump is performed to generic code that looks for a
handler

– Exit code is called if a handler is not found

– The return address for the successful handling of an
exception must also be stored in a known location

• This process handles the first difference

Programming Languages, Third Edition 92

Exception Handling and Environments
(cont’d.)

• To deal with the second difference, pointers to
handlers must be kept on some kind of stack
– When a procedure that has an associated handler is

entered, a pointer to the handler must be recorded
on the stack

– When exited, the handler pointer must be removed
from the stack

• To implement this stack directly, it must be
maintained either on the heap or elsewhere in its
own memory area (not on the runtime stack)

Programming Languages, Third Edition 93

Exception Handling and Environments
(cont’d.)

• The third difference relates to how to record the
needed type information without adding overhead in
the exception structures themselves
– A lookup table might be used

• The basic implementation of handlers is relatively
straightforward
– Collect all handler code for a particular block into a

single handler implemented as a switch statement

• Main problem is that maintenance of the handler
stack causes a potentially significant runtime penalty

Programming Languages, Third Edition 94

Exception Handling and Environments
(cont’d.)

• Example:

Programming Languages, Third Edition 95

Case Study: Processing Parameter
Modes in TinyAda

• In TinyAda:
– An identifier can be a parameter

– Parameters are subject to the same restrictions as
variables

– Neither parameters nor variables can appear in
static expressions

• Parameters can be further specified in terms of the
roles they play, called parameter modes
– Modes allow us to apply a new set of constraints

during semantic analysis

Programming Languages, Third Edition 96

The Syntax and Semantics
of Parameter Modes

• Syntax rules for TinyAda’s parameter modes:

Programming Languages, Third Edition 97

Processing Parameter Declarations

• The SymbolEntry class is modified to include a
mode field
– Possible values are SymbolEntry.IN,
SymbolEntry.OUT, and SymbolEntry.IN_OUT

Programming Languages, Third Edition 98

Processing Parameter References

• If a name in an expression is a parameter, then its
mode cannot be OUT

• If a name in the target of an assignment statement
is a parameter, then its mode cannot be IN

• The number and types of actual parameters must
be matched against the procedure’s formal
parameters
– The mode must also now be examined to apply the

new constraints

Programming Languages, Third Edition 99

	Programming Languages Third Edition
	Objectives
	Objectives (cont’d.)
	Introduction
	Introduction (cont’d.)
	Slide 6
	Procedure Definition and Activation
	Procedure Definition and Activation (cont’d.)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Procedure Semantics
	Procedure Semantics (cont’d.)
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Parameter-Passing Mechanisms
	Pass by Value
	Pass by Value (cont’d.)
	Slide 27
	Slide 28
	Slide 29
	Pass by Reference
	Pass by Reference (cont’d.)
	Slide 32
	Slide 33
	Slide 34
	Pass by Value-Result
	Pass by Value-Result (cont’d.)
	Slide 37
	Pass by Name and Delayed Evaluation
	Pass by Name and Delayed Evaluation (cont’d.)
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Parameter-Passing Mechanism vs. Parameter Specification
	Parameter-Passing Mechanism vs. Parameter Specification (cont’d.)
	Type Checking of Parameters
	Procedure Environments, Activations, and Allocation
	Procedure Environments, Activations, and Allocation (cont’d.)
	Fully Static Environments
	Fully Static Environments (cont’d.)
	Slide 51
	Slide 52
	Slide 53
	Stack-Based Runtime Environments
	Stack-Based Runtime Environments (cont’d.)
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Dynamically Computed Procedures & Fully Dynamic Environments
	Dynamically Computed Procedures & Fully Dynamic Environments (cont’d.)
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Dynamic Memory Management
	Dynamic Memory Management (cont’d.)
	Maintaining Free Space
	Maintaining Free Space (cont’d.)
	Slide 83
	Slide 84
	Slide 85
	Reclamation of Storage
	Reclamation of Storage (cont’d.)
	Slide 88
	Slide 89
	Slide 90
	Exception Handling and Environments
	Exception Handling and Environments (cont’d.)
	Slide 93
	Slide 94
	Slide 95
	Case Study: Processing Parameter Modes in TinyAda
	The Syntax and Semantics of Parameter Modes
	Processing Parameter Declarations
	Processing Parameter References

