
Programming Languages
Third Edition

Chapter 7
Basic Semantics

Objectives

• Understand attributes, binding, and semantic
functions

• Understand declarations, blocks, and scope

• Learn how to construct a symbol table

• Understand name resolution and overloading

• Understand allocation, lifetimes, and the
environment

Programming Languages, Third Edition 2

Objectives (cont’d.)

• Work with variables and constants

• Learn how to handle aliases, dangling references,
and garbage

• Perform an initial static semantic analysis of
TinyAda

Programming Languages, Third Edition 3

Introduction

• Syntax: what the language constructs look like

• Semantics: what the language constructs actually
do

• Specifying semantics is more difficult than
specifying syntax

• Several ways to specify semantics:
– Language reference manual

– Defining a translator

– Formal definition

Programming Languages, Third Edition 4

Introduction (cont’d.)

• Language reference manual:
– Most common way to specify semantics

– Provides clearer and more precise reference
manuals

– Suffers from a lack of precision inherent in natural
language descriptions

– May have omissions and ambiguities

Programming Languages, Third Edition 5

Introduction (cont’d.)

• Defining a translator:
– Questions about a language can be answered by

experimentation

– Questions about program behavior cannot be
answered in advance

– Bugs and machine dependencies in the translator
may become part of the language semantics,
possibly unintentionally

– May not be portable to all machines

– May not be generally available

Programming Languages, Third Edition 6

Introduction (cont’d.)

• Formal definition:
– Formal mathematical methods: precise, but are also

complex and abstract
– Requires study to understand
– Denotational semantics: probably the best formal

method for the description of the translation and
execution of programs

• Describes semantics using a series of functions

• This course will use a hybrid of informal description
with the simplified functions used in denotational
descriptions

Programming Languages, Third Edition 7

Attributes, Binding,
and Semantic Functions

• Names (or identifiers): a fundamental abstraction
mechanism used to denote language entities or
constructs

• Fundamental step in describing semantics is to
describe naming conventions for identifiers

• Most languages also include concepts of location
and value
– Value: any storable quantities

– Location: place where value can be stored; usually
a relative location

Programming Languages, Third Edition 8

Attributes, Binding,
and Semantic Functions (cont’d.)

• Attributes: properties that determine the meaning of
the name to which they are associated

• Example in C:
– Attributes for variables and constants include data type

and value

• Example in C:

– Attributes include “function,” number, names and data
type of parameters, return value data type, body of
code to be executed

Programming Languages, Third Edition 9

Attributes, Binding,
and Semantic Functions (cont’d.)

• Assignment statements associate attributes to
names

• Example:
– Associates attribute “value 2” to variable x

• Example in C++:

– Allocates memory (associates location to y)

– Associates value

Programming Languages, Third Edition 10

Attributes, Binding,
and Semantic Functions (cont’d.)

• Binding: process of associating an attribute with a
name

• Binding time: the time when an attribute is
computed and bound to a name

• Two categories of binding:
– Static binding: occurs prior to execution

– Dynamic binding: occurs during execution

• Static attribute: an attribute that is bound statically

• Dynamic attribute: an attribute that is bound
dynamically

Programming Languages, Third Edition 11

Attributes, Binding,
and Semantic Functions (cont’d.)

• Languages differ substantially in which attributes
are bound statically or dynamically
– Functional languages tend to have more dynamic

binding than imperative languages

• Static attributes can be bound during translation,
during linking, or during loading of the program

• Dynamic attributes can be bound at different times
during execution, such as entry or exit from a
procedure or from the program

Programming Languages, Third Edition 12

Attributes, Binding,
and Semantic Functions (cont’d.)

• Some attributes are bound prior to translation time
– Predefined identifiers: specified by the language

definition

– Values true/false bound to data type Boolean
– maxint specified by language definition and

implementation

• All binding times except execution time are static
binding

Programming Languages, Third Edition 13

Attributes, Binding,
and Semantic Functions (cont’d.)

• A translator creates a data structure to maintain
bindings
– Can be thought of as a function that expresses the

binding of attributes to names

• Symbol table: a function from names to attributes

Programming Languages, Third Edition 14

Attributes, Binding,
and Semantic Functions (cont’d.)

• Parsing phase of translation includes three types of
analysis:
– Lexical analysis: determines whether a string of

characters represents a token

– Syntax analysis: determines whether a sequence of
tokens represents a phrase in the context-free
grammar

– Static semantic analysis: establishes attributes of
names in declarations and ensures that the use of
these names conforms to their declared attributes

• During execution, attributes are also maintained
Programming Languages, Third Edition 15

Attributes, Binding,
and Semantic Functions (cont’d.)

Programming Languages, Third Edition 16

Declarations, Blocks, and Scope

• Bindings can be implicit or explicit

• Example:
– Data type is bound explicitly; location of x is bound

implicitly

• Entire declaration itself may be implicit in languages
where simply using the variable name causes it to be
declared

• Definition: in C and C++, a declaration that binds all
potential attributes

• Prototype: function declaration that specifies the data
type but not the code to implement it

Programming Languages, Third Edition 17

Declarations, Blocks, and Scope
(cont’d.)

• Block: a sequence of declarations followed by a
sequence of statements

• Compound statements: blocks in C that appear
as the body of functions or anywhere an ordinary
program statement could appear

• Local declarations: associated with a block

• Nonlocal declarations: associated with
surrounding blocks

• Block-structured languages allow nesting of blocks
and redeclaration of names within nested blocks

Programming Languages, Third Edition 18

Declarations, Blocks, and Scope
(cont’d.)

• Each declared name has a lexical address
containing a level number and an offset
– Level number starts at 0 and increases into each

nested block

• Other sources of declarations include:
– A struct definition composed of local (member)

declarations
– A class in object-oriented languages

• Declarations can be collected into packages (Ada),
modules (ML, Haskell, Python), and namespaces (C+
+)

Programming Languages, Third Edition 19

Declarations, Blocks, and Scope
(cont’d.)

• Scope of a binding: region of the program over
which the binding is maintained

• Lexical scope: in block-structured languages,
scope is limited to the block in which its associated
declaration appears (and other blocks contained
within it)

• Declaration before use rule: in C, scope of a
declaration extends from the point of declaration to
the end of the block in which it is located

Programming Languages, Third Edition 20

Programming Languages, Third Edition 21

Programming Languages, Third Edition 22

Declarations, Blocks, and Scope
(cont’d.)

• Declarations in nested blocks take precedence over
previous declarations

• A global variable is said to have a scope hole in a
block containing a local declaration with the same
name
– Use scope resolution operator :: in C++ to access

the global variable

• Local declaration is said to shadow its global
declaration

• Visibility: includes only regions where the bindings of
a declaration apply

Programming Languages, Third Edition 23

Declarations, Blocks, and Scope
(cont’d.)

Programming Languages, Third Edition 24

Declarations, Blocks, and Scope
(cont’d.)

• Scope rules need to be constructed such that
recursive (self-referential) declarations are possible
when they make sense
– Example: functions must be allowed to be recursive,

so function name must have scope beginning before
the block of the function body

Programming Languages, Third Edition 25

The Symbol Table

• Symbol table:
– Must support insertion, lookup, and deletion of

names with associated attributes, representing
bindings in declarations

• A lexically scoped, block-structured language
requires a stack-like data structure to perform
scope analysis:
– On block entry, all declarations of that block are

processed and bindings added to symbol table

– On block exit, bindings are removed, restoring any
previous bindings that may have existed

Programming Languages, Third Edition 26

Programming Languages, Third Edition 27

The Symbol Table (cont’d.)

Programming Languages, Third Edition 28

The Symbol Table (cont’d.)

Programming Languages, Third Edition 29

The Symbol Table (cont’d.)

Programming Languages, Third Edition 30

The Symbol Table (cont’d.)

Programming Languages, Third Edition 31

The Symbol Table (cont’d.)

Programming Languages, Third Edition 32

The Symbol Table (cont’d.)

Programming Languages, Third Edition 33

Programming Languages, Third Edition 34

The Symbol Table (cont’d.)

• The previous example assumes that declarations
are processed statically (prior to execution)
– This is called static scoping or lexical scoping

– Symbol table is managed by a compiler

– Bindings of declarations are all static

• If symbol table is managed dynamically (during
execution), declarations will be processed as they
are encountered along an execution path
– This is called dynamic scoping

Programming Languages, Third Edition 35

Programming Languages, Third Edition 36

Programming Languages, Third Edition 37

Programming Languages, Third Edition 38

Programming Languages, Third Edition 39

The Symbol Table (cont’d.)

• Dynamic scoping will affect the semantics of the
program and produce different output

• Output using lexical scoping:

• Output using dynamic scoping:

• Dynamic scope can be problematic, which is why
few languages use it

Programming Languages, Third Edition 40

The Symbol Table (cont’d.)

• Problems with dynamic scoping:
– The declaration of a nonlocal name cannot be

determined by simply reading the program: the
program must be executed to know the execution
path

– Since nonlocal variable references cannot be
predicted prior to execution, neither can their data
types

• Dynamic scoping is a possible option for highly
dynamic, interpreted languages when programs
are not expected to be extremely large

Programming Languages, Third Edition 41

The Symbol Table (cont’d.)

• Runtime environment is simpler with dynamic
scoping in an interpreter
– APL, Snobol, Perl, and early dialects of Lisp were

dynamically scoped

– Scheme and Common Lisp use static scoping

• There is additional complexity for symbol tables
• struct declaration must contain further

declarations of the data fields within it
– Those fields must be accessible using dot member

notation whenever the struct variable is in scope

Programming Languages, Third Edition 42

The Symbol Table (cont’d.)

• Two implications for struct variables:
– A struct declaration actually contains a local symbol

table itself as an attribute

– This local symbol table cannot be deleted until the
struct variable itself is deleted from the global symbol
table of the program

Programming Languages, Third Edition 43

Programming Languages, Third Edition 44

Programming Languages, Third Edition 45

The Symbol Table (cont’d.)

• Any scoping structure that can be referenced directly
must also have its own symbol table

• Examples:
– Named scopes in Ada
– Classes, structs, and namespaces in C++
– Classes and packages in Java

• Typically, there will be a table for each scope in a
stack of symbol tables
– When a reference to a name occurs, a search begins

in the current table and continues to the next table if
not found, and so on

Programming Languages, Third Edition 46

Programming Languages, Third Edition 47

Programming Languages, Third Edition 48

Name Resolution and Overloading

• Addition operator + actually indicates at least two
different operations: integer addition and floating-
point addition
– + operator is said to be overloaded

• Translator must look at the data type of each
operand to determine which operation is indicated

• Overload resolution: process of choosing a
unique function among many with the same name
– Lookup operation of a symbol table must search on

name plus number and data type of parameters

Programming Languages, Third Edition 49

Name Resolution and Overloading
(cont’d.)

Programming Languages, Third Edition 50

Name Resolution and Overloading
(cont’d.)

• Consider these function calls:

• Symbol table can determine the appropriate
function based on number and type of parameters

• Calling context: the information contained in each
call

• But this ambiguous call depends on the language
rules (if any) for converting between data types:

Programming Languages, Third Edition 51

Name Resolution and Overloading
(cont’d.)

• Adding these definitions makes the function calls
legal in C++ and Ada but is unnecessary in Java

• Automatic conversions as they exist in C++ and
Java significantly complicate overload resolution

Programming Languages, Third Edition 52

Name Resolution and Overloading
(cont’d.)

• Additional information in a calling context may be
used for overload resolution:
– Ada allows the return type and names of parameters to

be used for overhead resolution
– C++ and Java ignore the return type

• Both Ada and C++ (but not Java) allow built-in
operators to be overloaded

• When overloading a built-in operator, we must accept
its syntactic properties
– Example: cannot change the associativity or

precedence of the + operator

Programming Languages, Third Edition 53

Name Resolution and Overloading
(cont’d.)

• Note that there is no semantic difference between
operators and functions, only syntactic difference
– Operators are written in infix form

– Function calls are always written in prefix form

• Names can also be overloaded

• Some languages use different symbol tables for
each of the major kinds of definitions to allow the
same name for a type, a function, and a variable
– Example: Java

Programming Languages, Third Edition 54

Name Resolution and Overloading
(cont’d.)

Programming Languages, Third Edition 55

Allocation, Lifetimes,
and the Environment

• Environment: maintains the bindings of names to
locations
– May be constructed statically (at load time),

dynamically (at execution time), or with a mixture of
both

• Not all names in a program are bound to locations
– Examples: names of constants and data types may

represent purely compile-time quantities

• Declarations are also used in environment
construction
– Indicate what allocation code must be generated

Programming Languages, Third Edition 56

Allocation, Lifetimes,
and the Environment (cont’d.)

• Typically, in a block-structured language:
– Global variables are allocated statically

– Local variables are allocated dynamically when the
block is entered

• When a block is entered, memory for variables
declared in that block is allocated

• When a block is exited, this memory is deallocated

Programming Languages, Third Edition 57

Programming Languages, Third Edition 58

Allocation, Lifetimes,
and the Environment (cont’d.)

Programming Languages, Third Edition 59

Allocation, Lifetimes,
and the Environment (cont’d.)

Programming Languages, Third Edition 60

Allocation, Lifetimes,
and the Environment (cont’d.)

Programming Languages, Third Edition 61

Allocation, Lifetimes,
and the Environment (cont’d.)

Programming Languages, Third Edition 62

Allocation, Lifetimes,
and the Environment (cont’d.)

• Memory for local variables within a function will not be
allocated until the function is called

• Activation: a call to a function

• Activation record: the corresponding region of
allocated memory

• In a block-structured language with lexical scope, the
same name can be associated with different
locations, but only one of these can be accessed at
any one time

• Lifetime (or extent) of an object is the duration of its
allocation in the environment

Programming Languages, Third Edition 63

Allocation, Lifetimes,
and the Environment (cont’d.)

• Lifetime of an object can extend beyond the region of
a program in which it can be accessed
– Lifetime extends through a scope hole

• Pointer: an object whose stored value is a reference
to another object

• C allows the initialization of pointers that do not point
to an allocated object:
– Objects must be manually allocated by use of an

allocation routine
– Variable can be dereferenced using the unary *

operator

Programming Languages, Third Edition 64

Allocation, Lifetimes,
and the Environment (cont’d.)

• C++ simplifies dynamic allocation with operators
new and delete:

– These are used as unary operators, not functions

• Heap: area in memory from which locations can be
allocated in response to calls to new

• Dynamic allocation: allocation on the heap

Programming Languages, Third Edition 65

Programming Languages, Third Edition 66

Allocation, Lifetimes,
and the Environment (cont’d.)

• Many languages require that heap deallocation be
managed automatically

• Heap allocation/deallocation and explicit pointer
manipulation are inherently unsafe operations
– Can introduce seriously faulty runtime behavior that

may even compromise the operating system

• Storage class: the type of allocation
– Static (for global variables)

– Automatic (for local variables)

– Dynamic (for heap allocation)

Programming Languages, Third Edition 67

Variables and Constants

• Although references to variables and constants
look the same in many languages, their roles and
semantics are very different

• We will look at the basic semantics of both

Programming Languages, Third Edition 68

Variables

• Variable: an object whose stored value can change
during execution
– Is completely specified by its attributes (name,

location, value, data type, size of memory storage)

• Box and circle diagram: focuses on name and
location

Programming Languages, Third Edition 69

Variables (cont’d.)

Programming Languages, Third Edition 70

• Assignment statement: principle way in which a
variable changes its value

• Example:
– Semantics: expression e is evaluated to a value,

then copied into the location of x

• If e is a variable named y:

Variables (cont’d.)

• Variable on right side of assignment statement stands
for a value (r-value); variable on left side stands for a
location (l-value)

• Address of operator (&) in C: turns a reference into
a pointer to fetch the address of a variable

• Assignment by sharing: the location is copied
instead of the value

• Assignment by cloning: allocates new location,
copies value, and binds to the new location

• Both are sometimes called pointer semantics or
reference semantics

Programming Languages, Third Edition 71

Variables (cont’d.)

Programming Languages, Third Edition 72

Variables (cont’d.)

• Storage semantics or value semantics refer to
standard assignment

• Standard implementation of assignment by sharing
uses pointers and implicit dereferencing

Programming Languages, Third Edition 73

Variables (cont’d.)

Programming Languages, Third Edition 74

Constants

• Constant: an entity with a fixed value for the
duration of its existence in a program
– Like a variable, but has no location attribute

– Sometimes say that a constant has value
semantics

• Literal: a representation of characters or digits

• Compile-time constant: its value can be
computed during compilation

• Static constant: its value can be computed at load
time

Programming Languages, Third Edition 75

Constants (cont’d.)

• Manifest constant: a name for a literal

• Dynamic constant: its value must be computed
during execution

• Function definitions in virtually all languages are
definitions of constants whose values are functions
– This differs from a function variable in C, which must

be defined as a pointer

Programming Languages, Third Edition 76

Constants (cont’d.)

• a and b are
compile-time
constants
– a is a manifest

constant

• c is a static (load-
time constant)

• d is a dynamic
constant

Programming Languages, Third Edition 77

Aliases, Dangling References,
and Garbage

• There are several problems with naming and
dynamic allocation conventions of programming
languages, especially C, C++, and Ada

• As a programmer, you can learn to avoid those
problematic situations

• As a language designer, you can build solutions
into your language

Programming Languages, Third Edition 78

Aliases

• Alias: occurs when the same object is bound to
two different names at the same time

• Can occur during procedure call, through the use of
pointer variables, or through assignment by sharing

Programming Languages, Third Edition 79

Aliases (cont’d.)

Programming Languages, Third Edition 80

Aliases (cont’d.)

Programming Languages, Third Edition 81

Aliases (cont’d.)

Programming Languages, Third Edition 82

Aliases (cont’d.)

Programming Languages, Third Edition 83

• Aliases can potentially cause harmful side effects
• Side effect: any change in a variable’s value that

persists beyond the execution of the statement

• Not all side effects are harmful; an assignment
statement is intended to cause one

• Side effects that change variables whose names
do not directly appear in the statement are
potentially harmful
– Cannot be determined from the written code

• Aliasing due to pointer assignment is difficult to
control

Aliases (cont’d.)

• Assignment by sharing implicitly uses pointers

• Java has a mechanism for explicitly cloning an
object so that aliases are not created by
assignment

Programming Languages, Third Edition 84

Dangling References

• Dangling reference: a location that has been
deallocated from the environment but can still be
accessed by a program
– Occurs when a pointer points to a deallocated object

Programming Languages, Third Edition 85

Dangling References (cont’d.)

• Can also result from automatic deallocation of local
variables on exit from a block, with the C address
of operator

Programming Languages, Third Edition 86

Dangling References (cont’d.)

Programming Languages, Third Edition 87

• Java does not allow dangling references at all
because:
– There are no explicit pointers

– There is no address of operator
– There are no memory deallocation operators such as
free or delete

Garbage

• Garbage: memory that has been allocated in the
environment but is now inaccessible to the program

• Can occur in C by failing to call free before
reassigning a pointer variable

• A program that is internally correct but produces
garbage may run out of memory

Programming Languages, Third Edition 88

Garbage (cont’d.)

• A program with dangling references may:
– Produce incorrect results
– Corrupt other programs in memory
– Cause runtime errors that are hard to locate

• For this reason, it is useful to remove the need to
deallocate memory explicitly from the programmer

• Garbage collection: process of automatically
reclaiming garbage

• Language design is a key factor in the kind of runtime
environment necessary for correct execution of
programs

Programming Languages, Third Edition 89

Case Study: Initial Static Semantic
Analysis of TinyAda

• Chapter 6 introduced a syntax analyzer for TinyAda
– A simple parsing shell that pulled tokens from a

scanner until a syntax error was detected

• Here, we extend the parsing shell to perform some
semantic analysis
– Focus will be on tools for scope analysis and for

restricting the use of identifiers

• Must focus on two attributes of an identifier:
– Name

– Role it plays (constant, variable, type, or procedure)

Programming Languages, Third Edition 90

Scope Analysis

• TinyAda is lexically scoped, with these scope rules:
– All identifiers must be declared before use

– At most, one declaration for a given identifier in a
single block

– A new block starts with formal parameter
specifications of a procedure and extends to the
reserved word end

– Visibility of a declared identifier extends into nested
blocks unless it is redeclared in that block

– Identifiers are not case sensitive

Programming Languages, Third Edition 91

Scope Analysis (cont’d.)

• TinyAda has five built-in (predefined) identifiers:
– Data type names integer, char, boolean
– Boolean constants true and false

• These identifiers must be visible in a top-level
scope before a source program is parsed
– Static nesting level of this scope is 0

• Scope at nesting level 1 contains the procedure’s
formal parameters (if any) and any identifiers
introduced in the procedures basic declarations

• Names in nested procedures follow this pattern

Programming Languages, Third Edition 92

Scope Analysis (cont’d.)

• TinyAda’s parser uses a stack of symbol tables
– When each new scope is entered, a new table is

pushed onto the stack

– When a scope is exited, the table at the top of the
stack is popped off the stack

• Two classes are defined to support scope analysis:
– SymbolEntry: holds information about an identifier
– SymbolTable: manages the stack of scopes

Programming Languages, Third Edition 93

Scope Analysis (cont’d.)

Programming Languages, Third Edition 94

Identifier Role Analysis

• An identifier names an entity, such as a variable, a
constant, or an entire data type
– This attribute of an identifier is called its role

• An identifier’s role imposes certain restrictions on
its use

• Examples:
– Only a variable or parameter identifier can appear on

the left side of an assignment statement

– Only a type identifier can appear as the element type
of an array

Programming Languages, Third Edition 95

Identifier Role Analysis (cont’d.)

• Identifier acquires its role in its declaration
– Role is saved in the symbol table for future use

• Role analysis uses the symbol table to share
contextual information about identifiers among
otherwise independent parsing methods

Programming Languages, Third Edition 96

	Programming Languages Third Edition
	Objectives
	Objectives (cont’d.)
	Introduction
	Introduction (cont’d.)
	Slide 6
	Slide 7
	Attributes, Binding, and Semantic Functions
	Attributes, Binding, and Semantic Functions (cont’d.)
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Declarations, Blocks, and Scope
	Declarations, Blocks, and Scope (cont’d.)
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	The Symbol Table
	Slide 27
	The Symbol Table (cont’d.)
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Name Resolution and Overloading
	Name Resolution and Overloading (cont’d.)
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Allocation, Lifetimes, and the Environment
	Allocation, Lifetimes, and the Environment (cont’d.)
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Variables and Constants
	Variables
	Variables (cont’d.)
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Constants
	Constants (cont’d.)
	Slide 77
	Aliases, Dangling References, and Garbage
	Aliases
	Aliases (cont’d.)
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Dangling References
	Dangling References (cont’d.)
	Slide 87
	Garbage
	Garbage (cont’d.)
	Case Study: Initial Static Semantic Analysis of TinyAda
	Scope Analysis
	Scope Analysis (cont’d.)
	Slide 93
	Slide 94
	Identifier Role Analysis
	Identifier Role Analysis (cont’d.)

