
Programming Languages
Third Edition

Chapter 9
Control I – Expressions and Statements

Objectives

• Understand expressions

• Understand conditional statements and guards

• Understand loops and variation on WHILE

• Be familiar with the GOTO controversy and loop
exits

• Understand exception handling

• Compute the values of static expressions in
TinyAda

Programming Languages, Third Edition 2

Introduction

• This chapter discusses basic and structured
abstraction of control through the use of
expressions and statements

• Expression: returns a value and produces no side
effect

• Statement: executed for its side effects and
returns no value

• In functional languages (also called expression
languages), virtually all language constructs are
expressions

Programming Languages, Third Edition 3

Introduction (cont’d.)

• C could be called an expression-oriented
language
– Expressions make up a much larger portion of the

language than statements

• If no side effects, expressions are closest in
appearance to mathematics
– Have semantics similar to those of mathematical

expressions

• Semantics of expressions with side effects have a
significant control component

Programming Languages, Third Edition 4

Introduction (cont’d.)

• Explicit control structures first appeared as GOTOs

• Algol60 brought structured control
– Control statements transfer control to and from

statements that are single-entry, single exit, such
as blocks

• Some languages do away with GOTOs altogether,
but there is still debate on the utility of GOTOs
within the context of structured programming

Programming Languages, Third Edition 5

Expressions

• Basic expressions consist of literals and identifiers

• Complex expressions are built up recursively from
basic expressions by the application of operators
and functions
– May involve grouping symbols such as parentheses

• Example: in the expression 3 + 4 * 5
– + operator is applied to its two operands, 3 and the

subexpression 4 * 5

• Unary operator: takes one operand

• Binary operator: takes two operands

Programming Languages, Third Edition 6

Expressions (cont’d.)

• Operators can be written in infix, postfix, or prefix
notation
– Postfix and prefix forms do not require parentheses to

express the order in which operators are applied

• Operators are predefined, written in infix form (if
binary), with special associativity and precedence
rules

• Functions are user-defined, with the operands viewed
as arguments or actual parameters

• This distinction is arbitrary, since operators and
functions are equivalent concepts

Programming Languages, Third Edition 7

Expressions (cont’d.)

• Distinction is significant, since built-in operators were
implemented as highly optimized inline code
– Functions required the building of activations

• Modern translators often inline even user-defined
functions

• Lisp requires expressions to be fully parenthesized
because it can take variable numbers of arguments
as operands

• Applicative order evaluation (or strict evaluation)
rule: all operands are evaluated first, then operators
are applied to them

Programming Languages, Third Edition 8

Expressions (cont’d.)

• Example: applicative order evaluation
– The + and – nodes are evaluated to 7 and -1

– Then the * is applied to get -7

Programming Languages, Third Edition 9

Expressions (cont’d.)

• Natural order to process (3+4) and (5-6) is left to
right, but many languages do not specify an order
– Machines may have different requirements for the

structure of calls to procedures and functions

– Translators may attempt to rearrange for efficiency

• If there are no side effects, order of evaluation of
subexpressions will make no difference
– If there are side effects, there may be differences

Programming Languages, Third Edition 10

Expressions (cont’d.)

Programming Languages, Third Edition 11

Expressions (cont’d.)

• Sometimes expressions are explicitly constructed
with side effects in mind

• In C, assignment is an expression
– Example: In C code:

• y=z both assigns and returns a value, which is
assigned to x

• Sequence operator: allows several expressions to
be combined into a single expression and
evaluated sequentially
– Example: In C code:

Programming Languages, Third Edition 12

Expressions (cont’d.)

Programming Languages, Third Edition 13

• Short-circuit evaluation: Boolean expressions are
evaluated left to right up to the point where the
truth value of the entire expression becomes
known, and then evaluation stops
– Example: in Ada:

• Is always true, regardless of the value of x

• Order of evaluation is important in short-circuit
evaluation

• If expressions and case expressions also may
not be completely evaluated

Expressions (cont’d.)

• If (or if-then-else) operator: is a ternary operator with
three operands

• Mix-form: distributes parts of the syntax of the
operator throughout the expression
– Example: in ML code:

• If-expressions never have all of their subexpressions
evaluated

• Case expression: similar to a series of nested-if
expressions

• Delayed evaluation (or nonstrict evaluation): when
operators delay evaluating their operands

Programming Languages, Third Edition 14

Expressions (cont’d.)

• Substitution rule (or referential transparency):
any two expressions that have the same value in
the same scope may be substituted for each other
– Their values always remain equal regardless of the

evaluation context

– Note that this prohibits variables in the expressions

• Normal order evaluation: each operation begins
its evaluation before its operands are evaluated,
and each operand is evaluated only if it is needed
for the calculation of the operation

Programming Languages, Third Edition 15

Expressions (cont’d.)

• Example: in C code:
– Consider the expression

– Square is replaced by

– Without evaluating double(2)
– Then it is replaced by 2 + 2

• Normal order evaluation
implements a kind of code
inlining

Programming Languages, Third Edition 16

Expressions (cont’d.)

• With no side effects, normal order evaluation does
not change the semantics of a program

• Example with side effects in C code:

– Expression would be expanded
into

• Would read in two integer values instead of one

Programming Languages, Third Edition 17

Expressions (cont’d.)

• Normal order evaluation:
– Appears as lazy evaluation in the functional

language Haskell

– Appears as pass by name parameter passing
technique for functions in Algol60

Programming Languages, Third Edition 18

Conditional Statements and Guards

• if-statement: typical form of structured control
– Execution of a group of statements occurs only under

certain conditions

• Guarded if statement:
– All Bi’s are Boolean expressions

called guards
– All Si’s are statement sequences
– If one Bi evaluates to true, the

corresponding Si is executed

– If more than one Bi is true, only
one Si is executed

Programming Languages, Third Edition 19

Conditional Statements and Guards
(cont’d.)

Programming Languages, Third Edition 20

• It does not say that the first true Bi is chosen
– This introduces nondeterminism into programming

• It leaves unspecified whether all guards are
evaluated
– A useful feature for concurrent programming

• Usual implementation is to sequentially evaluate all
Bi’s until a true one is found, then execute the
corresponding Si

• If-statements and case-statements are the major
ways that the guarded if are implemented

If-Statements

Programming Languages, Third Edition 21

• Basic form of the if-statement in EBNF in C code:

– A statement can be either a single statement or a
sequence of statements surrounded by braces

• This if statement is problematic, as there are two
different parse trees possible:

– Called the dangling-else problem

Programming Languages, Third Edition 22

If-Statements (cont’d.)

• C and Pascal enforce a disambiguating rule:
– else is associated with the closest if that does not

already have an else part

– Called the most closely nested rule for if-statements

• A better way to solve the dangling-else problem is to
use a bracketing keyword, as in the Ada rule:

– end if closes the if-statement and removes the
ambiguity

Programming Languages, Third Edition 23

If-Statements (cont’d.)

• This also removes the necessity of using brackets
to open a new sequence of statements:

Programming Languages, Third Edition 24

If-Statements (cont’d.)

• elsif in Ada eliminates multiple end ifs when
there are many alternatives:

– Becomes:

Programming Languages, Third Edition 25

Case- and Switch-Statements

• Case- or switch-statement: a guarded if where the
guards are ordinal values selected by an ordinal
expression

• Semantics in C:
– Evaluate the controlling expression
– Transfer control to the case statement where the value is

listed
– No two listed cases may have the same value
– Case values may be literals or compile-time constant

expressions
– If no value matches, transfer to the default case

Programming Languages, Third Edition 26

Programming Languages, Third Edition 27

Case- and Switch-Statements (cont’d.)

• If there is no default case, control falls through to
the next statement after the switch

• Some novel features:
– Case labels are treated syntactically as ordinary

labels

– Without a break statement, execution falls through to
the next case

• Ada allows case values to be grouped and requires
that they be exhaustive
– Compile-time error if a legal value is not listed

Programming Languages, Third Edition 28

Case- and Switch-Statements (cont’d.)

Programming Languages, Third Edition 29

Case- and Switch-Statements (cont’d.)

• ML’s case construct is an expression that returns a
value, rather than a statement
– Cases are separated by vertical bars

– Case expressions are patterns to be matched

– Wildcard pattern is the underscore

Programming Languages, Third Edition 30

Loops and Variations on WHILE

Programming Languages, Third Edition 31

• Guarded do: a general form for a loop construct
– Statement is repeated until all Bi’s are false

– At each step, one of the true Bi’s is selected
nondeterministically, and the corresponding Si is
executed

Loops and Variations on WHILE
(cont’d.)

Programming Languages, Third Edition 32

• Basic loop construct: a guarded do with only one
guard
– Eliminates nondeterminism

• In C:

• In Ada:

• The test expression (e) is evaluated first
– Must be Boolean in Ada and Java, but not C or C++

– If true (or non-zero), then S is executed and the
process repeats

Loops and Variations on WHILE
(cont’d.)

Programming Languages, Third Edition 33

• Some languages have an alternative form that
ensures the loop is executed at least once
– In C and Java: the do (or do-while) statement

• Termination of the do or while loop is explicitly
specified only at the beginning or end of the loop

• C and Java provide a break statement to exit
completely from inside a loop
– continue statement skips the remainder of the body

of the loop but resumes with the next iteration

Loops and Variations on WHILE
(cont’d.)

Programming Languages, Third Edition 34

• For-loop in C/C++ and Java:

– Is completely equivalent in C to:
• e1 is the initializer
• e2 is the test
• e3 is the update

• For-loop is typically used to run through a set of
values from first to last

Loops and Variations on WHILE
(cont’d.)

• C++ and Java allow a for-loop initializer (index) to
be declared in the loop:

• Many languages restrict the format of the for-loop

• Most restrictions involve the control variable i:
– Value of i cannot be changed in the body of the loop

– Value of i is undefined after loop termination
– i must be of restricted type and may not be a

parameter to a procedure or record field

Programming Languages, Third Edition 35

Loops and Variations on WHILE
(cont’d.)

• Other questions about loop behavior include:
– Are bounds evaluated only once? If so, bounds may

not change after execution begins

– Is the loop executed at all if the lower bound is
greater than the upper bound?

– Is the control variable value undefined if an exit or
break statement is used?

– What translator checks are performed on loop
structures?

• Object-oriented languages use an iterator object for
looping over elements of a collection

Programming Languages, Third Edition 36

Loops and Variations on WHILE
(cont’d.)

Programming Languages, Third Edition 37

The GOTO Controversy
and Loop Exits

• Gotos were used heavily in early programming
languages such as Fortran77 and BASIC

• Example in Fortran77:

– Is equivalent to this C code:

Programming Languages, Third Edition 38

The GOTO Controversy
and Loop Exits (cont’d.)

• In the 1960s with structured control use increasing,
debate began about the usefulness of gotos
– Can lead to spaghetti code

Programming Languages, Third Edition 39

The GOTO Controversy
and Loop Exits (cont’d.)

• In 1966, Bohm and Jacopini produced theoretical
result that gotos were completely unnecessary

• In 1968, Dijkstra published “GOTO Statement
Considered Harmful”
– Proposed that its use be severely controlled or

abolished

• Many considered gotos to be justified in certain
cases

• In 1987, Rubin published ““Goto considered
harmful” considered harmful”

Programming Languages, Third Edition 40

The GOTO Controversy
and Loop Exits (cont’d.)

• Still some debate on the propriety of unstructured
exits from loops
– Some argue there should only be one exit in a loop
– Others argue that may require more complicated code

for certain situations

• Example: searching an array for a given element
– Method returns the index of the target element if it is in

the array, or -1 otherwise

• Example: sentinel-based loop for processing a series
of input values
– Called the loop and a half problem

Programming Languages, Third Edition 41

The GOTO Controversy
and Loop Exits (cont’d.)

Programming Languages, Third Edition 42

The GOTO Controversy
and Loop Exits (cont’d.)

Programming Languages, Third Edition 43

Exception Handling

• Explicit control mechanisms: at the point where
transfer of control takes place, there is a syntactic
indication of the transfer

• Implicit transfer of control: the transfer is set up
at a different point than where the actual transfer
takes place

• Exception handling: control of error conditions or
other unusual events during execution
– Involves the declaration of both exceptions and

exception handlers

Programming Languages, Third Edition 44

Exception Handling (cont’d.)

• When an exception occurs, it is said to be raised or
thrown

• Examples of exceptions:
– Runtime exceptions: out-of-range array subscripts or

division by zero
– Interpreted code: syntax or type errors

• Exception handler: procedure or code sequence
designed to be executed when a particular exception
is raised

• An exception handler is said to handle or catch an
exception

Programming Languages, Third Edition 45

Exception Handling (cont’d.)

• Virtually all major current languages have built-in
exception-handling mechanisms
– Those languages without this sometimes have

libraries available that provide it

• Exception handling attempts to imitate the features
of a hardware interrupt or error trap
– If the underlying machine or operating system is left

to handle the error, the program will usually abort or
crash

• Programs that crash fail the test of robustness

Programming Languages, Third Edition 46

Exception Handling (cont’d.)

• Cannot expect a program to be able to handle
every possible error that can occur
– Too many possible failures, including hardware

• Asynchronous exceptions: when the underlying
operating system detects a problem and needs to
terminate a program
– Not in response to program code being executed

• Synchronous exceptions: exceptions that occur
in direct response to actions by the program

Programming Languages, Third Edition 47

Exception Handling (cont’d.)

• User-defined exceptions can only be synchronous

• Predefined or library exceptions may include some
asynchronous exceptions

• Exception handling assumes that it is possible to
test for exceptions in the language

• Can handle the error at the location where it
occurs:

Programming Languages, Third Edition 48

Exception Handling (cont’d.)

• Can pass an error condition back to a caller of a
procedure

Programming Languages, Third Edition 49

Exception Handling (cont’d.)

• Can also create a separate exception-handling
procedure to call

• To make error handling easier, we would like to
declare exceptions in advance of their occurrence
and specify the actions to be taken

• To do so, must consider issues related to:
– Exceptions

– Exception handlers

– Control

Programming Languages, Third Edition 50

Exceptions

• Exception is typically represented by a data object,
either predefined or user-defined
– In a functional language, it will be a value

– In a structured or object-oriented language, it will be
a variable or an object of some structured type

• Example: in ML or Ada:

• Example: in C++:

Programming Languages, Third Edition 51

Exceptions (cont’d.)

• Typically want to include additional information with
an exception, such as error message or summary
of data involved

• Exception declarations typically observe the same
scope rules as other declarations
– May be desirable to declare user-defined exceptions

globally to ensure they are reachable

Programming Languages, Third Edition 52

Exceptions (cont’d.)

Programming Languages, Third Edition 53

• Most languages provide some predefined
exception values or types, either directly or in
standard library modules

Exception Handlers

• In C++, exception handlers are associated with try-
catch blocks
– Any number of catch blocks can be included

– Each catch block takes the exception type as a
parameter and includes a compound statement of
actions to be taken

– Last catch block with parameter of … is to catch any
exceptions not handled in the prior catch blocks

Programming Languages, Third Edition 54

Exception Handlers (cont’d.)

Programming Languages, Third Edition 55

Exception Handlers (cont’d.)

Programming Languages, Third Edition 56

Exception Handlers (cont’d.)

Programming Languages, Third Edition 57

Exception Handlers (cont’d.)

• Predefined handlers typically print a minimal error
message, indicating type of exception and possibly
some additional information, then terminate the
program

• In Ada and ML, there is no way to change the
behavior of default handlers
– Can disable it in Ada

• In C++, can replace the default handler with a user-
defined handler using the <exceptions> standard
library module

Programming Languages, Third Edition 58

Control

• Predefined or built-in exceptions are either
automatically raised by the runtime system or can
be manually raised by the program

• User-defined exceptions can only be raised by the
program

• In C++, an exception can be raised with the throw
reserved word

• Ada and ML both use the reserved word raise

Programming Languages, Third Edition 59

Control (cont’d.)

Programming Languages, Third Edition 60

• Example: In C++ code

Control (cont’d.)

Programming Languages, Third Edition 61

Control (cont’d.)

• When an exception is raised, the current computation
is abandoned, and the runtime system begins to
search for a handler

• In Ada and C++, the current block is searched first,
then the enclosing block, and so on
– This is called propagating the exception

• If the outermost block of a function or procedure is
reached without finding a handler, the call is exited
and the exception is raised in the caller

• Process continues until a handler is found or the main
program is exited, calling the default handler

Programming Languages, Third Edition 62

Control (cont’d.)

• Call unwinding (or stack unwinding): process of
exiting back through function calls to the caller
during the search for a handler

• Once a handler is found and executed, where
should execution continue?
– Resumption model: continue at the point at which

the exception was first raised, and redo that same
statement or expression

– Termination model: continue with the code
immediately following the block or expression in
which the handler that was executed is found

Programming Languages, Third Edition 63

Control (cont’d.)

• Most modern languages use the termination model
– Generally easier to implement and fits better into

structured programming techniques

– Can simulate the resumption model when needed

• Avoid overusing exceptions to implement ordinary
control situations because:
– Exception handling often carries substantial runtime

overhead
– Exceptions represent a not very structured control

alternative

• Use simple tests instead

Programming Languages, Third Edition 64

Control (cont’d.)

• Example: In C++, simulating the resumption model
when a call to new failed due to insufficient
memory

Programming Languages, Third Edition 65

Control (cont’d.)

Programming Languages, Third Edition 66

Case Study: Computing the Values of
Static Expressions in TinyAda

• Pascal requires its symbolic constants to be
defined as literals

• Ada allows static expressions as constants

• Static expression: any expression not including a
variable or a function call, whose value can be
determined at compile time

Programming Languages, Third Edition 67

The Syntax and Semantics
of Static Expressions

Programming Languages, Third Edition 68

• Static expressions can appear in two types of
TinyAda declarations:
– A number declaration, which defines a symbolic

constant

– A range type definition, which defines a new
subrange type

• Example:

The Syntax and Semantics
of Static Expressions (cont’d.)

Programming Languages, Third Edition 69

• Syntactically, static expressions look just like other
expressions

• Semantically, they are also similar

• To ensure the results can be computed at compile
time, static expressions cannot include variables or
parameter references

Entering the Values
of Symbolic Constants

• Each symbolic constant has a value attribute in its
symbol entry record

• Cannot reuse the parsing method expression
presented in an earlier chapter because:
– All expression methods return a type descriptor,

which is still needed for type checking and to set
type attributes of constant identifiers and subrange
types

– These methods permit variables and parameter
names

– Not all expressions are static
Programming Languages, Third Edition 70

Looking Up the Values
of Static Expressions

• New method staticPrimary will give the value
of simplest form of a static expression
– Will be an integer or character literal in the token

stream or the value of a constant identifier

• Similar in structure to its nonstatic counterpart,
except:
– New method returns a symbol entry

– New method looks up an identifier rather than calling
the method name

Programming Languages, Third Edition 71

Computing the Values
of Static Expressions

• If operators are encountered, we must deal with
two or more symbol entries, each of which is the
result of parsing an operand expression

Programming Languages, Third Edition 72

	Programming Languages Third Edition
	Objectives
	Introduction
	Introduction (cont’d.)
	Slide 5
	Expressions
	Expressions (cont’d.)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Conditional Statements and Guards
	Conditional Statements and Guards (cont’d.)
	If-Statements
	Slide 22
	If-Statements (cont’d.)
	Slide 24
	Slide 25
	Case- and Switch-Statements
	Slide 27
	Case- and Switch-Statements (cont’d.)
	Slide 29
	Slide 30
	Loops and Variations on WHILE
	Loops and Variations on WHILE (cont’d.)
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	The GOTO Controversy and Loop Exits
	The GOTO Controversy and Loop Exits (cont’d.)
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Exception Handling
	Exception Handling (cont’d.)
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Exceptions
	Exceptions (cont’d.)
	Slide 53
	Exception Handlers
	Exception Handlers (cont’d.)
	Slide 56
	Slide 57
	Slide 58
	Control
	Control (cont’d.)
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Case Study: Computing the Values of Static Expressions in TinyAda
	The Syntax and Semantics of Static Expressions
	The Syntax and Semantics of Static Expressions (cont’d.)
	Entering the Values of Symbolic Constants
	Looking Up the Values of Static Expressions
	Computing the Values of Static Expressions

