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Basic Semantics



Objectives

• Understand attributes, binding, and semantic 
functions

• Understand declarations, blocks, and scope

• Learn how to construct a symbol table

• Understand name resolution and overloading

• Understand allocation, lifetimes, and the 
environment
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Objectives (cont’d.)

• Work with variables and constants

• Learn how to handle aliases, dangling references, 
and garbage

• Perform an initial static semantic analysis of 
TinyAda
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Introduction

• Syntax: what the language constructs look like

• Semantics: what the language constructs actually 
do

• Specifying semantics is more difficult than 
specifying syntax

• Several ways to specify semantics:
– Language reference manual

– Defining a translator

– Formal definition
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Introduction (cont’d.)

• Language reference manual:  
– Most common way to specify semantics

– Provides clearer and more precise reference 
manuals

– Suffers from a lack of precision inherent in natural 
language descriptions

– May have omissions and ambiguities
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Introduction (cont’d.)

• Defining a translator:
– Questions about a language can be answered by 

experimentation

– Questions about program behavior cannot be 
answered in advance

– Bugs and machine dependencies in the translator 
may become part of the language semantics, 
possibly unintentionally

– May not be portable to all machines

– May not be generally available
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Introduction (cont’d.)

• Formal definition: 
– Formal mathematical methods: precise, but are also 

complex and abstract
– Requires study to understand
– Denotational semantics: probably the best formal 

method for the description of the translation and 
execution of programs

• Describes semantics using a series of functions

• This course will use a hybrid of informal description 
with the simplified functions used in denotational 
descriptions
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Attributes, Binding, 
and Semantic Functions

• Names (or identifiers): a fundamental abstraction 
mechanism used to denote language entities or 
constructs

• Fundamental step in describing semantics is to 
describe naming conventions for identifiers

• Most languages also include concepts of location 
and value
– Value: any storable quantities

– Location: place where value can be stored; usually 
a relative location
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Attributes, Binding, 
and Semantic Functions (cont’d.)

• Attributes: properties that determine the meaning of 
the name to which they are associated 

• Example in C:  
– Attributes for variables and constants include data type 

and value

• Example in C:

– Attributes include “function,” number, names and data 
type of parameters, return value data type, body of 
code to be executed
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Attributes, Binding, 
and Semantic Functions (cont’d.)

• Assignment statements associate attributes to 
names

• Example:
– Associates attribute “value 2” to variable x

• Example in C++:  

– Allocates memory (associates location to y)

– Associates value
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Attributes, Binding, 
and Semantic Functions (cont’d.)

• Binding: process of associating an attribute with a 
name

• Binding time: the time when an attribute is 
computed and bound to a name

• Two categories of binding:
– Static binding: occurs prior to execution

– Dynamic binding: occurs during execution

• Static attribute: an attribute that is bound statically

• Dynamic attribute: an attribute that is bound 
dynamically
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Attributes, Binding, 
and Semantic Functions (cont’d.)

• Languages differ substantially in which attributes 
are bound statically or dynamically
– Functional languages tend to have more dynamic 

binding than imperative languages

• Static attributes can be bound during translation, 
during linking, or during loading of the program

• Dynamic attributes can be bound at different times 
during execution, such as entry or exit from a 
procedure or from the program
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Attributes, Binding, 
and Semantic Functions (cont’d.)

• Some attributes are bound prior to translation time
– Predefined identifiers: specified by the language 

definition

– Values true/false bound to data type Boolean
– maxint specified by language definition and 

implementation

• All binding times except execution time are static 
binding
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Attributes, Binding, 
and Semantic Functions (cont’d.)

• A translator creates a data structure to maintain 
bindings
– Can be thought of as a function that expresses the 

binding of attributes to names

• Symbol table: a function from names to attributes
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Attributes, Binding, 
and Semantic Functions (cont’d.)

• Parsing phase of translation includes three types of 
analysis:
– Lexical analysis: determines whether a string of 

characters represents a token

– Syntax analysis: determines whether a sequence of 
tokens represents a phrase in the context-free 
grammar

– Static semantic analysis: establishes attributes of 
names in declarations and ensures that the use of 
these names conforms to their declared attributes

• During execution, attributes are also maintained
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Attributes, Binding, 
and Semantic Functions (cont’d.)
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Declarations, Blocks, and Scope

• Bindings can be implicit or explicit

• Example:
– Data type is bound explicitly; location of x is bound 

implicitly 

• Entire declaration itself may be implicit in languages 
where simply using the variable name causes it to be 
declared

• Definition: in C and C++, a declaration that binds all 
potential attributes

• Prototype: function declaration that specifies the data 
type but not the code to implement it
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Declarations, Blocks, and Scope 
(cont’d.)

• Block: a sequence of declarations followed by a 
sequence of statements

• Compound statements: blocks in C that appear 
as the body of functions or anywhere an ordinary 
program statement could appear

• Local declarations: associated with a block

• Nonlocal declarations: associated with 
surrounding blocks

• Block-structured languages allow nesting of blocks 
and redeclaration of names within nested blocks
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Declarations, Blocks, and Scope 
(cont’d.)

• Each declared name has a  lexical address 
containing a level number and an offset
– Level number starts at 0 and increases into each 

nested block

• Other sources of declarations include:
– A struct definition composed of local (member) 

declarations
– A class in object-oriented languages

• Declarations can be collected into packages (Ada), 
modules (ML, Haskell, Python), and namespaces (C+
+)
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Declarations, Blocks, and Scope 
(cont’d.)

• Scope of a binding: region of the program over 
which the binding is maintained

• Lexical scope: in block-structured languages, 
scope is limited to the block in which its associated 
declaration appears (and other blocks contained 
within it) 

• Declaration before use rule: in C, scope of a 
declaration extends from the point of declaration to 
the end of the block in which it is located
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Declarations, Blocks, and Scope 
(cont’d.)

• Declarations in nested blocks take precedence over 
previous declarations

• A global variable is said to have a scope hole in a 
block containing a local declaration with the same 
name
– Use scope resolution operator :: in C++ to access 

the global variable

• Local declaration is said to shadow its global 
declaration

• Visibility: includes only regions where the bindings of 
a declaration apply

Programming Languages, Third Edition 23



Declarations, Blocks, and Scope 
(cont’d.)
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Declarations, Blocks, and Scope 
(cont’d.)

• Scope rules need to be constructed such that 
recursive (self-referential) declarations are possible 
when they make sense
– Example: functions must be allowed to be recursive, 

so function name must have scope beginning before 
the block of the function body
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The Symbol Table

• Symbol table:  
– Must support insertion, lookup, and deletion of 

names with associated attributes, representing 
bindings in declarations

• A lexically scoped, block-structured language 
requires a stack-like data structure to perform 
scope analysis:
– On block entry, all declarations of that block are 

processed and bindings added to symbol table

– On block exit, bindings are removed, restoring any 
previous bindings that may have existed
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The Symbol Table (cont’d.)
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The Symbol Table (cont’d.)
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The Symbol Table (cont’d.)
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The Symbol Table (cont’d.)
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The Symbol Table (cont’d.)

Programming Languages, Third Edition 32



The Symbol Table (cont’d.)
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The Symbol Table (cont’d.)

• The previous example assumes that declarations 
are processed statically (prior to execution)
– This is called static scoping or lexical scoping

– Symbol table is managed by a compiler

– Bindings of declarations are all static

• If symbol table is managed dynamically (during 
execution), declarations will be processed as they 
are encountered along an execution path
– This is called dynamic scoping
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The Symbol Table (cont’d.)

• Dynamic scoping will affect the semantics of the 
program and produce different output

• Output using lexical scoping:

• Output using dynamic scoping:

• Dynamic scope can be problematic, which is why 
few languages use it
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The Symbol Table (cont’d.)

• Problems with dynamic scoping:
– The declaration of a nonlocal name cannot be 

determined by simply reading the program: the 
program must be executed to know the execution 
path

– Since nonlocal variable references cannot be 
predicted prior to execution, neither can their data 
types

• Dynamic scoping is a possible option for highly 
dynamic, interpreted languages when programs 
are not expected to be extremely large
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The Symbol Table (cont’d.)

• Runtime environment is simpler with dynamic 
scoping in an interpreter
– APL, Snobol, Perl, and early dialects of Lisp were 

dynamically scoped

– Scheme and Common Lisp use static scoping

• There is additional complexity for symbol tables
• struct declaration must contain further 

declarations of the data fields within it
– Those fields must be accessible using dot member 

notation whenever the struct variable is in scope
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The Symbol Table (cont’d.)

• Two implications for struct variables:
– A struct declaration actually contains a local symbol 

table itself as an attribute

– This local symbol table cannot be deleted until the 
struct variable itself is deleted from the global symbol 
table of the program
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The Symbol Table (cont’d.)

• Any scoping structure that can be referenced directly 
must also have its own symbol table

• Examples:
– Named scopes in Ada
– Classes, structs, and namespaces in C++
– Classes and packages in Java

• Typically, there will be a table for each scope in a 
stack of symbol tables
– When a reference to a name occurs, a search begins 

in the current table and continues to the next table if 
not found, and so on
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Name Resolution and Overloading

• Addition operator + actually indicates at least two 
different operations: integer addition and floating-
point addition
– + operator is said to be overloaded

• Translator must look at the data type of each 
operand to determine which operation is indicated

• Overload resolution: process of choosing a 
unique function among many with the same name
– Lookup operation of a symbol table must search on 

name plus number and data type of parameters
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Name Resolution and Overloading 
(cont’d.)

Programming Languages, Third Edition 50



Name Resolution and Overloading 
(cont’d.)

• Consider these function calls:

• Symbol table can determine the appropriate 
function based on number and type of parameters

• Calling context: the information contained in each 
call 

• But this ambiguous call depends on the language 
rules (if any) for converting between data types: 

Programming Languages, Third Edition 51



Name Resolution and Overloading 
(cont’d.)

• Adding these definitions makes the function calls 
legal in C++ and Ada but is unnecessary in Java

• Automatic conversions as they exist in C++ and 
Java significantly complicate overload resolution
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Name Resolution and Overloading 
(cont’d.)

• Additional information in a calling context may be 
used for overload resolution:
– Ada allows the return type and names of parameters to 

be used for overhead resolution
– C++ and Java ignore the return type

• Both Ada and C++ (but not Java) allow built-in 
operators to be overloaded

• When overloading a built-in operator, we must accept 
its syntactic properties
– Example: cannot change the associativity or 

precedence of the + operator
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Name Resolution and Overloading 
(cont’d.)

• Note that there is no semantic difference between 
operators and functions, only syntactic difference
– Operators are written in infix form

– Function calls are always written in prefix form

• Names can also be overloaded

• Some languages use different symbol tables for 
each of the major kinds of definitions to allow the 
same name for a type, a function, and a variable
– Example: Java
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Name Resolution and Overloading 
(cont’d.)
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Allocation, Lifetimes, 
and the Environment

• Environment: maintains the bindings of names to 
locations
– May be constructed statically (at load time), 

dynamically (at execution time), or with a mixture of 
both

• Not all names in a program are bound to locations
– Examples: names of constants and data types may 

represent purely compile-time quantities

• Declarations are also used in environment 
construction
– Indicate what allocation code must be generated
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Allocation, Lifetimes, 
and the Environment (cont’d.)

• Typically, in a block-structured language:
– Global variables are allocated statically

– Local variables are allocated dynamically when the 
block is entered

• When a block is entered, memory for variables 
declared in that block is allocated

• When a block is exited, this memory is deallocated
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Allocation, Lifetimes, 
and the Environment (cont’d.)
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Allocation, Lifetimes, 
and the Environment (cont’d.)
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Allocation, Lifetimes, 
and the Environment (cont’d.)
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Allocation, Lifetimes, 
and the Environment (cont’d.)
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Allocation, Lifetimes, 
and the Environment (cont’d.)

• Memory for local variables within a function will not be 
allocated until the function is called

• Activation: a call to a function

• Activation record: the corresponding region of 
allocated memory

• In a block-structured language with lexical scope, the 
same name can be associated with different 
locations, but only one of these can be accessed at 
any one time

• Lifetime (or extent) of an object is the duration of its 
allocation in the environment
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Allocation, Lifetimes, 
and the Environment (cont’d.)

• Lifetime of an object can extend beyond the region of 
a program in which it can be accessed
– Lifetime extends through a scope hole

• Pointer: an object whose stored value is a reference 
to another object

• C allows the initialization of pointers that do not point 
to an allocated object:  
– Objects must be manually allocated by use of an 

allocation routine
– Variable can be dereferenced using the unary * 

operator
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Allocation, Lifetimes, 
and the Environment (cont’d.)

• C++ simplifies dynamic allocation with operators 
new and delete:

– These are used as unary operators, not functions

• Heap: area in memory from which locations can be 
allocated in response to calls to new 

• Dynamic allocation: allocation on the heap
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Allocation, Lifetimes, 
and the Environment (cont’d.)

• Many languages require that heap deallocation be 
managed automatically

• Heap allocation/deallocation and explicit pointer 
manipulation are inherently unsafe operations
– Can introduce seriously faulty runtime behavior that 

may even compromise the operating system

• Storage class: the type of allocation 
– Static (for global variables)

– Automatic (for local variables)

– Dynamic (for heap allocation)
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Variables and Constants

• Although references to variables and constants 
look the same in many languages, their roles and 
semantics are very different

• We will look at the basic semantics of both
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Variables

• Variable: an object whose stored value can change 
during execution
– Is completely specified by its attributes (name, 

location, value, data type, size of memory storage)

• Box and circle diagram: focuses on name and 
location
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Variables (cont’d.)
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• Assignment statement: principle way in which a 
variable changes its value

• Example: 
– Semantics: expression e is evaluated to a value, 

then copied into the location of x

• If e is a variable named y:



Variables (cont’d.)

• Variable on right side of assignment statement stands 
for a value (r-value); variable on left side stands for a 
location (l-value)

• Address of operator (&) in C: turns a reference into 
a pointer to fetch the address of a variable 

• Assignment by sharing: the location is copied 
instead of the value

• Assignment by cloning: allocates new location, 
copies value, and binds to the new location

• Both are sometimes called pointer semantics or 
reference semantics
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Variables (cont’d.)
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Variables (cont’d.)

• Storage semantics or value semantics refer to 
standard assignment

• Standard implementation of assignment by sharing 
uses pointers and implicit dereferencing
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Variables (cont’d.)
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Constants

• Constant: an entity with a fixed value for the 
duration of its existence in a program
– Like a variable, but has no location attribute

– Sometimes say that a constant has value 
semantics

• Literal: a representation of characters or digits

• Compile-time constant: its value can be 
computed during compilation

• Static constant: its value can be computed at load 
time
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Constants (cont’d.)

• Manifest constant: a name for a literal

• Dynamic constant: its value must be computed 
during execution

• Function definitions in virtually all languages are 
definitions of constants whose values are functions
– This differs from a function variable in C, which must 

be defined as a pointer
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Constants (cont’d.)

• a and b are 
compile-time 
constants
– a is a manifest 

constant

• c is a static (load-
time constant)

• d is a dynamic 
constant 

Programming Languages, Third Edition 77



Aliases, Dangling References, 
and Garbage

• There are several problems with naming and 
dynamic allocation conventions of programming 
languages, especially C, C++, and Ada

• As a programmer, you can learn to avoid those 
problematic situations

• As a language designer, you can build solutions 
into your language
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Aliases

• Alias: occurs when the same object is bound to 
two different names at the same time

• Can occur during procedure call, through the use of 
pointer variables, or through assignment by sharing
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Aliases (cont’d.)
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Aliases (cont’d.)
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Aliases (cont’d.)
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Aliases (cont’d.)
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• Aliases can potentially cause harmful side effects
• Side effect: any change in a variable’s value that 

persists beyond the execution of the statement

• Not all side effects are harmful; an assignment 
statement is intended to cause one

• Side effects that change variables whose names 
do not directly appear in the statement are 
potentially harmful
– Cannot be determined from the written code

• Aliasing due to pointer assignment is difficult to 
control



Aliases (cont’d.)

• Assignment by sharing implicitly uses pointers

• Java has a mechanism for explicitly cloning an 
object so that aliases are not created by 
assignment
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Dangling References

• Dangling reference: a location that has been 
deallocated from the environment but can still be 
accessed by a program
– Occurs when a pointer points to a deallocated object
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Dangling References (cont’d.)

• Can also result from automatic deallocation of local 
variables on exit from a block, with the C address 
of operator
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Dangling References (cont’d.)
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• Java does not allow dangling references at all 
because:
– There are no explicit pointers

– There is no address of operator
– There are no memory deallocation operators such as 
free or delete



Garbage

• Garbage: memory that has been allocated in the 
environment but is now inaccessible to the program

• Can occur in C by failing to call free before 
reassigning a pointer variable

• A program that is internally correct but produces 
garbage may run out of memory
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Garbage (cont’d.)

• A program with dangling references may:
– Produce incorrect results
– Corrupt other programs in memory
– Cause runtime errors that are hard to locate

• For this reason, it is useful to remove the need to 
deallocate memory explicitly from the programmer

• Garbage collection: process of automatically 
reclaiming garbage

• Language design is a key factor in the kind of runtime 
environment necessary for correct execution of 
programs
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Case Study: Initial Static Semantic 
Analysis of TinyAda

• Chapter 6 introduced a syntax analyzer for TinyAda
– A simple parsing shell that pulled tokens from a 

scanner until a syntax error was detected

• Here, we extend the parsing shell to perform some 
semantic analysis
– Focus will be on tools for scope analysis and for 

restricting the use of identifiers

• Must focus on two attributes of an identifier:
– Name

– Role it plays (constant, variable, type, or procedure)
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Scope Analysis 

• TinyAda is lexically scoped, with these scope rules:
– All identifiers must be declared before use

– At most, one declaration for a given identifier in a 
single block

– A new block starts with formal parameter 
specifications of a procedure and extends to the 
reserved word end

– Visibility of a declared identifier extends into nested 
blocks unless it is redeclared in that block

– Identifiers are not case sensitive
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Scope Analysis (cont’d.)

• TinyAda has five built-in (predefined) identifiers:
– Data type names integer, char, boolean
– Boolean constants true and false

• These identifiers must be visible in a top-level 
scope before a source program is parsed
– Static nesting level of this scope is 0

• Scope at nesting level 1 contains the procedure’s 
formal parameters (if any) and any identifiers 
introduced in the procedures basic declarations

• Names in nested procedures follow this pattern
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Scope Analysis (cont’d.)

• TinyAda’s parser uses a stack of symbol tables
– When each new scope is entered, a new table is 

pushed onto the stack

– When a scope is exited, the table at the top of the 
stack is popped off the stack

• Two classes are defined to support scope analysis:
– SymbolEntry: holds information about an identifier
– SymbolTable: manages the stack of scopes

Programming Languages, Third Edition 93



Scope Analysis (cont’d.)
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Identifier Role Analysis

• An identifier names an entity, such as a variable, a 
constant, or an entire data type
– This attribute of an identifier is called its role

• An identifier’s role imposes certain restrictions on 
its use

• Examples:
– Only a variable or parameter identifier can appear on 

the left side of an assignment statement

– Only a type identifier can appear as the element type 
of an array
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Identifier Role Analysis (cont’d.)

• Identifier acquires its role in its declaration
– Role is saved in the symbol table for future use

• Role analysis uses the symbol table to share 
contextual information about identifiers among 
otherwise independent parsing methods
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