
Programming Languages
Third Edition

Chapter 4
Logic Programming

Objectives

• Understand the nature of logic programming

• Understand Horn clauses

• Understand resolution and unification

• Become familiar with the Prolog language

• Explore the problems with logic programming

• Become familiar with the Curry language

Programming Languages, Third Edition 2

Introduction

• Logic: the science of reasoning and proof
– Existed since the time of ancient Greek philosophers

• Mathematical, or symbolic, logic: began with George
Boole and Augustus De Morgan in the mid 1800s

• Logic is closely associated with computers and
programming languages
– Circuits are designed using Boolean algebra
– Logical statements are used to describe axiomatic

semantics, the semantics of programming
languages

Programming Languages, Third Edition 3

Introduction (cont’d.)

• Logical statements can be used as formal
specifications

• Together with axiomatic semantics, they can be used
to prove the correctness of a program in a purely
mathematical way

• Computers are used to implement the principles of
mathematical logic
– Automatic deduction systems or automatic

theorem provers turn proofs into computation
– Computation can be viewed as a kind of proof
– Led to the programming language Prolog

Programming Languages, Third Edition 4

Logic and Logic Programs

• Must understand mathematical logic

• First-order predicate calculus: a way of formally
expressing logical statements

• Logical statements: statements that are either
true or false

• Axioms: logical statements that are assumed to be
true and from which other true statements can be
proved

Programming Languages, Third Edition 5

Logic and Logic Programs (cont’d.)

• First-order predicate calculus statement parts:
– Constants: usually numbers or names
– Predicates: names for functions that are true or false
– Functions: functions that return non-Boolean values
– Variables that stand for as yet unspecified

quantities
– Connectives: operations such as and, or, not,

implication () equivalence ()
– Quantifiers: operations that introduce variables
– Punctuation symbols: parentheses, comma, period

Programming Languages, Third Edition 6

Logic and Logic Programs (cont’d.)

• Example 1:
– These English statements are logical statements:

– Translation into predicate calculus:

Programming Languages, Third Edition 7

Logic and Logic Programs (cont’d.)

• Example 1 (cont’d.):
– First and third statements are axioms

– Second statement can be proved since:

– Fourth statement cannot be proved from the axioms
so can assumed to be false

– x in the third statement is a variable that stands for
an as yet unspecified quantity

Programming Languages, Third Edition 8

Logic and Logic Programs (cont’d.)

• Universal quantifier: a relationship among
predicates is true for all things in the universe
named by the variable
– Ex: for all x

• Existential quantifier: a predicate is true of at
least one thing in the universe indicated by the
variable
– Ex: there exists x

• A variable introduced by a quantifier is said to be
bound by the quantifier

Programming Languages, Third Edition 9

Logic and Logic Programs (cont’d.)

• A variable not bound by a quantifier is said to be
free

• Arguments to predicates and functions can only be
terms: combinations of variables, constants, and
functions
– Terms cannot contain predicates, quantifiers, or

connectives

Programming Languages, Third Edition 10

Logic and Logic Programs (cont’d.)

• Example 2:

Programming Languages, Third Edition 11

Logic and Logic Programs (cont’d.)

• First-order predicate calculus also has inference
rules

• Inference rules: ways of deriving or proving new
statements from a given set of statements

• Example: from the statements ab and bc, one
can derive the statement ac, written formally as:

Programming Languages, Third Edition 12

Logic and Logic Programs (cont’d.)

• From Example 2, we can derive these statements:

• Theorems: statements derived from axioms

• Logic programming: a collection of statements is
assumed to be axioms, and from them a desired
fact is derived by the application of inference rules
in some automated way

Programming Languages, Third Edition 13

Logic and Logic Programs (cont’d.)

• Logic programming language: a notational
system for writing logical statements together with
specified algorithms for implementing inference
rules

• Logic program: the set of logical statements that
are taken to be axioms

• The statement(s) to be derived can be viewed as
the input that initiates the computation
– Also called queries or goals

Programming Languages, Third Edition 14

Logic and Logic Programs (cont’d.)

• Logic programming systems are sometimes
referred to as deductive databases
– Consist of a set of statements and a deduction

system that can respond to queries

– System can answer queries about facts and queries
involving implications

• Control problem: specific path or sequence of
steps used to derive a statement

Programming Languages, Third Edition 15

Logic and Logic Programs (cont’d.)

• Logical programming paradigm (Kowalski):

algorithm = logic + control

• Compare this with imperative programming (Wirth):

algorithms = data structures + programs

• Since logic programs do not express the control, in
theory, operations can be carried out in any order
or simultaneously
– Logic programming languages are natural

candidates for parallelism

Programming Languages, Third Edition 16

Logic and Logic Programs (cont’d.)

• There are problems with logic programming
systems

• Automated deduction systems have difficulty
handling all of first-order predicate calculus
– Too many ways of expressing the same statements

– Too many inference rules

• Most logic programming systems restrict
themselves to a particular subset of predicate
calculus called Horn clauses

Programming Languages, Third Edition 17

Horn Clauses

• Horn clause: a statement of the form

• The ai are only allowed to be simple statements
– No or connectives and no quantifiers allowed

• This statement says that a1 through an imply b, or that b is
true if all the ai are true
– b is the head of the clause

– The a1,…,an is the body of the clause

• If there are no ai’s, the clause becomes  b
– b is always true and is called a fact

Programming Languages, Third Edition 18

Horn Clauses (cont’d.)

• Horn clauses can be used to express most, but not
all, logical statements

• Example 4: first-order predicate calculus:

• Translate these into Horn clauses by dropping the
quantifier:

Programming Languages, Third Edition 19

Horn Clauses (cont’d.)

• Example 5: logical description for the Euclidian
algorithm for greatest common divisor of two
positive integers u and v:

• First-order predicate calculus:

Programming Languages, Third Edition 20

Horn Clauses (cont’d.)

• Note that gcd(u,v,w) is a predicate expressing
that w is the gcd of u and v

• Translate into Horn clauses by dropping the
quantifiers:

Programming Languages, Third Edition 21

Horn Clauses (cont’d.)

• Example 6: logical statements

• Predicate calculus:

• Horn clause:

Programming Languages, Third Edition 22

Horn Clauses (cont’d.)

• Example 7: logical statements:

• Predicate calculus:

• This may be approximated by these Horn clauses:

• In general, the more connectives that appear on the
right of a  connective, the harder it is to translate
into a set of Horn clauses

Programming Languages, Third Edition 23

Horn Clauses (cont’d.)

• Procedural interpretation: Horn clauses can be
reversed to view them as a procedure

• This becomes procedure b, wherein the body is the
operations indicated by the ai’s
– Similar to how context-free grammar rules are

interpreted as procedure definitions in recursive
descent parsing

– Logic programs can be used to directly construct
parsers

Programming Languages, Third Edition 24

Horn Clauses (cont’d.)

• Parsing of natural language was a motivation for
the original development of Prolog

• Definite clause grammars: the particular kind of
grammar rules used in Prolog programs

• Horn clauses can also be viewed as
specifications of procedures rather than strictly as
implementations

• Example: specification of a sort procedure:

Programming Languages, Third Edition 25

Horn Clauses (cont’d.)

• Horn clauses do not supply the algorithms, only the
properties that the result must have

• Most logic programming systems write Horn
clauses backward and drop the and connectives:

• Note the similarity to standard programming
language expression for the gcd:

Programming Languages, Third Edition 26

Horn Clauses (cont’d.)

• Variable scope:
– Variables used in the head can be viewed as

parameters

– Variables used only in the body can be viewed as
local, temporary variables

• Queries or goal statements: the exact opposite of a
fact
– Are Horn clauses with no head

– Examples:

Programming Languages, Third Edition 27

Resolution and Unification

• Resolution: an inference rule for Horn clauses
– If the head of the first Horn clause matches with one

of the statements in the body of the second Horn
clause, can replace the head with the body of the
first in the body of the second

• Example: given two Horn clauses

– If bi matches a, then we can infer this clause:

Programming Languages, Third Edition 28

Resolution and Unification (cont’d.)

• Example: given ba and cb
– Resolution says ca

• Another way: combine left-hand and right-hand
sides of both clauses, and cancel statements that
match on both sides

• Example: given ba and cb
– Combine: b,c,a,b
– Cancel the b on both sides: ca

Programming Languages, Third Edition 29

Resolution and Unification (cont’d.)

• A logic processing system uses this process to match
a goal and replace it with the body, creating a new list
of goals, called subgoals

• If all goals are eventually eliminated, deriving the
empty Horn clause, then the original statement has
been proved

• To match statements with variables, set the variables
equal to terms to make the statements identical and
then cancel from both sides
– This process is called unification
– Variables used this way are said to be instantiated

Programming Languages, Third Edition 30

Resolution and Unification (cont’d.)

• Example 10: gcd with resolution and unification

• Goal:

• Resolution fails with first clause (10 does not match
0), so use the second clause and unify:

Programming Languages, Third Edition 31

Resolution and Unification (cont’d.)

• Example 10 (cont’d.):
– If zero(10) is false, then not zero(10) is true
– Simplify 15 mod 10 to 5, and cancel gcd (15, 10, x)

from both sides, giving:

– Use unification as before:

– To get this subgoal:

– This now matches the first rule, so setting x to 5
gives the empty statement

Programming Languages, Third Edition 32

Resolution and Unification (cont’d.)

• A logic programming system must have a fixed
algorithm that specifies:
– Order in which to attempt to resolve a list of goals

– Order in which clauses are used to resolve goals

• In some cases, order can have a significant effect
on the answers found

• Logic programming systems using Horn clauses
and resolution with prespecified orders require that
the programmer is aware of the way the system
produces answers

Programming Languages, Third Edition 33

The Language Prolog

• Prolog: the most widely used logic programming
language
– Uses Horn clauses

– Implements resolution via a strictly depth-first
strategy

• There is now an ISO standard for Prolog
– Based on the Edinburgh Prolog version developed in

the late 1970s and early 1980s

Programming Languages, Third Edition 34

Notation and Data Structures

• Prolog notation is almost identical to Horn clauses
– Implication arrow  becomes :-

– Variables are uppercase, while constants and names
are lowercase

– In most implementations, can also denote a variable
with a leading underscore

– Use comma for and, semicolon for or

– List is written with square brackets, with items
separated by commas

– Lists may contain terms or variables

Programming Languages, Third Edition 35

Notation and Data Structures (cont’d.)

• Can specify head and tail of list using a vertical
bar

• Example: [H|T] = [1, 2, 3] means
H = 1, T = [2, 3]

• Example: [X, Y|Z] = [1, 2, 3] means
 X=1, Y=2, and Z=[3]

• Built-in predicates include not, =, and I/O
operations read, write, and nl (newline)

• Less than or equal is usually written =< to avoid
confusion with implication

Programming Languages, Third Edition 36

Execution in Prolog

• Most Prolog systems are interpreters

• Prolog program consists of:
– Set of Horn clauses in Prolog syntax, usually entered

from a file and stored in a dynamically maintained
database of clauses

– Set of goals, entered from a file or keyboard

• At runtime, the Prolog system will prompt for a
query

Programming Languages, Third Edition 37

Execution in Prolog (cont’d.)

• Example 11: clauses entered into database

• Queries:

Programming Languages, Third Edition 38

Execution in Prolog (cont’d.)

• Example 11 (cont’d.): use semicolon at prompt
(meaning or)

• Use carriage return to cancel the continued search

Programming Languages, Third Edition 39

Arithmetic

• Prolog has built-in arithmetic operations
– Terms can be written in infix or prefix notation

• Prolog cannot tell when a term is arithmetic or
strictly data
– Must use built-in predicate is to force evaluation

Programming Languages, Third Edition 40

Arithmetic (cont’d.)

• Greatest common divisor algorithm
– In generic Horn clauses:

– In Prolog:

Programming Languages, Third Edition 41

Unification

• Unification: process by which variables are
instantiated to match during resolution
– Basic expression whose semantics is determined by

unification is equality

• Prolog’s unification algorithm:
– Constant unifies only with itself
– Uninstantiated variable unifies with anything and

becomes instantiated to that thing
– Structured term (function applied to arguments)

unifies with another term only if the same function
name and same number of arguments

Programming Languages, Third Edition 42

Unification (cont’d.)

• Examples:

Programming Languages, Third Edition 43

Unification (cont’d.)

• Unification causes uninstantiated variables to share
memory (to become aliases of each other)
– Example: two uninstantiated variables are unified

• Pattern-directed invocation: using a pattern in
place of a variable unifies it with a variable used in
that place in a goal
– Example:

Programming Languages, Third Edition 44

Unification (cont’d.)

• Append procedure:

• First clause: appending a list to the empty list gives
just that list

• Second clause: appending a list whose head is A
and tail is B to a list Y gives a list whose head is
also A and whose tail is B with Y appended

Programming Languages, Third Edition 45

Unification (cont’d.)

• Append procedure rewritten more concisely:

– Append can also be run backward and find all the
ways to append two lists to get a specified list:

Programming Languages, Third Edition 46

Unification (cont’d.)

• Reverse procedure:

Programming Languages, Third Edition 47

Unification (cont’d.)

Programming Languages, Third Edition 48

Prolog’s Search Strategy

• Prolog applies resolution in a strictly linear fashion
– Replaces goals from left to right

– Considers clauses in the database from top down

– Subgoals are considered immediately

– This search strategy results in a depth-first search
on a tree of possible choices

• Example:

Programming Languages, Third Edition 49

Prolog’s Search Strategy (cont’d.)

Programming Languages, Third Edition 50

Prolog’s Search Strategy (cont’d.)

• Leaf nodes in the tree occur either when no match
is found for the leftmost clause or when all clauses
have been eliminated (success)

• If failure, or the user indicates a continued search
with a semicolon, Prolog backtracks up the tree to
find further paths

• Depth-first strategy is efficient: can be implemented
in a stack-based or recursive fashion
– Can be problematic if the search tree has branches

of infinite depth

Programming Languages, Third Edition 51

Prolog’s Search Strategy (cont’d.)

• Example: same clauses in different order

• Causes Prolog to go into an infinite loop attempting
to satisfy ancestor (Z, Y), continually reusing the
first clause

• Breadth-first search would always find solutions if
they exist
– Far more expensive than depth-first, so not used

Programming Languages, Third Edition 52

Loops and Control Structures

• Can use the backtracking of Prolog to perform
loops and repetitive searches
– Must force backtracking even when a solution is

found by using the built-in predicate fail

• Example:

Programming Languages, Third Edition 53

Loops and Control Structures (cont’d.)

• Use this technique also to get repetitive
computations

• Example: these clauses generate all integers
greater than or equal to 0 as solutions to the goal
num(X)

• The search tree has an infinite branch to the right

Programming Languages, Third Edition 54

Loops and Control Structures (cont’d.)

Programming Languages, Third Edition 55

Loops and Control Structures (cont’d.)

• Example: trying to generate integers from 1 to 10

• Causes an infinite loop after X = 10, even though
X =< 10 will never succeed

• cut operator (written as !) freezes a choice when it
is encountered

Programming Languages, Third Edition 56

Loops and Control Structures (cont’d.)

• If a cut is reached on backtracking, search of the
subtrees of the parent node stops, and the search
continues with the grandparent node
– Cut prunes the search tree of all other siblings to the

right of the node containing the cut

• Example:

– Only X = amy will be found since the branch
containing X = bob will be pruned

Programming Languages, Third Edition 57

Loops and Control Structures (cont’d.)

Programming Languages, Third Edition 58

Loops and Control Structures (cont’d.)

• Rewriting this example:

– No solutions will be found

Programming Languages, Third Edition 59

Loops and Control Structures (cont’d.)

Programming Languages, Third Edition 60

Loops and Control Structures (cont’d.)

• Rewriting again:

– Both solutions will still be found since the right
subtree of ancestor(X, bob) is not pruned

• Cut can be used to reduce the number of branches
in the subtree that need to be followed

• Also solves the problem of the infinite loop in the
program to print numbers between I and J shown
earlier

Programming Languages, Third Edition 61

Loops and Control Structures (cont’d.)

• One solution to infinite loop shown earlier:

– X = J will succeed when the upper-bound J is
reached

– The cut will cause backtracking to fail, halting the
search for new values of X

Programming Languages, Third Edition 62

Loops and Control Structures (cont’d.)

• Can also use cut to imitate if-else constructs in
imperative and functional languages, such as:

 D = if A then B else C

• Prolog code:

• Could achieve almost same result without the cut,
but A would be executed twice

Programming Languages, Third Edition 63

Loops and Control Structures (cont’d.)

Programming Languages, Third Edition 64

Problems with Logic Programming

• Original goal of logic programming was to make
programming a specification activity
– Allow the programmer to specify only the properties

of a solution and let the language implementation
provide the actual method for computing the solution

• Declarative programming: program describes
what a solution to a given problem is, not how the
problem is solved

• Logic programming languages, especially Prolog,
have only partially met this goal

Programming Languages, Third Edition 65

Problems with Logic Programming
(cont’d.)

• The programmer must be aware of the pitfalls in
the nature of the algorithms used by logic
programming systems

• The programmer must sometimes take an even
lower-level perspective of a program, such as
exploiting the underlying backtrack mechanism to
implement a cut/fail loop

Programming Languages, Third Edition 66

The Occur-Check Problem in
Unification

• Occur-check problem: when unifying a variable
with a term, Prolog does not check whether the
variable itself occurs in the term it is being
instantiated to

• Example:

• This will be true if there exists an X for which X is its
own successor

• But even in the absence of any other clauses for
successor, Prolog answers yes

Programming Languages, Third Edition 67

The Occur-Check Problem in
Unification (cont’d.)

• This becomes apparent if we make Prolog try to
print such an X:

– Prolog responds with an infinite loop because
unification has constructed X as a circular structure

– What should be logically false now becomes a
programming error

Programming Languages, Third Edition 68

Negation as Failure

• Closed-world assumption: something that cannot
be proved to be true is assumed to be false
– Is a basic property of all logic programming systems

• Negation as failure: the goal not(X) succeeds
whenever the goal X fails

• Example: program with one clause:

• If we ask:
– The answer is yes since the system has no knowledge

of mother
– If we add facts about mother, this would no longer be

true

Programming Languages, Third Edition 69

Negation as Failure (cont’d.)

• Nonmonotonic reasoning: the property that
adding information to a system can reduce the
number of things that can be proved
– This is a consequence of the closed-world

assumption

• A related problem is that failure causes
instantiation of variables to be released by
backtracking
– A variable may no longer have an appropriate value

after failure

Programming Languages, Third Edition 70

Negation as Failure (cont’d.)

• Example: assumes the fact human(bob)

• The goal not(not(human(X))) succeeds
because not(human(X)) fails, but the
instantiation of X to bob is released

Programming Languages, Third Edition 71

Negation as Failure (cont’d.)

• Example:

– The second pair of goals fails because X is
instantiated to 1 to make X = 1 succeed, and then
not(X=1) fails

– The goal X = 0 is never reached

Programming Languages, Third Edition 72

Horn Clauses Do Not Express
All of Logic

• Not every logical statement can be turned into Horn
clauses
– Statements with quantifiers may be problematic

• Example:

• Attempting to use Prolog, we might write:

– Causes an error: trying to redefine the not operator

Programming Languages, Third Edition 73

Horn Clauses Do Not Express
All of Logic (cont’d.)

• A better approximation would be simply p(a)
– Closed-world assumption will force not(p(X)) to be

true for all X not equal to a

– But this is really the logical equivalent of:

– This is not the same as the original statement

Programming Languages, Third Edition 74

Control Information
in Logic Programming

• Because of its depth-first search strategy and linear
processing of goals and statements, Prolog
programs also contain implicit information on
control that can cause programs to fail
– Changing the order of the right-hand side of a clause

may cause an infinite loop

– Changing the order of clauses may find all solutions
but still go into an infinite loop searching for further
(nonexistent) solutions

Programming Languages, Third Edition 75

Control Information
in Logic Programming (cont’d.)

Programming Languages, Third Edition 76

Control Information
in Logic Programming (cont’d.)

• This is a mathematical definition of what it means
for a list of numbers to be sorted in increasing order
– As a program, it is one of the slowest possible sorts
– Permutations of the unsorted list are generated until

one of them happens to be sorted

• One would want a logic programming system to
accept a mathematical definition and find an
efficient algorithm to compute it

• Instead, we must specify actual steps in the
algorithm to get a reasonable efficient sort

Programming Languages, Third Edition 77

Control Information
in Logic Programming (cont’d.)

Programming Languages, Third Edition 78

Curry: A Functional Logic Language

• In a functional language, a program is a set of
function definitions that specify rules for operating
on data to transform it into other data

• In a logic language, a program is a set of rules and
facts from which a proof is constructed for a
solution to a problem

• Each of these has some specific disadvantages

• The language Curry brings together the
advantages of functional and logic programming in
a single language

Programming Languages, Third Edition 79

Functional Programming in Curry

• Curry is an extension of Haskell
– Retains the syntax and semantics of Haskell for

functional programming

– Adds new syntax and semantics for logic
programming

• Function definitions are sets of equations as in
Haskell

• Curry uses lazy evaluation

Programming Languages, Third Edition 80

Adding Nondeterminism, Conditions,
and Backtracking

• A pure functional language supports only
deterministic computation
– Application of a function to a given set of arguments

always produces the same value

• Problems such as flipping a coin are
underspecified, as their solutions come from a set
of values

• Curry supports nondeterminism by allowing a set of
equations for a function to be tried in no particular
order, using the choice operator ?

Programming Languages, Third Edition 81

Adding Nondeterminism, Conditions,
and Backtracking (cont’d.)

• Example:

• Curry does not automatically try the first equation

• If one fails, another equation will be tried

• A nondeterministic function for flipping a coin:

• For the sorting problem, we can use Curry’s
nondeterminism and backtracking to produce a
simple implementation

Programming Languages, Third Edition 82

Adding Nondeterminism, Conditions,
and Backtracking (cont’d.)

• Function sorted expects a list as an argument and
returns a sorted list of the same elements:

• Third equation includes a condition (to the right of
the | symbol) that permits evaluation of its right
side only if the first element in the list is less than or
equal to the second element

Programming Languages, Third Edition 83

Adding Nondeterminism, Conditions,
and Backtracking (cont’d.)

• Function permutation inserts the first element of
a nonempty list into a permutation of the rest of that
list:

• Function insert places an element at an arbitrary
position in a list
– Defined nondeterministically for nonempty lists

Programming Languages, Third Edition 84

Adding Logical Variables
and Unification

• Logical variables and unification give Curry the
ability to solve equations with unknown or partial
information
– Involves viewing some variables as free in the sense

that they can be instantiated in a way to satisfy a set
of equations that includes them

• Curry uses the symbol =:= to specify an equation
to be solved in this manner

• Example:

Programming Languages, Third Edition 85

	Programming Languages Third Edition
	Objectives
	Introduction
	Introduction (cont’d.)
	Logic and Logic Programs
	Logic and Logic Programs (cont’d.)
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Horn Clauses
	Horn Clauses (cont’d.)
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Resolution and Unification
	Resolution and Unification (cont’d.)
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	The Language Prolog
	Notation and Data Structures
	Notation and Data Structures (cont’d.)
	Execution in Prolog
	Execution in Prolog (cont’d.)
	Slide 39
	Arithmetic
	Arithmetic (cont’d.)
	Unification
	Unification (cont’d.)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Prolog’s Search Strategy
	Prolog’s Search Strategy (cont’d.)
	Slide 51
	Slide 52
	Loops and Control Structures
	Loops and Control Structures (cont’d.)
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Problems with Logic Programming
	Problems with Logic Programming (cont’d.)
	The Occur-Check Problem in Unification
	The Occur-Check Problem in Unification (cont’d.)
	Negation as Failure
	Negation as Failure (cont’d.)
	Slide 71
	Slide 72
	Horn Clauses Do Not Express All of Logic
	Horn Clauses Do Not Express All of Logic (cont’d.)
	Control Information in Logic Programming
	Control Information in Logic Programming (cont’d.)
	Slide 77
	Slide 78
	Curry: A Functional Logic Language
	Functional Programming in Curry
	Adding Nondeterminism, Conditions, and Backtracking
	Adding Nondeterminism, Conditions, and Backtracking (cont’d.)
	Slide 83
	Slide 84
	Adding Logical Variables and Unification

