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Objectives

• Understand the nature of logic programming

• Understand Horn clauses

• Understand resolution and unification

• Become familiar with the Prolog language

• Explore the problems with logic programming

• Become familiar with the Curry language
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Introduction

• Logic: the science of reasoning and proof
– Existed since the time of ancient Greek philosophers

• Mathematical, or symbolic, logic: began with George 
Boole and Augustus De Morgan in the mid 1800s

• Logic is closely associated with computers and 
programming languages
– Circuits are designed using Boolean algebra
– Logical statements are used to describe axiomatic 

semantics, the semantics of programming 
languages
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Introduction (cont’d.)

• Logical statements can be used as formal 
specifications

• Together with axiomatic semantics, they can be used 
to prove the correctness of a program in a purely 
mathematical way

• Computers are used to implement the principles of 
mathematical logic
– Automatic deduction systems or automatic 

theorem provers turn proofs into computation
– Computation can be viewed as a kind of proof
– Led to the programming language Prolog
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Logic and Logic Programs

• Must understand mathematical logic 

• First-order predicate calculus: a way of formally 
expressing logical statements

• Logical statements: statements that are either 
true or false

• Axioms: logical statements that are assumed to be 
true and from which other true statements can be 
proved
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Logic and Logic Programs (cont’d.)

• First-order predicate calculus statement parts:
– Constants: usually numbers or names
– Predicates: names for functions that are true or false
– Functions: functions that return non-Boolean values
– Variables that stand for as yet unspecified 

quantities
– Connectives: operations such as and, or, not, 

implication () equivalence ()
– Quantifiers: operations that introduce variables
– Punctuation symbols: parentheses, comma, period
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Logic and Logic Programs (cont’d.)

• Example 1: 
– These English statements are logical statements:

– Translation into predicate calculus:
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Logic and Logic Programs (cont’d.)

• Example 1 (cont’d.):
– First and third statements are axioms

– Second statement can be proved since:

– Fourth statement cannot be proved from the axioms 
so can assumed to be false

– x in the third statement is a variable that stands for 
an as yet unspecified quantity
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Logic and Logic Programs (cont’d.)

• Universal quantifier: a relationship among 
predicates is true for all things in the universe 
named by the variable
– Ex: for all x

• Existential quantifier: a predicate is true of at 
least one thing in the universe indicated by the 
variable
– Ex: there exists x

• A variable introduced by a quantifier is said to be 
bound by the quantifier
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Logic and Logic Programs (cont’d.)

• A variable not bound by a quantifier is said to be 
free

• Arguments to predicates and functions can only be 
terms: combinations of variables, constants, and 
functions
– Terms cannot contain predicates, quantifiers, or 

connectives
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Logic and Logic Programs (cont’d.)

• Example 2:
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Logic and Logic Programs (cont’d.)

• First-order predicate calculus also has inference 
rules

• Inference rules: ways of deriving or proving new 
statements from a given set of statements

• Example: from the statements ab and bc, one 
can derive the statement ac, written formally as:
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Logic and Logic Programs (cont’d.)

• From Example 2, we can derive these statements:

• Theorems: statements derived from axioms

• Logic programming: a collection of statements is 
assumed to be axioms, and from them a desired 
fact is derived by the application of inference rules 
in some automated way
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Logic and Logic Programs (cont’d.)

• Logic programming language: a notational 
system for writing logical statements together with 
specified algorithms for implementing inference 
rules

• Logic program: the set of logical statements that 
are taken to be axioms

• The statement(s) to be derived can be viewed as 
the input that initiates the computation
– Also called queries or goals
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Logic and Logic Programs (cont’d.)

• Logic programming systems are sometimes 
referred to as deductive databases
– Consist of a set of statements and a deduction 

system that can respond to queries

– System can answer queries about facts and queries 
involving implications

• Control problem: specific path or sequence of 
steps used to derive a statement
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Logic and Logic Programs (cont’d.)

• Logical programming paradigm (Kowalski):

algorithm = logic + control

• Compare this with imperative programming (Wirth):

algorithms = data structures + programs

• Since logic programs do not express the control, in 
theory, operations can be carried out in any order 
or simultaneously
– Logic programming languages are natural 

candidates for parallelism
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Logic and Logic Programs (cont’d.)

• There are problems with logic programming 
systems

• Automated deduction systems have difficulty 
handling all of first-order predicate calculus
– Too many ways of expressing the same statements

– Too many inference rules

• Most logic programming systems restrict 
themselves to a particular subset of predicate 
calculus called Horn clauses
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Horn Clauses

• Horn clause: a statement of the form

• The ai are only allowed to be simple statements 
– No or connectives and no quantifiers allowed

• This statement says that a1 through an imply b, or that b is 
true if all the ai are true
– b is the head of the clause

– The a1,…,an is the body of the clause

• If there are no ai’s, the clause becomes  b
– b is always true and is called a fact
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Horn Clauses (cont’d.)

• Horn clauses can be used to express most, but not 
all, logical statements

• Example 4: first-order predicate calculus:

• Translate these into Horn clauses by dropping the 
quantifier:
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Horn Clauses (cont’d.)

• Example 5: logical description for the Euclidian 
algorithm for greatest common divisor of two 
positive integers u and v:

• First-order predicate calculus:
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Horn Clauses (cont’d.)

• Note that gcd(u,v,w) is a predicate expressing 
that w is the gcd of u and v

• Translate into Horn clauses by dropping the 
quantifiers:
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Horn Clauses (cont’d.)

• Example 6: logical statements

• Predicate calculus:

• Horn clause:
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Horn Clauses (cont’d.)

• Example 7: logical statements:

• Predicate calculus:

• This may be approximated by these Horn clauses:

• In general, the more connectives that appear on the 
right of a  connective, the harder it is to translate 
into a set of Horn clauses
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Horn Clauses (cont’d.)

• Procedural interpretation: Horn clauses can be 
reversed to view them as a procedure

• This becomes procedure b, wherein the body is the 
operations indicated by the ai’s
– Similar to how context-free grammar rules are 

interpreted as procedure definitions in recursive 
descent parsing

– Logic programs can be used to directly construct 
parsers
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Horn Clauses (cont’d.)

• Parsing of natural language was a motivation for 
the original development of Prolog

• Definite clause grammars: the particular kind of 
grammar rules used in Prolog programs

• Horn clauses can also be viewed as 
specifications of procedures rather than strictly as 
implementations

• Example: specification of a sort procedure:
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Horn Clauses (cont’d.)

• Horn clauses do not supply the algorithms, only the 
properties that the result must have

• Most logic programming systems write Horn 
clauses backward and drop the and connectives:

• Note the similarity to standard programming 
language expression for the gcd:

Programming Languages, Third Edition 26



Horn Clauses (cont’d.)

• Variable scope:
– Variables used in the head can be viewed as 

parameters

– Variables used only in the body can be viewed as 
local, temporary variables

• Queries or goal statements: the exact opposite of a 
fact
– Are Horn clauses with no head

– Examples:
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Resolution and Unification

• Resolution: an inference rule for Horn clauses 
– If the head of the first Horn clause matches with one 

of the statements in the body of the second Horn 
clause, can replace the head with the body of the 
first in the body of the second

• Example: given two Horn clauses

– If bi matches a, then we can infer this clause:
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Resolution and Unification (cont’d.)

• Example: given ba and cb
– Resolution says ca

• Another way: combine left-hand and right-hand 
sides of both clauses, and cancel statements that 
match on both sides

• Example: given ba and cb
– Combine:  b,c,a,b
– Cancel the b on both sides: ca
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Resolution and Unification (cont’d.)

• A logic processing system uses this process to match 
a goal and replace it with the body, creating a new list 
of goals, called subgoals

• If all goals are eventually eliminated, deriving the 
empty Horn clause, then the original statement has 
been proved

• To match statements with variables, set the variables 
equal to terms to make the statements identical and 
then cancel from both sides
– This process is called unification
– Variables used this way are said to be instantiated
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Resolution and Unification (cont’d.)

• Example 10: gcd with resolution and unification

• Goal: 

• Resolution fails with first clause (10 does not match 
0), so use the second clause and unify:
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Resolution and Unification (cont’d.)

• Example 10 (cont’d.): 
– If zero(10) is false, then not zero(10) is true
– Simplify 15 mod 10 to 5, and cancel gcd (15, 10, x) 

from both sides, giving:

– Use unification as before:

– To get this subgoal:

– This now matches the first rule, so setting x to 5 
gives the empty statement
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Resolution and Unification (cont’d.)

• A logic programming system must have a fixed 
algorithm that specifies:
– Order in which to attempt to resolve a list of goals

– Order in which clauses are used to resolve goals

• In some cases, order can have a significant effect 
on the answers found

• Logic programming systems using Horn clauses 
and resolution with prespecified orders require that 
the programmer is aware of the way the system 
produces answers
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The Language Prolog

• Prolog: the most widely used logic programming 
language
– Uses Horn clauses

– Implements resolution via a strictly depth-first 
strategy

• There is now an ISO standard for Prolog
– Based on the Edinburgh Prolog version developed in 

the late 1970s and early 1980s
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Notation and Data Structures

• Prolog notation is almost identical to Horn clauses
– Implication arrow   becomes :-

– Variables are uppercase, while constants and names 
are lowercase

– In most implementations, can also denote a variable 
with a leading underscore

– Use comma for and, semicolon for or

– List is written with square brackets, with items 
separated by commas

– Lists may contain terms or variables
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Notation and Data Structures (cont’d.)

• Can specify head and tail of list using a vertical 
bar

• Example: [H|T] = [1, 2, 3] means             
H = 1, T = [2, 3]

• Example: [X, Y|Z] = [1, 2, 3] means        
             X=1, Y=2, and Z=[3]

• Built-in predicates include not, =, and I/O 
operations read, write, and nl (newline)

• Less than or equal is usually written =< to avoid 
confusion with implication
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Execution in Prolog

• Most Prolog systems are interpreters

• Prolog program consists of:
– Set of Horn clauses in Prolog syntax, usually entered 

from a file and stored in a dynamically maintained 
database of clauses

– Set of goals, entered from a file or keyboard

• At runtime, the Prolog system will prompt for a 
query
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Execution in Prolog (cont’d.)

• Example 11: clauses entered into database

• Queries:
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Execution in Prolog (cont’d.)

• Example 11 (cont’d.): use semicolon at prompt 
(meaning or) 

• Use carriage return to cancel the continued search
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Arithmetic

• Prolog has built-in arithmetic operations
– Terms can be written in infix or prefix notation

• Prolog cannot tell when a term is arithmetic or 
strictly data
– Must use built-in predicate is to force evaluation
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Arithmetic (cont’d.)

• Greatest common divisor algorithm
– In generic Horn clauses:

– In Prolog:
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Unification

• Unification: process by which variables are 
instantiated to match during resolution
– Basic expression whose semantics is determined by 

unification is equality

• Prolog’s unification algorithm:
– Constant unifies only with itself
– Uninstantiated variable unifies with anything and 

becomes instantiated to that thing
– Structured term (function applied to arguments) 

unifies with another term only if the same function 
name and same number of arguments
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Unification (cont’d.)

• Examples:
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Unification (cont’d.)

• Unification causes uninstantiated variables to share 
memory (to become aliases of each other) 
– Example: two uninstantiated variables are unified

• Pattern-directed invocation: using a pattern in 
place of a variable unifies it with a variable used in 
that place in a goal
– Example: 
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Unification (cont’d.)

• Append procedure:

• First clause: appending a list to the empty list gives 
just that list

• Second clause: appending a list whose head is A 
and tail is B to a list Y gives a list whose head is 
also A and whose tail is B with Y appended
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Unification (cont’d.)

• Append procedure rewritten more concisely:

– Append can also be run backward and find all the 
ways to append two lists to get a specified list:
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Unification (cont’d.)

• Reverse procedure:
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Unification (cont’d.)
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Prolog’s Search Strategy

• Prolog applies resolution in a strictly linear fashion
– Replaces goals from left to right

– Considers clauses in the database from top down

– Subgoals are considered immediately 

– This search strategy results in a depth-first search 
on a tree of possible choices

• Example:
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Prolog’s Search Strategy (cont’d.)
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Prolog’s Search Strategy (cont’d.)

• Leaf nodes in the tree occur either when no match 
is found for the leftmost clause or when all clauses 
have been eliminated (success)

• If failure, or the user indicates a continued search 
with a semicolon, Prolog backtracks up the tree to 
find further paths

• Depth-first strategy is efficient: can be implemented 
in a stack-based or recursive fashion
– Can be problematic if the search tree has branches 

of infinite depth
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Prolog’s Search Strategy (cont’d.)

• Example: same clauses in different order

• Causes Prolog to go into an infinite loop attempting 
to satisfy ancestor (Z, Y), continually reusing the 
first clause

• Breadth-first search would always find solutions if 
they exist
– Far more expensive than depth-first, so not used
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Loops and Control Structures

• Can use the backtracking of Prolog to perform 
loops and repetitive searches
– Must force backtracking even when a solution is 

found by using the built-in predicate fail

• Example:
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Loops and Control Structures (cont’d.)

• Use this technique also to get repetitive 
computations

• Example: these clauses generate all integers 
greater than or equal to 0 as solutions to the goal 
num(X)

• The search tree has an infinite branch to the right
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Loops and Control Structures (cont’d.)
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Loops and Control Structures (cont’d.)

• Example: trying to generate integers from 1 to 10

• Causes an infinite loop after X = 10, even though 
X =< 10 will never succeed

• cut operator (written as !) freezes a choice when it 
is encountered
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Loops and Control Structures (cont’d.)

• If a cut is reached on backtracking, search of the 
subtrees of the parent node stops, and the search 
continues with the grandparent node
– Cut prunes the search tree of all other siblings to the 

right of the node containing the cut

• Example:

– Only X = amy will be found since the branch 
containing X = bob will be pruned
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Loops and Control Structures (cont’d.)
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Loops and Control Structures (cont’d.)

• Rewriting this example:

– No solutions will be found
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Loops and Control Structures (cont’d.)
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Loops and Control Structures (cont’d.)

• Rewriting again:

– Both solutions will still be found since the right 
subtree of ancestor(X, bob) is not pruned

• Cut can be used to reduce the number of branches 
in the subtree that need to be followed

• Also solves the problem of the infinite loop in the 
program to print numbers between I and J shown 
earlier
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Loops and Control Structures (cont’d.)

• One solution to infinite loop shown earlier:

– X = J will succeed when the upper-bound J is 
reached

– The cut will cause backtracking to fail, halting the 
search for new values of X
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Loops and Control Structures (cont’d.)

• Can also use cut to imitate if-else constructs in 
imperative and functional languages, such as:

 D = if A then B else C

• Prolog code:

• Could achieve almost same result without the cut, 
but A would be executed twice
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Loops and Control Structures (cont’d.)
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Problems with Logic Programming

• Original goal of logic programming was to make 
programming a specification activity
– Allow the programmer to specify only the properties 

of a solution and let the language implementation 
provide the actual method for computing the solution

• Declarative programming: program describes 
what a solution to a given problem is, not how the 
problem is solved

• Logic programming languages, especially Prolog, 
have only partially met this goal
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Problems with Logic Programming 
(cont’d.)

• The programmer must be aware of the pitfalls in 
the nature of the algorithms used by logic 
programming systems

• The programmer must sometimes take an even 
lower-level perspective of a program, such as 
exploiting the underlying backtrack mechanism to 
implement a cut/fail loop
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The Occur-Check Problem in 
Unification

• Occur-check problem: when unifying a variable 
with a term, Prolog does not check whether the 
variable itself occurs in the term it is being 
instantiated to

• Example:

• This will be true if there exists an X for which X is its 
own successor

• But even in the absence of any other clauses for 
successor, Prolog answers yes
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The Occur-Check Problem in 
Unification (cont’d.)

• This becomes apparent if we make Prolog try to 
print such an X: 

– Prolog responds with an infinite loop because 
unification has constructed X as a circular structure

– What should be logically false now becomes a 
programming error
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Negation as Failure

• Closed-world assumption: something that cannot 
be proved to be true is assumed to be false
– Is a basic property of all logic programming systems

• Negation as failure: the goal not(X) succeeds 
whenever the goal X fails

• Example: program with one clause:

• If we ask: 
– The answer is yes since the system has no knowledge 

of mother
– If we add facts about mother, this would no longer be 

true
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Negation as Failure (cont’d.)

• Nonmonotonic reasoning: the property that 
adding information to a system can reduce the 
number of things that can be proved
– This is a consequence of the closed-world 

assumption

• A related problem is that failure causes 
instantiation of variables to be released by 
backtracking
– A variable may no longer have an appropriate value 

after failure
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Negation as Failure (cont’d.)

• Example: assumes the fact human(bob)

• The goal not(not(human(X))) succeeds 
because not(human(X)) fails, but the 
instantiation of X to bob is released 
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Negation as Failure (cont’d.)

• Example:

– The second pair of goals fails because X is 
instantiated to 1 to make X = 1 succeed, and then  
not(X=1)  fails

– The goal X = 0 is never reached 
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Horn Clauses Do Not Express 
All of Logic

• Not every logical statement can be turned into Horn 
clauses
– Statements with quantifiers may be problematic

• Example:

• Attempting to use Prolog, we might write:

– Causes an error: trying to redefine the not operator
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Horn Clauses Do Not Express 
All of Logic (cont’d.)

• A better approximation would be simply p(a)
– Closed-world assumption will force not(p(X)) to be 

true for all X not equal to a

– But this is really the logical equivalent of:

– This is not the same as the original statement
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Control Information 
in Logic Programming

• Because of its depth-first search strategy and linear 
processing of goals and statements, Prolog 
programs also contain implicit information on 
control that can cause programs to fail
– Changing the order of the right-hand side of a clause 

may cause an infinite loop

– Changing the order of clauses may find all solutions 
but still go into an infinite loop searching for further 
(nonexistent) solutions
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Control Information 
in Logic Programming (cont’d.)
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Control Information 
in Logic Programming (cont’d.)

• This is a mathematical definition of what it means 
for a list of numbers to be sorted in increasing order
– As a program, it is one of the slowest possible sorts
– Permutations of the unsorted list are generated until 

one of them happens to be sorted

• One would want a logic programming system to 
accept a mathematical definition and find an 
efficient algorithm to compute it 

• Instead, we must specify actual steps in the 
algorithm to get a reasonable efficient sort
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Control Information 
in Logic Programming (cont’d.)
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Curry: A Functional Logic Language

• In a functional language, a program is a set of 
function definitions that specify rules for operating 
on data to transform it into other data

• In a logic language, a program is a set of rules and 
facts from which a proof is constructed for a 
solution to a problem

• Each of these has some specific disadvantages

• The language Curry brings together the 
advantages of functional and logic programming in 
a single language
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Functional Programming in Curry

• Curry is an extension of Haskell
– Retains the syntax and semantics of Haskell for 

functional programming

– Adds new syntax and semantics for logic 
programming

• Function definitions are sets of equations as in 
Haskell

• Curry uses lazy evaluation
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Adding Nondeterminism, Conditions, 
and Backtracking

• A pure functional language supports only 
deterministic computation
– Application of a function to a given set of arguments 

always produces the same value

• Problems such as flipping a coin are 
underspecified, as their solutions come from a set 
of values

• Curry supports nondeterminism by allowing a set of 
equations for a function to be tried in no particular 
order, using the choice operator ?
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Adding Nondeterminism, Conditions, 
and Backtracking (cont’d.)

• Example:

• Curry does not automatically try the first equation

• If one fails, another equation will be tried 

• A nondeterministic function for flipping a coin:

• For the sorting problem, we can use Curry’s 
nondeterminism and backtracking to produce a 
simple implementation

Programming Languages, Third Edition 82



Adding Nondeterminism, Conditions, 
and Backtracking (cont’d.)

• Function sorted expects a list as an argument and 
returns a sorted list of the same elements:

• Third equation includes a condition (to the right of 
the | symbol) that permits evaluation of its right 
side only if the first element in the list is less than or 
equal to the second element
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Adding Nondeterminism, Conditions, 
and Backtracking (cont’d.)

• Function permutation inserts the first element of 
a nonempty list into a permutation of the rest of that 
list:

• Function insert places an element at an arbitrary 
position in a list
– Defined nondeterministically for nonempty lists
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Adding Logical Variables 
and Unification

• Logical variables and unification give Curry the 
ability to solve equations with unknown or partial 
information
– Involves viewing some variables as free in the sense 

that they can be instantiated in a way to satisfy a set 
of equations that includes them

• Curry uses the symbol =:= to specify an equation 
to be solved in this manner

• Example: 
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