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Objectives

• Understand the lexical structure of programming 
languages

• Understand context-free grammars and BNFs

• Become familiar with parse trees and abstract 
syntax trees

• Understand ambiguity, associativity, and 
precedence

• Learn to use EBNFs and syntax diagrams
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Objectives (cont’d.)

• Become familiar with parsing techniques and tools

• Understand lexics vs. syntax vs. semantics

• Build a syntax analyzer for TinyAda
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Introduction

• Syntax is the structure of a language

• 1950: Noam Chomsky developed the idea of 
context-free grammars

• John Backus and Peter Naur developed a 
notational system for describing these grammars, 
now called Backus-Naur forms, or BNFs 
– First used to describe the syntax of Algol60

• Every modern computer scientist needs to know 
how to read, interpret, and apply BNF descriptions 
of language syntax
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Introduction (cont’d.)

• Three variations of BNF:
– Original BNF

– Extended BNF (EBNF)

– Syntax diagrams
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Lexical Structure 
of Programming Languages

• Lexical structure: the structure of the tokens, or 
words, of a language
– Related to, but different than, the syntactic structure

• Scanning phase: the phase in which a translator 
collects sequences of characters from the input 
program and forms them into tokens

• Parsing phase: the phase in which the translator 
processes the tokens, determining the program’s 
syntactic structure
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Lexical Structure 
of Programming Languages (cont’d.)

• Tokens generally fall into several categories:
– Reserved words (or keywords)
– Literals or constants
– Special symbols, such as “;”m “<=“, or “+”
– Identifiers

• Predefined identifiers: identifiers that have been 
given an initial meaning for all programs in the 
language but are capable of redirection

• Principle of longest substring: process of collecting 
the longest possible string of nonblank characters
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Lexical Structure 
of Programming Languages (cont’d.)

• Token delimiters (or white space): formatting that 
affects the way tokens are recognized

• Indentation can be used to determine structure

• Free-format language: one in which format has no 
effect on program structure other than satisfying 
the principle of longest substring

• Fixed format language: one in which all tokens 
must occur in prespecified locations on the page

• Tokens can be  formally described by regular 
expressions
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Lexical Structure 
of Programming Languages (cont’d.)

• Three basic patterns of characters in regular 
expressions:
– Concatenation: done by sequencing the items

– Repetition: indicated by an asterisk after the item to 
be repeated

– Choice, or selection: indicated by a vertical bar 
between items to be selected

• [ ] with a hyphen indicate a range of characters

• ? indicates an optional item

• Period indicates any character
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Lexical Structure 
of Programming Languages (cont’d.)

• Examples:
– Integer constants of one or more digits

– Unsigned floating-point literals

• Most modern text editors use regular expressions 
in text searches

• Utilities such as lex can automatically turn a 
regular expression description of a language’s 
tokens into a scanner
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Lexical Structure 
of Programming Languages (cont’d.)

• Simple scanner input:

• Produces this output:
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Context-Free Grammars and BNFs

• Example: simple grammar

 separates left and right sides

• | indicates a choice
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Context-Free Grammars and BNFs 
(cont’d.)

• Metasymbols: symbols used to describe the 
grammar rules

• Some notations use angle brackets and pure text 
metasymbols
– Example:

• Derivation: the process of building in a language 
by beginning with the start symbol and replacing 
left-hand sides by choices of right-hand sides in the 
rules 
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Context-Free Grammars and BNFs 
(cont’d.)
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Context-Free Grammars and BNFs 
(cont’d.)

• Some problems with this simple grammar:
– A legal sentence does not necessarily make sense

– Positional properties (such as capitalization at the 
beginning of the sentence) are not represented

– Grammar does not specify whether spaces are 
needed

– Grammar does not specify input format or 
termination symbol
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Context-Free Grammars and BNFs 
(cont’d.)

• Context-free grammar: consists of a series of 
grammar rules

• Each rule has a single phrase structure name on 
the left, then a  metasymbol, followed by a 
sequence of symbols or other phrase structure 
names on the right

• Nonterminals: names for phrase structures, since 
they are broken down into further phrase structures

• Terminals: words or token symbols that cannot be 
broken down further
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Context-Free Grammars and BNFs 
(cont’d.)

• Productions: another name for grammar rules
– Typically there are as many productions in a context-

free grammar as there are nonterminals

• Backus-Naur form: uses only the metasymbols 
“” and “|”

• Start symbol: a nonterminal representing the 
entire top-level phrase being defined

• Language of the grammar: defined by a context-
free grammar
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Context-Free Grammars and BNFs 
(cont’d.)

• A grammar is context-free when nonterminals 
appear singly on the left sides of productions
– There is no context under which only certain 

replacements can occur

• Anything not expressible using context-free 
grammars is a semantic, not a syntactic, issue

• BNF form of language syntax makes it easier to 
write translators

• Parsing stage can be automated
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Context-Free Grammars and BNFs 
(cont’d.)

• Rules can express recursion
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Context-Free Grammars and BNFs 
(cont’d.)
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Context-Free Grammars and BNFs 
(cont’d.)
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Parse Trees 
and Abstract Syntax Trees

• Syntax establishes structure, not meaning
– But meaning is related to syntax

• Syntax-directed semantics: process of 
associating the semantics of a construct to its 
syntactic structure
– Must construct the syntax so that it reflects the 

semantics to be attached later

• Parse tree: graphical depiction of the replacement 
process in a derivation

Programming Languages, Third Edition 22



Parse Trees 
and Abstract Syntax Trees (cont’d.)
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Parse Trees 
and Abstract Syntax Trees (cont’d.)
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Parse Trees 
and Abstract Syntax Trees (cont’d.)

• Nodes that have at least one child are labeled with 
nonterminals

• Leaves (nodes with no children) are labeled with 
terminals

• The structure of a parse tree is completely 
specified by the grammar rules of the language and 
a derivation of the sequence of terminals

• All terminals and nonterminals in a derivation are 
included in the parse tree
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Parse Trees 
and Abstract Syntax Trees (cont’d.)

• Not all terminals and nonterminals are needed to 
determine completely the syntactic structure of an 
expression or sentence
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Parse Trees 
and Abstract Syntax Trees (cont’d.)

• Abstract syntax trees (or syntax trees):  trees 
that abstract the essential structure of the parse 
tree
– Do away with terminals that are redundant

• Example: 
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Parse Trees 
and Abstract Syntax Trees (cont’d.)

• Can write out rules for abstract syntax similar to 
BNF rules, but they are of less interest to a 
programmer

• Abstract syntax is important to a language designer 
and translator writer

• Concrete syntax: ordinary syntax 
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Ambiguity, Associativity, 
and Precedence

• Two different derivations can lead to the same 
parse tree or to different parse trees

• Ambiguous grammar: one for which two distinct 
parse or syntax trees are possible

• Example: derivation for 234 given earlier
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Ambiguity, Associativity, 
and Precedence (cont’d.)
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Ambiguity, Associativity, 
and Precedence (cont’d.)
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Ambiguity, Associativity, 
and Precedence (cont’d.)

• Certain special derivations that are constructed in a 
special order can only correspond to unique parse 
trees

• Leftmost derivation: the leftmost remaining 
nonterminal is singled out for replacement at each 
step
– Each parse tree has a unique leftmost derivation

• Ambiguity of a grammar can be tested by 
searching for two different leftmost derivations
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Ambiguity, Associativity, 
and Precedence (cont’d.)
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Ambiguity, Associativity, 
and Precedence (cont’d.)

• Ambiguous grammars present difficulties
– Must either revise them to remove ambiguity or state 

a disambiguating rule

• Usual way to revise the grammar is to write a new 
grammar rule called a term that establishes a 
precedence cascade

• Can replace 
– With either     or 

• First rule is left-recursive; second rule is right-
recursive
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Ambiguity, Associativity, 
and Precedence (cont’d.)
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Ambiguity, Associativity, 
and Precedence (cont’d.)
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Ambiguity, Associativity, 
and Precedence (cont’d.)
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EBNFs and Syntax Diagrams

• Extended Backus-Naur form (or EBNF): 
introduces new notation to handle common issues

• Use curly braces to indicate 0 or more repetitions
– Assumes that any operator involved in a curly 

bracket repetition is left-associative

– Example: 

• Use square brackets to indicate optional parts
– Example:
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EBNFs and Syntax Diagrams (cont’d.)
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EBNFs and Syntax Diagrams (cont’d.)

• Syntax diagram: indicates the sequence of 
terminals and nonterminals encountered in the 
right-hand side of the rule
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EBNFs and Syntax Diagrams (cont’d.)

• Use circles or ovals for terminals, and squares or 
rectangles for nonterminals
– Connect them with lines and arrows indicating 

appropriate sequencing

• Can condense several rules into one diagram

• Use loops to indicate repetition
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EBNFs and Syntax Diagrams (cont’d.)
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Parsing Techniques and Tools 

• A grammar written in BNF, EBNF, or syntax 
diagrams describes the strings of tokens that are 
syntactically legal
– It also describes how a parser must act to parse 

correctly

• Recognizer: accepts or rejects strings based on 
whether they are legal strings in the language

• Bottom-up parser: constructs derivations and 
parse trees from the leaves to the roots
– Matches an input with right side of a rule and 

reduces it to the nonterminal on the left
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Parsing Techniques and Tools (cont’d.)

• Bottom-up parsers are also called shift-reduce 
parsers
– They shift tokens onto a stack prior to reducing 

strings to nonterminals

• Top-down parser: expands nonterminals to match 
incoming tokens and directly construct a derivation

• Parser generator: a program that automates top-
down or bottom-up parsing

• Bottom-up parsing is the preferred method for 
parser generators (also called compiler compilers)
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Parsing Techniques and Tools (cont’d.)

• Recursive-descent parsing: turns nonterminals 
into a group of mutually recursive procedures 
based on the right-hand sides of the BNFs
– Tokens are matched directly with input tokens as 

constructed by a scanner

– Nonterminals are interpreted as calls to the 
procedures corresponding to the nonterminals
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Parsing Techniques and Tools (cont’d.)
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Parsing Techniques and Tools (cont’d.)

• Left-recursive rules may present problems
– Example: 

– May cause an infinite recursive loop

– No way to decide which of the two choices to take 
until a + is seen

• The EBNF description expresses the recursion as 
a loop:

• Thus, curly brackets in EBNF represent left 
recursion removal by the use of a loop
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Parsing Techniques and Tools (cont’d.)

• Code for a right-recursive rule such as:

• This corresponds to the use of square brackets in 
EBNF: 

– This process is called left-factoring

• In both left-recursive and left-factoring situations, 
EBNF rules or syntax diagrams correspond 
naturally to the code of a recursive-descent parser
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Parsing Techniques and Tools (cont’d.)

• Single-symbol lookahead: using a single token to 
direct a parse

• Predictive parser: a parser that commits itself to a 
 particular action based only on the lookahead

• Grammar must satisfy certain conditions to make 
this decision-making process work
– Parser must be able to distinguish between choices 

in a rule

– For an optional part, no token beginning the optional 
part can also come after the optional part
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Parsing Techniques and Tools (cont’d.)

• YACC: a widely used parser generator
– Freeware version is called Bison

– Generates a C program that uses a bottom-up 
algorithm to parse the grammar

• YACC generates a procedure yyparse from the 
grammar, which must be called from a main 
procedure

• YACC assumes that tokens are recognized by a 
scanner procedure called yylex, which must be 
provided
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Lexics vs. Syntax vs. Semantics

• Specific details of formatting, such as white-space 
conventions, are left to the scanner
– Need to be stated as lexical conventions separate 

from the grammar

• Also desirable to allow a scanner to recognize 
structures such as literals, constants, and identifiers
– Faster and simpler and reduces the size of the parser

• Must rewrite the grammar to express the use of a 
token rather than a nonterminal representation
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Lexics vs. Syntax vs. Semantics 
(cont’d.)

• Example: a number should be a token

– Uppercase indicates it is a token whose structure is 
determined by the scanner

• Lexics: the lexical structure of a programming 
language
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Lexics vs. Syntax vs. Semantics 
(cont’d.)

• Some rules are context-sensitive and cannot be 
written as context-free rules

• Examples:
– Declaration before use for variables

– No redeclaration of identifiers within a procedure

• These are semantic properties of a language

• Another conflict occurs between predefined 
identifiers and reserved words
– Reserved words cannot be used as identifiers

– Predefined identifiers can be redefined in a program
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Lexics vs. Syntax vs. Semantics 
(cont’d.)

• Syntax and semantics can become interdependent 
when semantic information is required to 
distinguish ambiguous parsing situations
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Case Study: Building a Syntax 
Analyzer for TinyAda

• TinyAda: a small language that illustrates the 
syntactic features of many high-level languages

• TinyAda includes several kinds of declarations, 
statements, and expressions

• Rules for declarations, statements, and 
expressions are indirectly recursive, allowed for 
nested declarations, statements, and expressions

• Parsing shell: applies the grammar rules to check 
whether tokens are of the correct types
– Later, we will add mechanisms for semantic analysis
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Case Study: Building a Syntax 
Analyzer for TinyAda (cont’d.)
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