
Programming Languages
Third Edition

Chapter 5
Object-Oriented Programming

Objectives

• Understand the concepts of software reuse and
independence

• Become familiar with the Smalltalk language

• Become familiar with the Java language

• Become familiar with the C++ language

• Understand design issues in object-oriented
languages

• Understand implementation issues in object-
oriented languages

Programming Languages, Third Edition 2

Introduction

• Object-oriented programming languages began in
the 1960s with Simula
– Goals were to incorporate the notion of an object,

with properties that control its ability to react to
events in predefined ways

– Factor in the development of abstract data type
mechanisms

– Crucial to the development of the object paradigm
itself

Programming Languages, Third Edition 3

Introduction (cont’d.)

• By the mid-1980s, interest in object-oriented
programming exploded
– Almost every language today has some form of

structured constructs

Programming Languages, Third Edition 4

Software Reuse and Independence

• Object-oriented programming languages satisfy
three important needs in software design:
– Need to reuse software components as much as

possible
– Need to modify program behavior with minimal

changes to existing code
– Need to maintain the independence of different

components

• Abstract data type mechanisms can increase the
independence of software components by
separating interfaces from implementations

Programming Languages, Third Edition 5

Software Reuse and Independence
(cont’d.)

• Four basic ways a software component can be
modified for reuse:
– Extension of the data or operations

– Redefinition of one or more of the operations

– Abstraction

– Polymorphism

• Extension of data or operations:
– Example: adding new methods to a queue to allow

elements to be removed from the rear and added to
the front, to create a double-ended queue or deque

Programming Languages, Third Edition 6

Software Reuse and Independence
(cont’d.)

• Redefinition of one or more of the operations:
– Example: if a square is obtained from a rectangle,

area or perimeter functions may be redefined to
account for the reduced data needed

• Abstraction, or collection of similar operations from
two different components into a new component:
– Example: can combine a circle and rectangle into an

abstract object called a figure, to contain the
common features of both, such as position and
movement

Programming Languages, Third Edition 7

Software Reuse and Independence
(cont’d.)

• Polymorphism, or the extension of the type of data
that operations can apply to:
– Examples: overloading and parameterized types

• Application framework: a collection of related
software resources (usually in object-oriented form)
for developer use
– Examples: Microsoft Foundation Classes in C++

and Swing windowing toolkit in Java

Programming Languages, Third Edition 8

Software Reuse and Independence
(cont’d.)

• Object-oriented languages have another goal:
– Restricting access to internal details of software

components

• Mechanisms for restricting access to internal
details have several names:
– Encapsulation mechanisms

– Information-hiding mechanisms

Programming Languages, Third Edition 9

Smalltalk

• Smalltalk originated from the Dynabook Project at
Xerox Corp.’s Palo Alto Research Center in the early
1970s
– Dynabook was conceived as a prototype of today’s

laptop and tablet computers

• Smalltalk was influenced by Simula and Lisp

• ANSI standard was achieved in 1998

• Smalltalk has the most consistent approach to object-
oriented paradigm
– Everything is an object, including constants and the

classes themselves

Programming Languages, Third Edition 10

Smalltalk (cont’d.)

• Can be said to be purely object-oriented

• Includes garbage collection and dynamic typing

• Includes a windowing system with menus and a
mouse, long before this became common for PCs

• Is an interactive and dynamically oriented language
– Classes and objects are created by interaction with

the system, using a set of browser windows

– Contains a large hierarchy of preexisting classes

Programming Languages, Third Edition 11

Basic Elements of Smalltalk: Classes,
Objects, Messages, and Control

• Every object in Smalltalk has properties and behaviors

• Message: a request for service

• Receiver: object that receives a message

• Method: how Smalltalk performs a service

• Sender: originator of the message
– May supply data in the form of parameters or arguments

• Mutators: messages that result in a change of state in
the receiver object

Programming Languages, Third Edition 12

Basic Elements of Smalltalk (cont’d.)

• Message passing: process of sending and
receiving messages

• Interface: the set of messages that an object
recognizes

• Selector: the message name

• Syntax: object receiving the message is written
first, followed by the message name and any
arguments

• Example: create a new set object:
Set new “Returns a new set object”

Programming Languages, Third Edition 13

Basic Elements of Smalltalk (cont’d.)

• Comments are enclosed in double quotation marks

• Show it option: causes Smalltalk to evaluate the
code you have entered

• size message: returns the number of elements in
a set

• Can send multiple messages
– Example: Set new size “Returns 0”
– Set class receives the new message and returns an

instance of Set, which receives the size message
and returns an integer

Programming Languages, Third Edition 14

Basic Elements of Smalltalk (cont’d.)

• Class message: a message sent to a class

• Instance message: a message sent to an instance
of a class

• In prior example, new is a class message, while
size is an instance message

• Unary message: one with no arguments

• Keyword messages: messages that expect
arguments; name ends in a colon
– Example:
Set new includes: ‘Hello’ “Returns false”

Programming Languages, Third Edition 15

Basic Elements of Smalltalk (cont’d.)

• If there is more than one argument, another
keyword must precede each argument
– Keyword at:put: expects two arguments

• Unary messages have a higher precedence than
keyword messages
– Parentheses can be used to override precedence

• Binary messages: allow you to write arithmetic
and comparison expressions with infix notation

Programming Languages, Third Edition 16

Basic Elements of Smalltalk (cont’d.)

• Examples:

• Can use variables to refer to objects

• Example:

Programming Languages, Third Edition 17

Basic Elements of Smalltalk (cont’d.)

• Temporary variables are declared between vertical
bars and are not capitalized

• Statements are separated by periods

• Smalltalk variables have no assigned data type
– Any variable can name any thing

• Assignment operator is :=
– Same as Pascal and Ada

Programming Languages, Third Edition 18

Basic Elements of Smalltalk (cont’d.)

• A sequence of messages to the same object are
separated by semicolons:

• Smalltalk’s variables use reference semantics,
not value semantics
– A variable refers to an object; it does not contain an

object

Programming Languages, Third Edition 19

Basic Elements of Smalltalk (cont’d.)

• Equality operator is =
• Object identity operator is ==

Programming Languages, Third Edition 20

Basic Elements of Smalltalk (cont’d.)

• to:do creates a loop

• Block of code is enclosed in brackets []
– Block is similar to a lambda form in Scheme

– Can contain arguments as block variables

• In Smalltalk, even control statements are
expressed in terms of message passing

Programming Languages, Third Edition 21

Basic Elements of Smalltalk (cont’d.)

• ifTrue:ifFalse messages express alternative
courses of action

• To print the contents of an array:

• Smalltalk includes many types of collection classes
and messages for performing iterations

Programming Languages, Third Edition 22

The Magnitude Hierarchy

• Built-in classes are organized in a tree-like
hierarchy
– Root class is called Object

– Classes descend from more general to more specific

• Inheritance: supports the reuse of structure and
behavior

• Polymorphism: the use of the same names for
messages requesting similar services from different
classes
– Another form of code reuse

Programming Languages, Third Edition 23

The Magnitude Hierarchy (cont’d.)

Programming Languages, Third Edition 24

The Magnitude Hierarchy (cont’d.)

• Concrete classes: classes whose objects are
normally created and manipulated by programs
– Examples: Time and Date

• Abstract classes: serve as repositories of
common properties and behaviors for classes
below them in the hierarchy
– Examples: Magnitude and Number

• Can use the Smalltalk class browser to see how
classes and their methods are defined

Programming Languages, Third Edition 25

The Magnitude Hierarchy (cont’d.)

Programming Languages, Third Edition 26

Programming Languages, Third Edition 27

The Magnitude Hierarchy (cont’d.)

• If we select the > operator in the message list:

• When a message is sent to an object, Smalltalk
binds the message name to the appropriate
method

• Dynamic or runtime binding: important key to
organizing code for reuse in object-oriented
systems

Programming Languages, Third Edition 28

The Magnitude Hierarchy (cont’d.)

• To use inheritance, build a new class from an
existing one

• Use Add Subclass option in the Classes menu to
define a new class via inheritance

Programming Languages, Third Edition 29

The Collection Hierarchy

• Collections are containers whose elements are
organized in a specific manner
– Organization types include linear, sorted, hierarchical,

graph, and unordered

• Built-in collections in imperative languages have
historically been limited to arrays and strings

• Smalltalk provides a large set of collection types,
organized in a class hierarchy

• The basic iterator is do:
– It is implemented by subclasses that vary with the type

of collection

Programming Languages, Third Edition 30

The Collection Hierarchy (cont’d.)

Programming Languages, Third Edition 31

The Collection Hierarchy (cont’d.)

Programming Languages, Third Edition 32

The Collection Hierarchy (cont’d.)

• Smalltalk iterators are highly polymorphic
– Can work with any types of collections

Programming Languages, Third Edition 33

The Collection Hierarchy (cont’d.)

• Smalltalk iterators rely on the methods do: and
add:
– Example: collect: iterator, polymorphic equivalent

of a map in functional languages

Programming Languages, Third Edition 34

The Collection Hierarchy (cont’d.)

Programming Languages, Third Edition 35

• Can convert any type of collection to many of the
built-in types of collections

The Collection Hierarchy (cont’d.)

• The inspect message opens an inspector window
on the receiver object, to browse the values of an
object’s instance variables

Programming Languages, Third Edition 36

Java

• Originally intended as a programming language for
systems embedded in appliances
– Emphasis was on portability and small footprint: “write

once, run anywhere”

• Programs compile to machine-independent byte code

• Provides conventional syntax, a large set of libraries,
and support for compile-time type checking not
available in Smalltalk

• Is purely object-oriented, with one exception:
– Scalar data types (primitive types) are not objects

Programming Languages, Third Edition 37

Basic Elements of Java: Classes,
Objects, and Methods

• A Java program instantiates classes and calls
methods to make objects do things

• Many classes are available in standard packages
– Programmer-defined classes can be placed in their

own packages for import

• Variable definition is similar to that in C:

• Method call is similar to Smalltalk:

Programming Languages, Third Edition 38

Basic Elements of Java (cont’d.)

• Example: program uses an imported class

Programming Languages, Third Edition 39

Basic Elements of Java (cont’d.)

• Class method: a static method
• Java Virtual Machine runs the program as
TextComplex.main(<array of strings>)
– Command-line arguments present at launch are placed

into the args array

• All classes inherit from the Object class by default

• Data encapsulation is enforced by declaring instance
variables with private access
– They are visible only within the class definition

• Accessor methods: allow programs to view but not
modify the internal state of a class

Programming Languages, Third Edition 40

Basic Elements of Java (cont’d.)

• Constructors: like methods, they specify initial
values for instance variables and perform other
initialization actions
– Default constructor: has no parameters
– Constructor chaining: when one constructor calls

another

• Use of private access to instance variables and
accessor methods allows us to change data
representation without disturbing other code

• Java uses reference semantics
– Classes are also called reference types

Programming Languages, Third Edition 41

Basic Elements of Java (cont’d.)

• == is the equality operator for primitive types, and
also means object identity for reference types
– Object class contains an equals method that can be

overridden in subclasses to implement a comparison of
two distinct objects

• Methods are invoked after instantiation using dot
notation:

• Can nest operations:

• Java does not allow operator overloading like C++

• Java does not allow multimethods, in which more
than one object can be the target of a method call

Programming Languages, Third Edition 42

The Java Collection Framework:
Interfaces, Inheritance, and

Polymorphism
• Framework: a collection of related classes
• java.util package: contains the Java collection

framework

• Interface: a set of operations on objects of a given
type
– Serves as the glue that connects components in

systems

– Contains only type name and a set of public method
headers; implementer must include the code to
perform the operations

Programming Languages, Third Edition 43

The Java Collection Framework
(cont’d.)

Programming Languages, Third Edition 44

The Java Collection Framework
(cont’d.)

Programming Languages, Third Edition 45

The Java Collection Framework
(cont’d.)

• <E> and E in the interface and method headers are
type parameters

• Java is statically typed: all data types must be
explicitly specified at compile time

• Generic collections: exploit parametric
polymorphism
– Raw collections in early versions of Java did not

• Examples:

Programming Languages, Third Edition 46

Programming Languages, Third Edition 47

The Java Collection Framework
(cont’d.)

• Some classes, such as LinkedList, implement
more than one interface
– A linked list can behave as a list or as a queue

• Same methods can be called on the two List
variables even though they have different
implementations and different element types

• Can only call Queue interface methods on the
queueOfFloats variable because it is type Queue

Programming Languages, Third Edition 48

The Java Collection Framework
(cont’d.)

• Example: develop a new type of stack class called
LinkedStack, as a subclass of the
AbstractCollection class
– Gives us a great deal of additional behavior for free

• Private inner class: a class defined within another
class
– No classes outside of the containing class need to

use it

• Java Iterable interface only contains the
iterator method

Programming Languages, Third Edition 49

The Java Collection Framework
(cont’d.)

Programming Languages, Third Edition 50

The Java Collection Framework
(cont’d.)

• Backing store: the collection object on which the
iterator object is operating

• Example:

Programming Languages, Third Edition 51

The Java Collection Framework
(cont’d.)

• Iterator type is parameterized for the same
element type as its backing store
– Is an interface that specifies three methods

• To visit each element in the backing store, use
hasNext and next methods

Programming Languages, Third Edition 52

The Java Collection Framework
(cont’d.)

• Java’s enhanced for loop is syntactic sugar for the
iterator-based while loop
– Only prerequisites to use this: the collection class

must implement the Iterable interface and
implement an iterator method

• Example:

Programming Languages, Third Edition 53

Dynamic Binding and Static Binding

• Static binding: process of determining at compile
time which implementation of a method to use by
determining the object’s actual class
– Actual code is not generated by the compiler unless

the method is declared as final or static

• When Java cannot determine the object’s method
at compile time, dynamic binding is used

• Java uses a jump table, which is more efficient
than a search of an inheritance tree to perform
dynamic binding

Programming Languages, Third Edition 54

Defining Map, Filter, and Reduce
in Java

• Map, filter, and reduce are higher-order functions in a
functional language
– Built-in collection methods in Smalltalk

• It is possible to define map, filter, and reduce
methods in Java using its basic iterator
– Are defined as static methods in a special class

named Iterators
• map and filter methods expect an input collection

and return an output collection as a value
– The actual object returned will be of the same

concrete class as the input collection
Programming Languages, Third Edition 55

Defining Map, Filter, and Reduce
in Java (cont’d.)

Programming Languages, Third Edition 56

• How do you represent the operation that is passed
as the remaining argument to these methods?

• In Java, we can define the operation as a special
type of object that recognizes a method that will be
called within the higher-order method’s
implementation

Defining Map, Filter, and Reduce
in Java (cont’d.)

• Three operations are needed:
– In map, a method of one argument that transforms a

collection element into another value (perhaps of a
different type)

– In filter, a method of one argument that returns a
Boolean value

– In reduce, a method of two arguments that returns
an object of the same type

• Example of next slide

Programming Languages, Third Edition 57

Programming Languages, Third Edition 58

Defining Map, Filter, and Reduce
in Java (cont’d.)

• These strategy interfaces tell the implementer to
expect an object that recognizes the appropriate
method
– Tell the user that he must only supply an object of a

class that implements one of these interfaces

Programming Languages, Third Edition 59

Defining Map, Filter, and Reduce
in Java (cont’d.)

• The Map Strategy interface and an example
instantiation:

Programming Languages, Third Edition 60

Defining Map, Filter, and Reduce
in Java (cont’d.)

• Comparing Java versions of map, filter, and reduce
to other languages:
– Functional versions are simple: they accept other

functions as arguments, but they are limited to list
collections

– Smalltalk versions are polymorphic over any
collections and no more complicated than that of a
lambda form

– Java syntax is slightly more complicated

• Real benefit of Java is the static type checking,
which makes the methods virtually foolproof

Programming Languages, Third Edition 61

C++

• C++ was originally developed by Bjarne Stroustrup
at AT&T Bell Labs

• It is a compromise language that contains most of
the C language as a subset, plus other features,
some object-oriented, some not

• Now includes multiple inheritance, templates,
operator overloading, and exceptions

Programming Languages, Third Edition 62

Basic Elements of C++: Classes, Data
Members, and Member Functions

• C++ contains class and object declarations similar
to Java

• Data members: instance variables

• Member functions: methods

• Derived classes: subclasses

• Base classes: superclasses

• Objects in C++ are not automatically pointers or
references
– Class data type in C++ is identical to the struct or

record data type of C

Programming Languages, Third Edition 63

Basic Elements of C++ (cont’d.)

• Three levels of protection for class members:
– Public members are accessible to client code and

derived classes
– Protected members are inaccessible to client code

but are accessible to derived classes
– Private members are inaccessible to client and to

derived classes

• Keywords private, public, and protected
establish blocks in class declarations, rather than
apply only to individual member declarations (like in
Java)

Programming Languages, Third Edition 64

Basic Elements of C++ (cont’d.)

Programming Languages, Third Edition 65

Basic Elements of C++ (cont’d.)

• Constructors: initialize objects as in Java
– Can be called automatically as part of a declaration,

as well as in a new expression

• Destructors: called when an object is deallocated
– Name is preceded the tilde symbol (~)

– Required because there is no built-in garbage
collection in C++

• Member functions can be implemented outside the
declaration by using the scope resolution
operator :: after a class name

Programming Languages, Third Edition 66

Basic Elements of C++ (cont’d.)

• Member functions with implementations in a class
are assumed to be inline
– Compiler may replace the function call with the

actual code for the function

• Instance variables are initialized after a colon in a
comma-separated list between the constructor
declaration and body, with initial values in
parentheses

Programming Languages, Third Edition 67

Basic Elements of C++ (cont’d.)

• Constructor is defined with default values for its
parameters

– This allows objects to be created with 0 to all
parameters declared and avoids the need to create
overloaded constructors

• Example:

Programming Languages, Third Edition 68

Using a Template Class to Implement
a Generic Collection

• Template classes: used to define generic
collections in C++

• Standard template library (STL) of C++ includes
several built-in collection classes

• Example: using a C++ LinkedStack class, created
with the same basic interface as the Java version
presented earlier in the chapter
– The new LinkedStack object is automatically

created and assigned to the stack variable upon the
use of that variable in the declaration

Programming Languages, Third Edition 69

Using a Template Class to Implement
a Generic Collection (cont’d.)

Programming Languages, Third Edition 70

Using a Template Class to Implement
a Generic Collection (cont’d.)

• Template class is created with keyword template
in the class header
– Example: template <class E>

• Because this class will utilize dynamic storage for
its nodes, it should include a destructor

Programming Languages, Third Edition 71

Static Binding, Dynamic Binding,
and Virtual Functions

• Dynamic binding of member functions is an option in
C++, but not the default
– Only functions defined with the keyword virtual are

candidates for dynamic binding

• Pure virtual declaration: a function declared with a 0
and the keyword virtual
– Example:

– Function is abstract and cannot be called
– Renders the containing class abstract

– Must be overridden in a derived class

Programming Languages, Third Edition 72

Static Binding, Dynamic Binding,
and Virtual Functions (cont’d.)

• Once a function is declared as virtual, it remains so
in all derived classes in C++

• Declaring a method as virtual is not sufficient to
enable dynamic binding
– Object must be either dynamically allocated or

otherwise accessed through a reference

• C++ offers multiple inheritance using a comma-
separated list of base classes
– Example:

Programming Languages, Third Edition 73

Static Binding, Dynamic Binding,
and Virtual Functions (cont’d.)

• Multiple inheritance ordinarily creates separate
copies of each class on an inheritance path
– Example: object of class D has two copies of class A

• This is called repeated inheritance

Programming Languages, Third Edition 74

Static Binding, Dynamic Binding,
and Virtual Functions (cont’d.)

• To get a single copy of A in class D, must use the
virtual keyword, causing shared inheritance

Programming Languages, Third Edition 75

Design Issues
in Object-Oriented Languages

• Object-oriented features represent dynamic rather
than static capabilities
– Must introduce features in a way to reduce the

runtime penalty of the extra flexibility

• Inline functions are an efficiency in C++

• Other issues for object-oriented languages are the
proper organization of the runtime environment and
the ability of a translator to discover optimizations

• Design of the program itself is important to gain
maximum advantage of an object-oriented language

Programming Languages, Third Edition 76

Classes vs. Types

• Classes must be incorporated in some way into the
type system

• Three possibilities:
– Specifically exclude classes from type checking:

objects would be typeless entities

– Make classes type constructors: classes become
part of the language type system (adopted by C++)

– Let classes become the type system: all other
structured types are then excluded from the system

Programming Languages, Third Edition 77

Classes vs. Modules

• Classes provide a versatile mechanism for
organizing code
– Except in Java, classes do not allow the clean

separation of implementation from interface and do
not protect the implementation from exposure to
client code

• Classes are only marginally suited for controlling
the importing and exporting of names in a fine-
grained way
– C++ uses a namespace mechanism
– Java uses a package mechanism

Programming Languages, Third Edition 78

Inheritance vs. Polymorphism

• Four basic kinds of polymorphism:
– Parametric polymorphism: type parameters remain

unspecified in declarations

– Overloading (ad hoc polymorphism): different
function or method declarations share the same
name but have different types of parameters in each

– Subtype polymorphism: all operations of one type
can be applied to another type

– Inheritance: a kind of subtype polymorphism

Programming Languages, Third Edition 79

Inheritance vs. Polymorphism (cont’d.)

• Double-dispatch (or multi-dispatch) problem:
inheritance and overloading do not account for
binary (or n-ary) methods that may need
overloading based on class membership in two or
more parameters

• In C++, may need to define a free (overloaded)
operator function

• Attempts to solve this problem use multimethods:
methods that can belong to more than one class or
whose overloaded dispatch can be based on class
membership of several parameters

Programming Languages, Third Edition 80

Implementation of Objects
and Methods

• Objects are typically implemented exactly as record
structures would be in C or Ada
– Instance variables represent data fields in the

structure

– Example:

Programming Languages, Third Edition 81

Implementation of Objects
and Methods

• An object of a subclass can be allocated as an
extension of the preceding data object, with new
instance variables allocated space at the end of the
record
– Example:

Programming Languages, Third Edition 82

Implementation of Objects
and Methods

• By allocating at the end, the instance variables of
the base class can be found at the same offset
from the beginning of the allocated space as for
any object of the base class

Programming Languages, Third Edition 83

Inheritance and Dynamic Binding

• Only space for instance variables is allocated with
each object
– Not provided for methods

• This becomes a problem when dynamic binding is
used for methods
– The precise method to use for a call is not known

except during execution

• Possible solution is to keep all dynamically bound
methods as extra fields directly in the structures
allocated for each object

Programming Languages, Third Edition 84

Allocation and Initialization

• Object-oriented languages such as C++ maintain a
runtime environment in the traditional stack/heap
fashion of C

• This makes it possible to allocate objects on either
the stack or the heap
– Java and Smalltalk allocate them on the heap
– C++ permits an object to be allocated either directly on

the stack or as a pointer

• Smalltalk and Java have no explicit deallocation
routines but use a garbage collector
– C++ uses destructors

Programming Languages, Third Edition 85

	Programming Languages Third Edition
	Objectives
	Introduction
	Introduction (cont’d.)
	Software Reuse and Independence
	Software Reuse and Independence (cont’d.)
	Slide 7
	Slide 8
	Slide 9
	Smalltalk
	Smalltalk (cont’d.)
	Basic Elements of Smalltalk: Classes, Objects, Messages, and Control
	Basic Elements of Smalltalk (cont’d.)
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	The Magnitude Hierarchy
	The Magnitude Hierarchy (cont’d.)
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	The Collection Hierarchy
	The Collection Hierarchy (cont’d.)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Java
	Basic Elements of Java: Classes, Objects, and Methods
	Basic Elements of Java (cont’d.)
	Slide 40
	Slide 41
	Slide 42
	The Java Collection Framework: Interfaces, Inheritance, and Polymorphism
	The Java Collection Framework (cont’d.)
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Dynamic Binding and Static Binding
	Defining Map, Filter, and Reduce in Java
	Defining Map, Filter, and Reduce in Java (cont’d.)
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	C++
	Basic Elements of C++: Classes, Data Members, and Member Functions
	Basic Elements of C++ (cont’d.)
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Using a Template Class to Implement a Generic Collection
	Using a Template Class to Implement a Generic Collection (cont’d.)
	Slide 71
	Static Binding, Dynamic Binding, and Virtual Functions
	Static Binding, Dynamic Binding, and Virtual Functions (cont’d.)
	Slide 74
	Slide 75
	Design Issues in Object-Oriented Languages
	Classes vs. Types
	Classes vs. Modules
	Inheritance vs. Polymorphism
	Inheritance vs. Polymorphism (cont’d.)
	Implementation of Objects and Methods
	Slide 82
	Slide 83
	Inheritance and Dynamic Binding
	Allocation and Initialization

