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Control I – Expressions and Statements



Objectives

• Understand expressions

• Understand conditional statements and guards

• Understand loops and variation on WHILE

• Be familiar with the GOTO controversy and loop 
exits

• Understand exception handling

• Compute the values of static expressions in 
TinyAda
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Introduction

• This chapter discusses basic and structured 
abstraction of control through the use of 
expressions and statements

• Expression: returns a value and produces no side 
effect

• Statement: executed for its side effects and 
returns no value

• In functional languages (also called expression 
languages), virtually all language constructs are 
expressions
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Introduction (cont’d.)

• C could be called an expression-oriented 
language
– Expressions make up a much larger portion of the 

language than statements

• If no side effects, expressions are closest in 
appearance to mathematics
– Have semantics similar to those of mathematical 

expressions

• Semantics of expressions with side effects have a 
significant control component
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Introduction (cont’d.)

• Explicit control structures first appeared as GOTOs

• Algol60 brought structured control
– Control statements transfer control to and from 

statements that are single-entry, single exit, such 
as blocks

• Some languages do away with GOTOs altogether, 
but there is still debate on the utility of GOTOs 
within the context of structured programming
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Expressions

• Basic expressions consist of literals and identifiers

• Complex expressions are built up recursively from 
basic expressions by the application of operators 
and functions
– May involve grouping symbols such as parentheses

• Example: in the expression 3 + 4 * 5
– + operator is applied to its two operands, 3 and the 

subexpression 4 * 5

• Unary operator: takes one operand

• Binary operator: takes two operands
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Expressions (cont’d.)

• Operators can be written in infix, postfix, or prefix 
notation
– Postfix and prefix forms do not require parentheses to 

express the order in which operators are applied

• Operators are predefined, written in infix form (if 
binary), with special associativity and precedence 
rules

• Functions are user-defined, with the operands viewed 
as arguments or actual parameters

• This distinction is arbitrary, since operators and 
functions are equivalent concepts
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Expressions (cont’d.)

• Distinction is significant, since built-in operators were 
implemented as highly optimized inline code
– Functions required the building of activations

• Modern translators often inline even user-defined 
functions

• Lisp requires expressions to be fully parenthesized 
because it can take variable numbers of arguments 
as operands

• Applicative order evaluation (or strict evaluation) 
rule: all operands are evaluated first, then operators 
are applied to them
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Expressions (cont’d.)

• Example: applicative order evaluation
– The + and – nodes are evaluated to 7 and -1

– Then the * is applied to get -7
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Expressions (cont’d.)

• Natural order to process (3+4) and (5-6) is left to 
right, but many languages do not specify an order 
– Machines may have different requirements for the 

structure of calls to procedures and functions

– Translators may attempt to rearrange for efficiency

• If there are no side effects, order of evaluation of 
subexpressions will make no difference
– If there are side effects, there may be differences
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Expressions (cont’d.)
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Expressions (cont’d.)

• Sometimes expressions are explicitly constructed 
with side effects in mind

• In C, assignment is an expression
– Example: In C code: 

• y=z both assigns and returns a value, which is 
assigned to x

• Sequence operator: allows several expressions to 
be combined into a single expression and 
evaluated sequentially
– Example: In C code: 
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Expressions (cont’d.)

Programming Languages, Third Edition 13

• Short-circuit evaluation: Boolean expressions are 
evaluated left to right up to the point where the 
truth value of the entire expression becomes 
known, and then evaluation stops
– Example: in Ada: 

• Is always true, regardless of the value of x

• Order of evaluation is important in short-circuit 
evaluation

• If expressions and case expressions also may 
not be completely evaluated



Expressions (cont’d.)

• If (or if-then-else) operator: is a ternary operator with 
three operands

• Mix-form: distributes parts of the syntax of the 
operator throughout the expression
– Example: in ML code: 

• If-expressions never have all of their subexpressions 
evaluated

• Case expression: similar to a series of nested-if 
expressions

• Delayed evaluation (or nonstrict evaluation): when 
operators delay evaluating their operands

Programming Languages, Third Edition 14



Expressions (cont’d.)

• Substitution rule (or referential transparency): 
any two expressions that have the same value in 
the same scope may be substituted for each other
– Their values always remain equal regardless of the 

evaluation context

– Note that this prohibits variables in the expressions

• Normal order evaluation: each operation begins 
its evaluation before its operands are evaluated, 
and each operand is evaluated only if it is needed 
for the calculation of the operation
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Expressions (cont’d.)

• Example: in C code:
– Consider the expression 

– Square is replaced by

– Without evaluating double(2) 
– Then it is replaced by 2 + 2

• Normal order evaluation 
implements a kind of code 
inlining
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Expressions (cont’d.)

• With no side effects, normal order evaluation does 
not change the semantics of a program

• Example with side effects in C code:

– Expression        would be expanded 
into

• Would read in two integer values instead of one 
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Expressions (cont’d.)

• Normal order evaluation:
– Appears as lazy evaluation in the functional 

language Haskell

– Appears as pass by name parameter passing 
technique for functions in Algol60
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Conditional Statements and Guards

• if-statement: typical form of structured control 
– Execution of a group of statements occurs only under 

certain conditions

• Guarded if statement: 
– All Bi’s are Boolean expressions

called guards
– All Si’s are statement sequences
– If one Bi evaluates to true, the 

corresponding Si is executed

– If more than one Bi is true, only
one Si is executed
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Conditional Statements and Guards 
(cont’d.)
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• It does not say that the first true  Bi is chosen
– This introduces nondeterminism into programming

• It leaves unspecified whether all guards are 
evaluated
– A useful feature for concurrent programming

• Usual implementation is to sequentially evaluate all 
Bi’s until a true one is found, then execute the 
corresponding Si 

• If-statements and case-statements are the major 
ways that the guarded if are implemented



If-Statements
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• Basic form of the if-statement in EBNF in C code:

– A statement can be either a single statement or a 
sequence of statements surrounded by braces

• This if statement is problematic, as there are two 
different parse trees possible:

– Called the dangling-else problem
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If-Statements (cont’d.)

• C and Pascal enforce a disambiguating rule:
– else is associated with the closest if that does not 

already have an else part

– Called the most closely nested rule for if-statements

• A better way to solve the dangling-else problem is to 
use a bracketing keyword, as in the Ada rule:

– end if closes the if-statement and removes the 
ambiguity
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If-Statements (cont’d.)

• This also removes the necessity of using brackets 
to open a new sequence of statements:
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If-Statements (cont’d.)

• elsif in Ada eliminates multiple end ifs when 
there are many alternatives:

– Becomes:
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Case- and Switch-Statements

• Case- or switch-statement: a guarded if where the 
guards are ordinal values selected by an ordinal 
expression

• Semantics in C:
– Evaluate the controlling expression
– Transfer control to the case statement where the value is 

listed
– No two listed cases may have the same value
– Case values may be literals or compile-time constant 

expressions
– If no value matches, transfer to the default case
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Case- and Switch-Statements (cont’d.)

• If there is no default case, control falls through to 
the next statement after the switch

• Some novel features:
– Case labels are treated syntactically as ordinary 

labels

– Without a break statement, execution falls through to 
the next case

• Ada allows case values to be grouped and requires 
that they be exhaustive
– Compile-time error if a legal value is not listed
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Case- and Switch-Statements (cont’d.)
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Case- and Switch-Statements (cont’d.)

• ML’s case construct is an expression that returns a 
value, rather than a statement
– Cases are separated by vertical bars

– Case expressions are patterns to be matched

– Wildcard pattern is the underscore
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Loops and Variations on WHILE
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• Guarded do: a general form for a loop construct
– Statement is repeated until all Bi’s are false

– At each step, one of the true Bi’s is selected 
nondeterministically, and the corresponding Si is 
executed



Loops and Variations on WHILE 
(cont’d.)
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• Basic loop construct: a guarded do with only one 
guard
– Eliminates nondeterminism

• In C:

• In Ada:

• The test expression (e) is evaluated first
– Must be Boolean in Ada and Java, but not C or C++

– If true (or non-zero), then S is executed and the 
process repeats   



Loops and Variations on WHILE 
(cont’d.)
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• Some languages have an alternative form that 
ensures the loop is executed at least once
– In C and Java: the do (or do-while) statement

• Termination of the do or while loop is explicitly 
specified only at the beginning or end of the loop

• C and Java provide a break statement to exit 
completely from inside a loop
– continue statement skips the remainder of the body 

of the loop but resumes with the next iteration



Loops and Variations on WHILE 
(cont’d.)
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• For-loop in C/C++ and Java:

– Is completely equivalent in C to:
• e1 is the initializer 
• e2 is the test
• e3 is the update

• For-loop is typically used to run through a set of 
values from first to last



Loops and Variations on WHILE 
(cont’d.)

• C++ and Java allow a for-loop initializer (index) to 
be declared in the loop:

• Many languages restrict the format of the for-loop

• Most restrictions involve the control variable i:
– Value of i cannot be changed in the body of the loop

– Value of i is undefined after loop termination
– i must be of restricted type and may not be a 

parameter to a procedure or record field
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Loops and Variations on WHILE 
(cont’d.)

• Other questions about loop behavior include:
– Are bounds evaluated only once? If so, bounds may 

not change after execution begins

– Is the loop executed at all if the lower bound is 
greater than the upper bound?

– Is the control variable value undefined if an exit or 
break statement is used?

– What translator checks are performed on loop 
structures?

• Object-oriented languages use an iterator object for 
looping over elements of a collection
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Loops and Variations on WHILE 
(cont’d.)
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The GOTO Controversy 
and Loop Exits

• Gotos were used heavily in early programming 
languages such as Fortran77 and BASIC

• Example in Fortran77:

– Is equivalent to this C code:
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The GOTO Controversy 
and Loop Exits (cont’d.)

• In the 1960s with structured control use increasing, 
debate began about the usefulness of gotos
– Can lead to spaghetti code 
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The GOTO Controversy 
and Loop Exits (cont’d.)

• In 1966, Bohm and Jacopini produced theoretical 
result that gotos were completely unnecessary

• In 1968, Dijkstra published “GOTO Statement 
Considered Harmful”
– Proposed that its use be severely controlled or 

abolished

• Many considered gotos to be justified in certain 
cases

• In 1987, Rubin published ““Goto considered 
harmful” considered harmful”
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The GOTO Controversy 
and Loop Exits (cont’d.)

• Still some debate on the propriety of unstructured 
exits from loops
– Some argue there should only be one exit in a loop
– Others argue that may require more complicated code 

for certain situations

• Example: searching an array for a given element
– Method returns the index of the target element if it is in 

the array, or -1 otherwise

• Example: sentinel-based loop for processing a series 
of input values
– Called the loop and a half problem
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The GOTO Controversy 
and Loop Exits (cont’d.)
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The GOTO Controversy 
and Loop Exits (cont’d.)
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Exception Handling

• Explicit control mechanisms: at the point where 
transfer of control takes place, there is a syntactic 
indication of the transfer

• Implicit transfer of control: the transfer is set up 
at a different point than where the actual transfer 
takes place

• Exception handling: control of error conditions or 
other unusual events during execution
– Involves the declaration of both exceptions and 

exception handlers
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Exception Handling (cont’d.)

• When an exception occurs, it is said to be raised or 
thrown

• Examples of exceptions: 
– Runtime exceptions: out-of-range array subscripts or 

division by zero
– Interpreted code: syntax or type errors

• Exception handler: procedure or code sequence 
designed to be executed when a particular exception 
is raised

• An exception handler is said to handle or catch an 
exception
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Exception Handling (cont’d.)

• Virtually all major current languages have built-in 
exception-handling mechanisms
– Those languages without this sometimes have 

libraries available that provide it

• Exception handling attempts to imitate the features 
of a hardware interrupt or error trap
– If the underlying machine or operating system is left 

to handle the error, the program will usually abort or 
crash

• Programs that crash fail the test of robustness
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Exception Handling (cont’d.)

• Cannot expect a program to be able to handle 
every possible error that can occur
– Too many possible failures, including hardware

• Asynchronous exceptions: when the underlying 
operating system detects a problem and needs to 
terminate a program
– Not in response to program code being executed

• Synchronous exceptions: exceptions that occur 
in direct response to actions by the program

Programming Languages, Third Edition 47



Exception Handling (cont’d.)

• User-defined exceptions can only be synchronous

• Predefined or library exceptions may include some 
asynchronous exceptions

• Exception handling assumes that it is possible to 
test for exceptions in the language

• Can handle the error at the location where it 
occurs:
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Exception Handling (cont’d.)

• Can pass an error condition back to a caller of a 
procedure

Programming Languages, Third Edition 49



Exception Handling (cont’d.)

• Can also create a separate exception-handling 
procedure to call

• To make error handling easier, we would like to 
declare exceptions in advance of their occurrence 
and specify the actions to be taken

• To do so, must consider issues related to:
– Exceptions

– Exception handlers

– Control 
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Exceptions

• Exception is typically represented by a data object, 
either predefined or user-defined
– In a functional language, it will be a value

– In a structured or object-oriented language, it will be 
a variable or an object of some structured type

• Example: in ML or Ada:

• Example: in C++:
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Exceptions (cont’d.)

• Typically want to include additional information with 
an exception, such as error message or summary 
of data involved

• Exception declarations typically observe the same 
scope rules as other declarations
– May be desirable to declare user-defined exceptions 

globally to ensure they are reachable
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Exceptions (cont’d.)
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• Most languages provide some predefined 
exception values or types, either directly or in 
standard library modules



Exception Handlers

• In C++, exception handlers are associated with try-
catch blocks
– Any number of catch blocks can be included

– Each catch block takes the exception type as a 
parameter and includes a compound statement of 
actions to be taken

– Last catch block with parameter of … is to catch any 
exceptions not handled in the prior catch blocks
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Exception Handlers (cont’d.)
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Exception Handlers (cont’d.)
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Exception Handlers (cont’d.)
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Exception Handlers (cont’d.)

• Predefined handlers typically print a minimal error 
message, indicating type of exception and possibly 
some additional information, then terminate the 
program

• In Ada and ML, there is no way to change the 
behavior of default handlers
– Can disable it in Ada

• In C++, can replace the default handler with a user-
defined handler using the <exceptions> standard 
library module
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Control

• Predefined or built-in exceptions are either 
automatically raised by the runtime system or can 
be manually raised by the program

• User-defined exceptions can only be raised by the 
program

• In C++, an exception can be raised with the throw 
reserved word

• Ada and ML both use the reserved word raise
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Control (cont’d.)
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• Example: In C++ code



Control (cont’d.)
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Control (cont’d.)

• When an exception is raised, the current computation 
is abandoned, and the runtime system begins to 
search for a handler

• In Ada and C++, the current block is searched first, 
then the enclosing block, and so on
– This is called propagating the exception

• If the outermost block of a function or procedure is 
reached without finding a handler, the call is exited 
and the exception is raised in the caller

• Process continues until a handler is found or the main 
program is exited, calling the default handler

Programming Languages, Third Edition 62



Control (cont’d.)

• Call unwinding (or stack unwinding): process of 
exiting back through function calls to the caller 
during the search for a handler

• Once a handler is found and executed, where 
should execution continue?
– Resumption model: continue at the point at which 

the exception was first raised, and redo that same 
statement or expression

– Termination model: continue with the code 
immediately following the block or expression in 
which the handler that was executed is found
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Control (cont’d.)

• Most modern languages use the termination model
– Generally easier to implement and fits better into 

structured programming techniques

– Can simulate the resumption model when needed

• Avoid overusing exceptions to implement ordinary 
control situations because:
– Exception handling often carries substantial runtime 

overhead
– Exceptions represent a not very structured control 

alternative

• Use simple tests instead
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Control (cont’d.)

• Example: In C++, simulating the resumption model 
when a call to new failed due to insufficient 
memory
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Control (cont’d.)
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Case Study: Computing the Values of 
Static Expressions in TinyAda

• Pascal requires its symbolic constants to be 
defined as literals

• Ada allows static expressions as constants

• Static expression: any expression not including a 
variable or a function call, whose value can be 
determined at compile time
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The Syntax and Semantics 
of Static Expressions
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• Static expressions can appear in two types of 
TinyAda declarations:
– A number declaration, which defines a symbolic 

constant

– A range type definition, which defines a new 
subrange type

• Example: 



The Syntax and Semantics 
of Static Expressions (cont’d.)
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• Syntactically, static expressions look just like other 
expressions

• Semantically, they are also similar

• To ensure the results can be computed at compile 
time, static expressions cannot include variables or 
parameter references



Entering the Values 
of Symbolic Constants

• Each symbolic constant has a value attribute in its 
symbol entry record

• Cannot reuse the parsing method expression 
presented in an earlier chapter because:
– All expression methods return a type descriptor, 

which is still needed for type checking and to set 
type attributes of constant identifiers and subrange 
types

– These methods permit variables and parameter 
names

– Not all expressions are static
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Looking Up the Values 
of Static Expressions

• New method staticPrimary will give the value 
of simplest form of a static expression
– Will be an integer or character literal in the token 

stream or the value of a constant identifier

• Similar in structure to its nonstatic counterpart, 
except:
– New method returns a symbol entry

– New method looks up an identifier rather than calling 
the method name
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Computing the Values 
of Static Expressions

• If operators are encountered, we must deal with 
two or more symbol entries, each of which is the 
result of parsing an operand expression
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