
Programming Languages
Third Edition

Chapter 6
Syntax

Objectives

• Understand the lexical structure of programming
languages

• Understand context-free grammars and BNFs

• Become familiar with parse trees and abstract
syntax trees

• Understand ambiguity, associativity, and
precedence

• Learn to use EBNFs and syntax diagrams

Programming Languages, Third Edition 2

Objectives (cont’d.)

• Become familiar with parsing techniques and tools

• Understand lexics vs. syntax vs. semantics

• Build a syntax analyzer for TinyAda

Programming Languages, Third Edition 3

Introduction

• Syntax is the structure of a language

• 1950: Noam Chomsky developed the idea of
context-free grammars

• John Backus and Peter Naur developed a
notational system for describing these grammars,
now called Backus-Naur forms, or BNFs
– First used to describe the syntax of Algol60

• Every modern computer scientist needs to know
how to read, interpret, and apply BNF descriptions
of language syntax

Programming Languages, Third Edition 4

Introduction (cont’d.)

• Three variations of BNF:
– Original BNF

– Extended BNF (EBNF)

– Syntax diagrams

Programming Languages, Third Edition 5

Lexical Structure
of Programming Languages

• Lexical structure: the structure of the tokens, or
words, of a language
– Related to, but different than, the syntactic structure

• Scanning phase: the phase in which a translator
collects sequences of characters from the input
program and forms them into tokens

• Parsing phase: the phase in which the translator
processes the tokens, determining the program’s
syntactic structure

Programming Languages, Third Edition 6

Lexical Structure
of Programming Languages (cont’d.)

• Tokens generally fall into several categories:
– Reserved words (or keywords)
– Literals or constants
– Special symbols, such as “;”m “<=“, or “+”
– Identifiers

• Predefined identifiers: identifiers that have been
given an initial meaning for all programs in the
language but are capable of redirection

• Principle of longest substring: process of collecting
the longest possible string of nonblank characters

Programming Languages, Third Edition 7

Lexical Structure
of Programming Languages (cont’d.)

• Token delimiters (or white space): formatting that
affects the way tokens are recognized

• Indentation can be used to determine structure

• Free-format language: one in which format has no
effect on program structure other than satisfying
the principle of longest substring

• Fixed format language: one in which all tokens
must occur in prespecified locations on the page

• Tokens can be formally described by regular
expressions

Programming Languages, Third Edition 8

Lexical Structure
of Programming Languages (cont’d.)

• Three basic patterns of characters in regular
expressions:
– Concatenation: done by sequencing the items

– Repetition: indicated by an asterisk after the item to
be repeated

– Choice, or selection: indicated by a vertical bar
between items to be selected

• [] with a hyphen indicate a range of characters

• ? indicates an optional item

• Period indicates any character

Programming Languages, Third Edition 9

Lexical Structure
of Programming Languages (cont’d.)

• Examples:
– Integer constants of one or more digits

– Unsigned floating-point literals

• Most modern text editors use regular expressions
in text searches

• Utilities such as lex can automatically turn a
regular expression description of a language’s
tokens into a scanner

Programming Languages, Third Edition 10

Lexical Structure
of Programming Languages (cont’d.)

• Simple scanner input:

• Produces this output:

Programming Languages, Third Edition 11

Context-Free Grammars and BNFs

• Example: simple grammar

 separates left and right sides

• | indicates a choice

Programming Languages, Third Edition 12

Context-Free Grammars and BNFs
(cont’d.)

• Metasymbols: symbols used to describe the
grammar rules

• Some notations use angle brackets and pure text
metasymbols
– Example:

• Derivation: the process of building in a language
by beginning with the start symbol and replacing
left-hand sides by choices of right-hand sides in the
rules

Programming Languages, Third Edition 13

Context-Free Grammars and BNFs
(cont’d.)

Programming Languages, Third Edition 14

Context-Free Grammars and BNFs
(cont’d.)

• Some problems with this simple grammar:
– A legal sentence does not necessarily make sense

– Positional properties (such as capitalization at the
beginning of the sentence) are not represented

– Grammar does not specify whether spaces are
needed

– Grammar does not specify input format or
termination symbol

Programming Languages, Third Edition 15

Context-Free Grammars and BNFs
(cont’d.)

• Context-free grammar: consists of a series of
grammar rules

• Each rule has a single phrase structure name on
the left, then a  metasymbol, followed by a
sequence of symbols or other phrase structure
names on the right

• Nonterminals: names for phrase structures, since
they are broken down into further phrase structures

• Terminals: words or token symbols that cannot be
broken down further

Programming Languages, Third Edition 16

Context-Free Grammars and BNFs
(cont’d.)

• Productions: another name for grammar rules
– Typically there are as many productions in a context-

free grammar as there are nonterminals

• Backus-Naur form: uses only the metasymbols
“” and “|”

• Start symbol: a nonterminal representing the
entire top-level phrase being defined

• Language of the grammar: defined by a context-
free grammar

Programming Languages, Third Edition 17

Context-Free Grammars and BNFs
(cont’d.)

• A grammar is context-free when nonterminals
appear singly on the left sides of productions
– There is no context under which only certain

replacements can occur

• Anything not expressible using context-free
grammars is a semantic, not a syntactic, issue

• BNF form of language syntax makes it easier to
write translators

• Parsing stage can be automated

Programming Languages, Third Edition 18

Context-Free Grammars and BNFs
(cont’d.)

• Rules can express recursion

Programming Languages, Third Edition 19

Context-Free Grammars and BNFs
(cont’d.)

Programming Languages, Third Edition 20

Context-Free Grammars and BNFs
(cont’d.)

Programming Languages, Third Edition 21

Parse Trees
and Abstract Syntax Trees

• Syntax establishes structure, not meaning
– But meaning is related to syntax

• Syntax-directed semantics: process of
associating the semantics of a construct to its
syntactic structure
– Must construct the syntax so that it reflects the

semantics to be attached later

• Parse tree: graphical depiction of the replacement
process in a derivation

Programming Languages, Third Edition 22

Parse Trees
and Abstract Syntax Trees (cont’d.)

Programming Languages, Third Edition 23

Parse Trees
and Abstract Syntax Trees (cont’d.)

Programming Languages, Third Edition 24

Parse Trees
and Abstract Syntax Trees (cont’d.)

• Nodes that have at least one child are labeled with
nonterminals

• Leaves (nodes with no children) are labeled with
terminals

• The structure of a parse tree is completely
specified by the grammar rules of the language and
a derivation of the sequence of terminals

• All terminals and nonterminals in a derivation are
included in the parse tree

Programming Languages, Third Edition 25

Parse Trees
and Abstract Syntax Trees (cont’d.)

• Not all terminals and nonterminals are needed to
determine completely the syntactic structure of an
expression or sentence

Programming Languages, Third Edition 26

Programming Languages, Third Edition 27

Parse Trees
and Abstract Syntax Trees (cont’d.)

• Abstract syntax trees (or syntax trees): trees
that abstract the essential structure of the parse
tree
– Do away with terminals that are redundant

• Example:

Programming Languages, Third Edition 28

Parse Trees
and Abstract Syntax Trees (cont’d.)

• Can write out rules for abstract syntax similar to
BNF rules, but they are of less interest to a
programmer

• Abstract syntax is important to a language designer
and translator writer

• Concrete syntax: ordinary syntax

Programming Languages, Third Edition 29

Ambiguity, Associativity,
and Precedence

• Two different derivations can lead to the same
parse tree or to different parse trees

• Ambiguous grammar: one for which two distinct
parse or syntax trees are possible

• Example: derivation for 234 given earlier

Programming Languages, Third Edition 30

Ambiguity, Associativity,
and Precedence (cont’d.)

Programming Languages, Third Edition 31

Ambiguity, Associativity,
and Precedence (cont’d.)

Programming Languages, Third Edition 32

Ambiguity, Associativity,
and Precedence (cont’d.)

• Certain special derivations that are constructed in a
special order can only correspond to unique parse
trees

• Leftmost derivation: the leftmost remaining
nonterminal is singled out for replacement at each
step
– Each parse tree has a unique leftmost derivation

• Ambiguity of a grammar can be tested by
searching for two different leftmost derivations

Programming Languages, Third Edition 33

Ambiguity, Associativity,
and Precedence (cont’d.)

Programming Languages, Third Edition 34

Ambiguity, Associativity,
and Precedence (cont’d.)

• Ambiguous grammars present difficulties
– Must either revise them to remove ambiguity or state

a disambiguating rule

• Usual way to revise the grammar is to write a new
grammar rule called a term that establishes a
precedence cascade

• Can replace
– With either or

• First rule is left-recursive; second rule is right-
recursive

Programming Languages, Third Edition 35

Ambiguity, Associativity,
and Precedence (cont’d.)

Programming Languages, Third Edition 36

Ambiguity, Associativity,
and Precedence (cont’d.)

Programming Languages, Third Edition 37

Ambiguity, Associativity,
and Precedence (cont’d.)

Programming Languages, Third Edition 38

EBNFs and Syntax Diagrams

• Extended Backus-Naur form (or EBNF):
introduces new notation to handle common issues

• Use curly braces to indicate 0 or more repetitions
– Assumes that any operator involved in a curly

bracket repetition is left-associative

– Example:

• Use square brackets to indicate optional parts
– Example:

Programming Languages, Third Edition 39

EBNFs and Syntax Diagrams (cont’d.)

Programming Languages, Third Edition 40

EBNFs and Syntax Diagrams (cont’d.)

• Syntax diagram: indicates the sequence of
terminals and nonterminals encountered in the
right-hand side of the rule

Programming Languages, Third Edition 41

EBNFs and Syntax Diagrams (cont’d.)

• Use circles or ovals for terminals, and squares or
rectangles for nonterminals
– Connect them with lines and arrows indicating

appropriate sequencing

• Can condense several rules into one diagram

• Use loops to indicate repetition

Programming Languages, Third Edition 42

Programming Languages, Third Edition 43

EBNFs and Syntax Diagrams (cont’d.)

Programming Languages, Third Edition 44

Parsing Techniques and Tools

• A grammar written in BNF, EBNF, or syntax
diagrams describes the strings of tokens that are
syntactically legal
– It also describes how a parser must act to parse

correctly

• Recognizer: accepts or rejects strings based on
whether they are legal strings in the language

• Bottom-up parser: constructs derivations and
parse trees from the leaves to the roots
– Matches an input with right side of a rule and

reduces it to the nonterminal on the left
Programming Languages, Third Edition 45

Parsing Techniques and Tools (cont’d.)

• Bottom-up parsers are also called shift-reduce
parsers
– They shift tokens onto a stack prior to reducing

strings to nonterminals

• Top-down parser: expands nonterminals to match
incoming tokens and directly construct a derivation

• Parser generator: a program that automates top-
down or bottom-up parsing

• Bottom-up parsing is the preferred method for
parser generators (also called compiler compilers)

Programming Languages, Third Edition 46

Parsing Techniques and Tools (cont’d.)

• Recursive-descent parsing: turns nonterminals
into a group of mutually recursive procedures
based on the right-hand sides of the BNFs
– Tokens are matched directly with input tokens as

constructed by a scanner

– Nonterminals are interpreted as calls to the
procedures corresponding to the nonterminals

Programming Languages, Third Edition 47

Parsing Techniques and Tools (cont’d.)

Programming Languages, Third Edition 48

Parsing Techniques and Tools (cont’d.)

• Left-recursive rules may present problems
– Example:

– May cause an infinite recursive loop

– No way to decide which of the two choices to take
until a + is seen

• The EBNF description expresses the recursion as
a loop:

• Thus, curly brackets in EBNF represent left
recursion removal by the use of a loop

Programming Languages, Third Edition 49

Parsing Techniques and Tools (cont’d.)

• Code for a right-recursive rule such as:

• This corresponds to the use of square brackets in
EBNF:

– This process is called left-factoring

• In both left-recursive and left-factoring situations,
EBNF rules or syntax diagrams correspond
naturally to the code of a recursive-descent parser

Programming Languages, Third Edition 50

Parsing Techniques and Tools (cont’d.)

• Single-symbol lookahead: using a single token to
direct a parse

• Predictive parser: a parser that commits itself to a
 particular action based only on the lookahead

• Grammar must satisfy certain conditions to make
this decision-making process work
– Parser must be able to distinguish between choices

in a rule

– For an optional part, no token beginning the optional
part can also come after the optional part

Programming Languages, Third Edition 51

Parsing Techniques and Tools (cont’d.)

• YACC: a widely used parser generator
– Freeware version is called Bison

– Generates a C program that uses a bottom-up
algorithm to parse the grammar

• YACC generates a procedure yyparse from the
grammar, which must be called from a main
procedure

• YACC assumes that tokens are recognized by a
scanner procedure called yylex, which must be
provided

Programming Languages, Third Edition 52

Lexics vs. Syntax vs. Semantics

• Specific details of formatting, such as white-space
conventions, are left to the scanner
– Need to be stated as lexical conventions separate

from the grammar

• Also desirable to allow a scanner to recognize
structures such as literals, constants, and identifiers
– Faster and simpler and reduces the size of the parser

• Must rewrite the grammar to express the use of a
token rather than a nonterminal representation

Programming Languages, Third Edition 53

Lexics vs. Syntax vs. Semantics
(cont’d.)

• Example: a number should be a token

– Uppercase indicates it is a token whose structure is
determined by the scanner

• Lexics: the lexical structure of a programming
language

Programming Languages, Third Edition 54

Lexics vs. Syntax vs. Semantics
(cont’d.)

• Some rules are context-sensitive and cannot be
written as context-free rules

• Examples:
– Declaration before use for variables

– No redeclaration of identifiers within a procedure

• These are semantic properties of a language

• Another conflict occurs between predefined
identifiers and reserved words
– Reserved words cannot be used as identifiers

– Predefined identifiers can be redefined in a program

Programming Languages, Third Edition 55

Lexics vs. Syntax vs. Semantics
(cont’d.)

• Syntax and semantics can become interdependent
when semantic information is required to
distinguish ambiguous parsing situations

Programming Languages, Third Edition 56

Case Study: Building a Syntax
Analyzer for TinyAda

• TinyAda: a small language that illustrates the
syntactic features of many high-level languages

• TinyAda includes several kinds of declarations,
statements, and expressions

• Rules for declarations, statements, and
expressions are indirectly recursive, allowed for
nested declarations, statements, and expressions

• Parsing shell: applies the grammar rules to check
whether tokens are of the correct types
– Later, we will add mechanisms for semantic analysis

Programming Languages, Third Edition 57

Case Study: Building a Syntax
Analyzer for TinyAda (cont’d.)

Programming Languages, Third Edition 58

	Programming Languages Third Edition
	Objectives
	Objectives (cont’d.)
	Introduction
	Introduction (cont’d.)
	Lexical Structure of Programming Languages
	Lexical Structure of Programming Languages (cont’d.)
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Context-Free Grammars and BNFs
	Context-Free Grammars and BNFs (cont’d.)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Parse Trees and Abstract Syntax Trees
	Parse Trees and Abstract Syntax Trees (cont’d.)
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Ambiguity, Associativity, and Precedence
	Ambiguity, Associativity, and Precedence (cont’d.)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	EBNFs and Syntax Diagrams
	EBNFs and Syntax Diagrams (cont’d.)
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Parsing Techniques and Tools
	Parsing Techniques and Tools (cont’d.)
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Lexics vs. Syntax vs. Semantics
	Lexics vs. Syntax vs. Semantics (cont’d.)
	Slide 55
	Slide 56
	Case Study: Building a Syntax Analyzer for TinyAda
	Case Study: Building a Syntax Analyzer for TinyAda (cont’d.)

