
Programming Languages
Third Edition

Chapter 3
Functional Programming

Objectives

• Understand the concepts of functional
programming

• Become familiar with Scheme

• Become familiar with ML

• Understand delayed evaluation

• Become familiar with Haskell

• Understand the mathematics of functional
programming

Programming Languages, Third Edition 2

Background

• Several different styles of programming, including:
– Functional programming

– Logic programming

– Object-oriented programming

• Different languages have evolved to support each
style of programming
– Each type of language rests on a distinct model of

computation, which is different from the von
Neumann model

Programming Languages, Third Edition 3

Background (cont’d.)

• Functional programming:
– Provides a uniform view of programs as functions

– Treats functions as data

– Provides prevention of side effects

• Functional programming languages generally have
simpler semantics and a simpler model of
computation
– Useful for rapid prototyping, artificial intelligence,

mathematical proof systems, and logic applications

Programming Languages, Third Edition 4

Background (cont’d.)

• Until recently, most functional languages suffered
from inefficient execution
– Most were originally interpreted instead of compiled

• Today, functional languages are very attractive for
general programming
– They lend themselves very well to parallel execution

– May be more efficient than imperative languages on
multicore hardware architectures

– Have mature application libraries

Programming Languages, Third Edition 5

Background (cont’d.)

• Despite these advantages, functional languages
have not become mainstream languages for
several reasons:
– Programmers learn imperative or object-oriented

languages first

– OO languages provide a strong organizing principle
for structuring code that mirrors the everyday
experience of real objects

• Functional methods such as recursion, functional
abstraction, and higher-order functions have
become part of many programming languages

Programming Languages, Third Edition 6

Programs as Functions

• A program is a description of specific computation

• If we ignore the “how” and focus on the result, or
the “what” of the computation, the program
becomes a virtual black box that transforms input
into output
– A program is thus essentially equivalent to a

mathematical function

• Function: a rule that associates to each x from set
of X of values a unique y from a set Y of values

Programming Languages, Third Edition 7

Programs as Functions (cont’d.)

• In mathematical terminology, the function can be
written as y=f(x) or f:XY

• Domain of f: the set X

• Range of f: the set Y

• Independent variable: the x in f(x), representing
any value from the set X

• Dependent variable: the y from the set Y, defined
by y=f(x)

• Partial function: occurs when f is not defined for
all x in X

Programming Languages, Third Edition 8

Programs as Functions (cont’d.)

• Total function: a function that is defined for all x in
the set X

• Programs, procedures, and functions can all be
represented by the mathematical concept of a
function
– At the program level, x represents the input, and y

represents the output

– At the procedure or function level, x represents the
parameters, and y represents the returned values

Programming Languages, Third Edition 9

Programs as Functions (cont’d.)

• Functional definition: describes how a value is to
be computed using formal parameters

• Functional application: a call to a defined function
using actual parameters, or the values that the
formal parameters assume for a particular
computation

• In math, there is not always a clear distinction
between a parameter and a variable
– The term independent variable is often used for

parameters

Programming Languages, Third Edition 10

Programs as Functions (cont’d.)

• A major difference between imperative
programming and functional programming is the
concept of a variable
– In math, variables always stand for actual values

– In imperative programming languages, variables
refer to memory locations that store values

• Assignment statements allow memory locations to
be reset with new values
– In math, there are no concepts of memory location

and assignment

Programming Languages, Third Edition 11

Programs as Functions (cont’d.)

• Functional programming takes a mathematical
approach to the concept of a variable
– Variables are bound to values, not memory locations

– A variable’s value cannot change, which eliminates
assignment as an available operation

• Most functional programming languages retain
some notion of assignment
– It is possible to create a pure functional program

that takes a strictly mathematical approach to
variables

Programming Languages, Third Edition 12

Programs as Functions (cont’d.)

• Lack of assignment makes loops impossible
– A loop requires a control variable whose value

changes as the loop executes

– Recursion is used instead of loops

• There is no notion of the internal state of a function
– Its value depends only on the values of its

arguments (and possibly nonlocal variables)

• A function’s value cannot depend on the order of
evaluation of its arguments
– An advantage for concurrent applications

Programming Languages, Third Edition 13

Programs as Functions (cont’d.)

Programming Languages, Third Edition 14

Programs as Functions (cont’d.)

• Referential transparency: the property whereby a
function’s value depends only on the values of its
variables (and nonlocal variables)

• Examples:
– gcd function is referentially transparent
– rand function is not because it depends on the state

of the machine and previous calls to itself

• A referentially transparent function with no
parameters must always return the same value
– Thus it is no different than a constant

Programming Languages, Third Edition 15

Programs as Functions (cont’d.)

• Referential transparency and the lack of assignment
make the semantics straightforward

• Value semantics: semantics in which names are
associated only to values, not memory locations

• Lack of local state in functional programming makes
it opposite of OO programming, wherein computation
proceeds by changing the local state of objects

• In functional programming, functions must be
general language objects, viewed as values
themselves

Programming Languages, Third Edition 16

Programs as Functions (cont’d.)

• In functional programming, functions are first-
class data values
– Functions can be computed by other functions

– Functions can be parameters to other functions

• Composition: essential operation on functions
– A function takes two functions as parameters and

produces another function as its returned value

• In math, the composition operator o is defined:

 If f:XY and g:YZ, then g o f:XZ is given by

 (g o f)(x) = g(f(x))

Programming Languages, Third Edition 17

Programs as Functions (cont’d.)

• Qualities of functional program languages and
functional programs:
– All procedures are functions that distinguish

incoming values (parameters) from outgoing values
(results)

– In pure functional programming, there are no
assignments

– In pure functional programming, there are no loops
– Value of a function depends only on its parameters,

not on order of evaluation or execution path
– Functions are first-class data values

Programming Languages, Third Edition 18

Scheme: A Dialect of Lisp

• Lisp (LISt Processing): first language that
contained many of the features of modern functional
languages
– Based on the lambda calculus

• Features included:
– Uniform representation of programs and data using a

single general structure: the list
– Definition of the language using an interpreter written

in the same language (metacircular interpreter)
– Automatic memory management by the runtime

system

Programming Languages, Third Edition 19

Scheme: A Dialect of Lisp (cont’d.)

• No single standard evolved for Lisp, and there are
many variations

• Two dialects that use static scoping and a more
uniform treatment of functions have become
standard:
– Common Lisp

– Scheme

Programming Languages, Third Edition 20

The Elements of Scheme

• All programs and data in Scheme are considered
expressions

• Two types of expressions:
– Atoms: like literal constants and identifiers of an

imperative language

– Parenthesized expression: a sequence of zero or
more expressions separated by spaces and
surrounded by parentheses

• Syntax is expressed in extended Backus-Naur
form notation

Programming Languages, Third Edition 21

The Elements of Scheme (cont’d.)

Programming Languages, Third Edition 22

The Elements of Scheme (cont’d.)

• Syntax of Scheme:
expression  atom | ‘(‘ {expression} ’)’

atom  number | string | symbol |
character | boolean

• When parenthesized expressions are viewed as
data, they are called lists

• Evaluation rule: the meaning of a Scheme
expression

• An environment in Scheme is a symbol table that
associates identifiers with values

Programming Languages, Third Edition 23

The Elements of Scheme (cont’d.)

• Standard evaluation rule for Scheme expressions:
– Atomic literals evaluate to themselves

– Symbols other than keywords are treated as identifiers
or variables that are looked up in the current
environment and replaced by values found there

– A parenthesized expression or list is evaluated in one
of two ways:

• If the first item is a keyword, a special rule is applied to
evaluate the rest of the expression

• An expression starting with a keyword is called a
special form

Programming Languages, Third Edition 24

The Elements of Scheme (cont’d.)

• Otherwise, the parenthesized expression is a function
application

• Each expression within the parentheses is evaluated
recursively

• The first expression must evaluate to a function, which
is then applied to remaining values (its arguments)

• The Scheme evaluation rule implies that all
expressions must be written in prefix form
– Example: (+ 2 3)

• + is a function, and it is applied to the values 2 and 3,
to return the value 5

Programming Languages, Third Edition 25

The Elements of Scheme (cont’d.)

• Evaluation rule also implies that the value of a
function (as an object) is clearly distinguished from a
call to the function
– Function is represented by the first expression in an

application
– Function call is surrounded by parentheses

• Evaluation rule represents applicative order
evaluation:
– All subexpressions are evaluated first

– A corresponding expression tree is evaluated from
leaves to root

Programming Languages, Third Edition 26

The Elements of Scheme (cont’d.)

Programming Languages, Third Edition 27

The Elements of Scheme (cont’d.)

• Example: (* (+ 2 3) (+ 4 5))
– Two additions are evaluated first, then the

multiplication

Programming Languages, Third Edition 28

The Elements of Scheme (cont’d.)

• A problem arises when data are represented
directly in a program, such as a list of numbers

• Example: (2.1 2.2 3.1)
– Scheme will try to evaluate it as a function call

– Must prevent this and consider it to be a list literal,
using a special form with the keyword quote

• Example: (quote (2.1 2.2 3.1))

• Rule for evaluating a quote special form is to
simply return the expression following quote
without evaluating it

Programming Languages, Third Edition 29

The Elements of Scheme (cont’d.)

Programming Languages, Third Edition 30

• Loops are provided by recursive call
• Selection is provided by special forms:

– if form: like an if-else construct
– cond form: like an if-elseif construct; cond

stands for conditional expression

The Elements of Scheme (cont’d.)

• Neither the if nor the cond special form obey the
standard evaluation rule
– If they did, all arguments would be evaluated each

time, rendering them useless as control mechanisms

– Arguments to special forms are delayed until the
appropriate moment

• Scheme function applications use pass by value,
while special forms in Scheme and Lisp use
delayed evaluation

Programming Languages, Third Edition 31

The Elements of Scheme (cont’d.)

• Special form let: binds a variable to a value within
an expression
– Example: (let ((a 2) (b 3)) (+ 1 b))

• First expression in a let is a binding list

• let provides a local environment and scope for a
set of variable names
– Similar to temporary variable declarations in block-

structured languages

– Values of the variables can be accessed only within
the let form, not outside it

Programming Languages, Third Edition 32

The Elements of Scheme (cont’d.)

• lambda special form: creates a function with the
specified formal parameters and a body of code to
be evaluated when the function is applied
– Example:

(lambda (radius) (* 3.14 (* radius radius)))

– Can apply the function to an argument by wrapping it
and the argument in another set of parentheses:
((lambda (radius) (* 3.14 (* radius radius)))
10)

Programming Languages, Third Edition 33

The Elements of Scheme (cont’d.)

• Can bind a name to a lambda within a let:
 (let ((circlearea (lambda (radius) (* 3.14 (*

radius radius))))) (circlearea 10))

• let cannot be used to define recursive functions
since let bindings cannot refer to themselves or
each other

• letrec special form: works like a let but allows
arbitrary recursive references within the binding list

(letrec ((factorial (lambda (n) (if (= n 0) 1 (*
n (factorial (- n 1))))))) (factorial 10)

Programming Languages, Third Edition 34

The Elements of Scheme (cont’d.)

• let and letrec forms create variables visible
within the scope and lifetime of the let or letrec

• define special form: creates a global binding of a
variable visible in the top-level environment

Programming Languages, Third Edition 35

Dynamic Type Checking

• Scheme’s semantics include dynamic or latent type
checking
– Only values, not variables, have data types

– Types of values are not checked until necessary at
runtime

• Automatic type checking happens right before a
primitive function, such as +

• Arguments to programmer-defined functions are
not automatically checked

• If wrong type, Scheme halts with an error message

Programming Languages, Third Edition 36

Dynamic Type Checking (cont’d.)

• Can use built-in type recognition functions such as
number? and procedure? to check a value’s type
– This slows down programmer productivity and the

code’s execution speed

Programming Languages, Third Edition 37

Tail and Non-Tail Recursion

• Because of runtime overhead for procedure calls,
loops are always preferable to recursion in
imperative languages

• Tail recursive: when the recursive steps are the
last steps in any function
– Scheme compiler translates this to code that

executes as a loop with no additional overhead for
function calls other than the top-level call

– Eliminates the performance hit of recursion

Programming Languages, Third Edition 38

Tail and Non-Tail Recursion (cont’d.)

Programming Languages, Third Edition 39

Tail and Non-Tail Recursion (cont’d.)

• Non-tail recursive function example in Figure 3.4:
– After each recursive call, the value returned by the

call must be multiplied by n (the argument to the
previous call)

– Requires a runtime stack to track the value of this
argument for each call as the recursion unwinds

– Entails a linear growth of memory and a substantial
performance hit

Programming Languages, Third Edition 40

Tail and Non-Tail Recursion (cont’d.)

• Tail recursive function example in Figure 3.4:
– All the work of computing values is done when the

arguments are evaluated before each recursive call

– Argument result is used to accumulate intermediate
products on the way down through the recursive
calls

– No work remains to be done after each recursive
call, so no runtime stack is necessary to remember
arguments of previous calls

Programming Languages, Third Edition 41

Data Structures in Scheme

• Basic data structure in Scheme is the list
– Can represent a sequence, a record, or any other

structure

• Scheme also supports structured types for vectors
(one-dimensional arrays) and strings

• List functions:
– car: accesses the head of the list
– cdr: returns the tail of the list (minus the head)
– cons: adds a new head to an existing list

Programming Languages, Third Edition 42

Data Structures in Scheme (cont’d.)

• Example: a list representation of a binary search
tree
("horse" ("cow" () ("dog" () ()))

("zebra" ("yak" () ()) ()))

• A tree node is a list of three items (name left right)

Programming Languages, Third Edition 43

Data Structures in Scheme (cont’d.)

• List can be visualized as a pair of values: the car
and the cdr
– List L is a pointer to a box of two pointers, one to its
car and the other to its cdr

Programming Languages, Third Edition 44

Data Structures in Scheme (cont’d.)

• Box and pointer notation for a simple list (1 2 3)
– Black rectangle in the end box stands for the empty

list ()

Programming Languages, Third Edition 45

Data Structures in Scheme (cont’d.)

Programming Languages, Third Edition 46

Data Structures in Scheme (cont’d.)

• All the basic list manipulation operations can be
written as functions using the primitives car, cdr,
cons, and null?
– null? returns true if the list is empty or false

otherwise

Programming Languages, Third Edition 47

Programming Techniques in Scheme

• Scheme relies on recursion to perform loops and
other repetitive operations
– To apply repeated operations to a list, “cdr down and

cons up”: apply the operation recursively to the tail of
a list and then use the cons operator to construct a
new list with the current result

• Example:
(define square-list (lambda (L)

 (if (null? L) '()

 (cons (* (car L) (car L)) (square-list

(cdr L)))))

Programming Languages, Third Edition 48

Higher-Order Functions

• Higher-order functions: functions that take other
functions as parameters and functions that return
functions as values

• Example: function with a function parameter that
returns a function value
(define make-double (lambda (f)

 (lambda (x) (f x x)))

• Can now create functions using this:
(define square (make-double *))

(define double (make-double +))

Programming Languages, Third Edition 49

Higher-Order Functions (cont’d.)

• Runtime environment of functional languages is
more complicated than the stack-based
environment of a standard block-structured
imperative language

• Garbage collection: automatic memory
management technique to return memory used by
functions

Programming Languages, Third Edition 50

Static (Lexical) Scoping

• Early dialects of Lisp were dynamically scoped

• Modern dialects, including Scheme and Common
Lisp, are statically scoped

• Static scope (or lexical scope): the area of a
program in which a variable declaration is visible
– For static scoping, the meaning or value of a variable

can be determined by reading the source code

– For dynamic scoping, the meaning depends on the
runtime context

Programming Languages, Third Edition 51

Static (Lexical) Scoping (cont’d.)

• Declaration of variables can be nested in block-
structured languages

• Scope of a variable extends to the end of the block
in which it is declared, including any nested blocks
(unless it is redeclared within a nesting block)

Programming Languages, Third Edition 52

Static (Lexical) Scoping (cont’d.)

• Free variable: a variable referenced within a
function that is not also a formal parameter to that
function and is not bound within a nested function

• Bound variable: a variable within a function that is
also a formal parameter to that function

• Lexical scoping fixes the meaning of free variables
in one place in the code, making a program easier
to read and verify than dynamic scoping

Programming Languages, Third Edition 53

Symbolic Information Processing
and Metalinguistic Power

• Metalinguistic power: the capacity to build,
manipulate, and transform lists of symbols that are
then evaluated as programs

• Example: let form is actually syntactic sugar for
the application of a lambda form to its arguments

Programming Languages, Third Edition 54

ML: Functional Programming
with Static Typing

• ML (or MetaLanguage): a functional programming
language quite different from the dialects of Lisp
– Has more Algol-like syntax, which avoids the use of

many parentheses

– Is statically typed, allows for type-checking

• Advantages:
– Makes the language more secure since more errors

are found prior to execution

– Improves efficiency by making type-checking at
runtime unnecessary

Programming Languages, Third Edition 55

ML: Functional Programming
with Static Typing (cont’d.)

• ML was first developed in the late 1970s for proving
the correctness of programs
– Part of the Edinburgh Logic for Computable

Functions (LCF) system

• Was later combined with the HOPE language and
named Standard ML, or SML

• Current standard reflects another revision in 1997,
called SML97, or ML97

Programming Languages, Third Edition 56

The Elements of ML

• In ML, the basic program is a function declaration
• fun: reserved word that introduces a function

declaration

• Parentheses are almost completely unnecessary
since the meaning of items can be determined
based solely on their position

Programming Languages, Third Edition 57

The Elements of ML (cont’d.)

• A declared function can be called by its name:

• ML responds with the returned value and its type
– it is the name of the current expression under

evaluation

• Values can be defined using the val keyword

Programming Languages, Third Edition 58

The Elements of ML (cont’d.)

• Arithmetic operators are written as infix operators
– Different from the prefix notation of Lisp

– Operator precedence and associativity are an issue

– ML adheres to the standard math conventions for
arithmetic operators

• Can turn infix operators into prefix operators using
the op keyword:

Programming Languages, Third Edition 59

The Elements of ML (cont’d.)

• Note that binary arithmetic operators take pairs of
integers as their argument
– Pairs are elements of the Cartesian product type, or

tuple type int * int

Programming Languages, Third Edition 60

The Elements of ML (cont’d.)

• In ML, programs are not themselves lists, as they
are in Lisp

• A list in ML is indicated by square brackets, with
elements separated by commas
– A list’s elements must all have the same type

• To mix data types, must use a tuple:

Programming Languages, Third Edition 61

The Elements of ML (cont’d.)

• The operator :: corresponds to cons in Scheme,
for constructing a list out of an element (the head)
and a previously constructed list (the tail)
– Every list is constructed by a series of applications of

the :: operator, wherein [] is the empty list

• Type variable: denoted by ‘a

Programming Languages, Third Edition 62

The Elements of ML (cont’d.)

• ML operators hd (for head) and tl (for tail)
correspond to Scheme’s car and cdr operators

• ML’s pattern-matching ability makes these
functions unnecessary
– Can use h::t to identify the head and tail of a list

Programming Languages, Third Edition 63

The Elements of ML (cont’d.)

• Pattern matching can eliminate most uses of if
expressions

• Example: recursive factorial function using pattern
matching:

• Patterns can also contain wildcards, written as the
underscore character

Programming Languages, Third Edition 64

The Elements of ML (cont’d.)

• Because of its strong typing, you must manually
convert between data types using a conversion
function

• ML does not allow overloading of functions

Programming Languages, Third Edition 65

The Elements of ML (cont’d.)

• rev function: built-in function that reverses a list

• ML makes a strong distinction between types that
can be compared for equality and types that cannot
– Real numbers cannot be compared for equality

• When a polymorphic function definition involves an
equality comparison, the type variables can only
range over the equality types, written with two
quotes

Programming Languages, Third Edition 66

The Elements of ML (cont’d.)

• Structure: ML’s version of the library package
– Includes several standard predefined resources

useful for input and output

– Examples: TextIO structure and inputLine and
output functions

• unit type in ML is similar to the void type of C
– Has one value () that represents “no actual value”

• Can convert between strings and numbers with
toString and fromString functions

Programming Languages, Third Edition 67

The Elements of ML (cont’d.)

• Expression sequence: a semicolon-separated
sequence of expressions surrounded by
parentheses, whose value is the value of the last
expression listed

Programming Languages, Third Edition 68

Data Structures in ML

• ML has a rich set of data types, including
enumerated types, records, tuples, and lists

• type keyword: gives a synonym to an existing data
type

• datatype keyword produces a user-defined data
type

• Value constructors (or data constructors):
names used in the construction of data types that
can be used as patterns
– Vertical bar is used to indicate alternative values

Programming Languages, Third Edition 69

Data Structures in ML (cont’d.)

• Example of a value constructor:

• Binary search tree can be declared with
datatype:

Programming Languages, Third Edition 70

Higher-Order Functions and Currying
in ML

• fn keyword: denotes a function expression and is
followed by =>
– Can be used to build anonymous functions and

function return values
– fun definition is just syntactic sugar for the use of an
fn expression

• Example:

is equivalent to:

Programming Languages, Third Edition 71

Higher-Order Functions and Currying
in ML (cont’d.)

• rec keyword: used to declare a recursive function
when using fn
– Similar to Scheme letrec

• Function composition can be done with the letter o

Programming Languages, Third Edition 72

Higher-Order Functions and Currying
in ML (cont’d.)

• Currying: a process in which a function of multiple
parameters is viewed as a higher-order function of
a single parameter that returns a function of the
remaining parameters
– A function to which this process is applied is said to

be curried

• Can use a tuple to get an “uncurried” version of a
function or two separate parameters to get a
curried version

Programming Languages, Third Edition 73

Higher-Order Functions and Currying
in ML (cont’d.)

• A language is said to be fully curried if function
definitions are automatically treated as curried and
all multiparameter built-in functions are curried
– ML is not fully curried since all built-in binary

operators are defined as taking tuples

Programming Languages, Third Edition 74

Delayed Evaluation

• In a language with an applicative order evaluation
rule, all parameters to user-defined functions are
evaluated at the time of a call

• Examples that do not use applicative order
evaluation:
– Boolean special forms and and or
– if special form

• Short-circuit evaluation of Boolean expressions
allows a result without evaluating the second
parameter

Programming Languages, Third Edition 75

Delayed Evaluation (cont’d.)

• Delayed evaluation is necessary for if special form

• Example: (if a b c)
– Evaluation of b and c must be delayed until the result

of a is known; then either b or c is evaluated, but not
both

• Must distinguish between forms that use standard
evaluation (function applications) and those that do
not (special forms)

• Using applicative order evaluation for functions
makes semantics and implementation easier

Programming Languages, Third Edition 76

Delayed Evaluation (cont’d.)

• Nonstrict: a property of a function in which delayed
evaluation leads to a well-defined result, even
though subexpressions or parameters may be
undefined

• Languages with the property that functions are strict
are easier to implement, although nonstrictness can
be a desirable property

• Algol60 included delayed execution in its pass by
name parameter passing convention
– A parameter is evaluated only when it is actually used

in the code of a called procedure

Programming Languages, Third Edition 77

Delayed Evaluation (cont’d.)

• Example: Algol60 delayed execution

• When called as p(true, 1 div 0), it returns 1
since y is never reached in the code of p
– The undefined expression 1 div 0 is never

computed

Programming Languages, Third Edition 78

Delayed Evaluation (cont’d.)

• In a language with function values, it is possible to
delay evaluation of a parameter by enclosing it in a
function “shell” (a function with no parameters)

• Example: C pass by name equivalent

Programming Languages, Third Edition 79

Delayed Evaluation (cont’d.)

• Such “shell” procedures are sometimes referred to
as pass by name thunks, or just thunks

• In Scheme and ML, the lambda and fn function
value constructors can be used to surround
parameters with function shells

• Example:

which can be called as follows:

Programming Languages, Third Edition 80

Delayed Evaluation (cont’d.)

• delay special form: delays evaluation of its
arguments and returns an object like a lambda
“shell” or promise to evaluate its arguments

• force special form: causes its parameter, a
delayed object, to be evaluated

• Previous function can now be written as:

and called as:

Programming Languages, Third Edition 81

Delayed Evaluation (cont’d.)

• Delayed evaluation can introduce inefficiency when
the same delayed expression is repeatedly
evaluated

• Scheme uses a memoization process to store the
value of the delayed object the first time it is forced
and then return this value for each subsequent call
to force
– This is sometimes referred to as pass by need

Programming Languages, Third Edition 82

Delayed Evaluation (cont’d.)

• Lazy evaluation: only evaluate an expression once
it is actually needed

• This can be achieved in a functional language
without explicit calls to delay and force

• Required runtime rules for lazy evaluation:
– All arguments to user-defined functions are delayed

– All bindings of local names in let and letrec
expressions are delayed

– All arguments to constructor functions are delayed

Programming Languages, Third Edition 83

Delayed Evaluation (cont’d.)

• Required runtime rules for lazy evaluation (cont’d.):
– All arguments to other predefined functions are

forced

– All function-valued arguments are forced

– All conditions in selection forms are forced

• Lists that obey lazy evaluation may be called
streams

• Primary example of a functional language with lazy
evaluation is Haskell

Programming Languages, Third Edition 84

Delayed Evaluation (cont’d.)

• Generator-filter programming: a style of
functional programming in which computation is
separated into procedures that generate streams
and other procedures that take streams as
arguments

• Generators: procedures that generate streams

• Filters: procedures that modify streams

• Same-fringe problem for lists: two lists have the
same fringe if they contain the same non-null
atoms in the same order

Programming Languages, Third Edition 85

Delayed Evaluation (cont’d.)

• Example: these lists have the same fringe:

 ((2 (3)) 4) and (2 (34 ()))
• To determine if two lists have the same fringe, must

flatten them to just lists of their atoms
• flatten function: can be viewed as a filter;

reduces a list to a list of its atoms

• Lazy evaluation will compute only enough of the
flattened lists as necessary before their elements
disagree

Programming Languages, Third Edition 86

Delayed Evaluation (cont’d.)

• Delayed evaluation complicates the semantics and
increases complexity in the runtime environment
– Delayed evaluation has been described as a form of

parallelism, with delay as a form of process
suspension and force as a kind of process
continuation

• Side effects, in particular assignment, do not mix
well with lazy evaluation

Programming Languages, Third Edition 87

Haskell – A Fully Curried Lazy
Language with Overloading

• Haskell: a pure functional language developed in
the late 1980s

• Builds on and extends a series of purely functional
lazy languages

• Contains a number of novel features, including
function overloading and a mechanism called
monads for dealing with side effects such as I/O

Programming Languages, Third Edition 88

Elements of Haskell

• Haskell’s syntax is very similar to that of ML
– Uses a layout rule with indentation and line

formatting to resolve ambiguities

• Differences from ML:
– Cannot redefine any predefined functions
– cons operator is written as a single colon

– Types are given using a double colon

– Pattern matching does not require the use of the .
symbol

– List concatenation is given by the ++ operator

Programming Languages, Third Edition 89

Elements of Haskell (cont’d.)

• Haskell is a fully curried language, with all
predefined operators curried

• Section construct: allows a binary operator to be
partially applied to either argument using
parentheses

• Examples:
– plus2 = (2 +) defines a function that adds 2 to

its argument on the left
– times3 = (* 3) defines a function that multiples

3 times its argument on the right

Programming Languages, Third Edition 90

Elements of Haskell (cont’d.)

• Infix functions can be turned into prefix functions by
surrounding them with parentheses

• Haskell has anonymous functions or lambda forms,
with the backslash representing the lambda

Programming Languages, Third Edition 91

Higher-Order Functions
and List Comprehensions

• Haskell includes many predefined higher-order
functions, such as map, that are all in curried form

• It has built-in lists and tuples, type synonyms, and
user-defined polymorphic types

Programming Languages, Third Edition 92

Higher-Order Functions
and List Comprehensions (cont’d.)

• Type variables are written without the quote of ML
and are written after the data type name, not before

• data keyword replaces ML’s datatype keyword

• Type and constructor names must be uppercase,
while function and value names must be lowercase

• Functions on new data type can use data
constructors as patterns, as in ML

Programming Languages, Third Edition 93

Higher-Order Functions
and List Comprehensions (cont’d.)

• List comprehension: a special notation for
operations applied to lists

• Example: squaring a list of integers

• This is syntactic sugar for:

Programming Languages, Third Edition 94

Lazy Evaluation and Infinite Lists

• Haskell is a lazy language – no value is computed
unless it is actually needed
– Lists in Haskell are the same as streams and can be

potentially infinite

• Haskell has several shorthand notations for infinite
lists, such as [n..], which means a list of
integers beginning with n

• take function: extracts the first n items from a list
• drop function: discards the first n items from a list

Programming Languages, Third Edition 95

Type Classes and
Overloaded Functions

• Haskell allows overloading of functions

• Type class:
– A set of types that all define certain functions

– Specifies the names and types (called signatures) of
the functions that every type belonging to it must
define

– Similar to Java interfaces

Programming Languages, Third Edition 96

Type Classes and
Overloaded Functions (cont’d.)

• Instance definition: contains the actual working
definitions for each of the required functions

• Many type classes themselves are defined to be
part of other type classes
– This dependency is called type class inheritance

Programming Languages, Third Edition 97

Type Classes and
Overloaded Functions (cont’d.)

• Type inheritance relies upon a hierarchy of type
classes

• Eq and Show classes are the base classes
– All predefined Haskell types are instances of the
Show class

– Eq class establishes the ability of two values of a
member type to be compared using == operator

Programming Languages, Third Edition 98

Programming Languages, Third Edition 99

The Mathematics of Functional
Programming: Lambda Calculus

• Lambda calculus: invented by Alonzo Church in
the 1930s
– A mathematical formalism for expressing

computation by functions

– Can be used as a model for purely functional
programming languages

• Many functional languages, including Lisp, ML and
Haskell, were based on lambda calculus

Programming Languages, Third Edition 100

Lambda Calculus (cont’d.)

• Lambda abstraction: the essential construct of
lambda calculus:

• Can be interpreted exactly as this Scheme lambda
expression:
– An unnamed function of parameter x that adds 1 to
x

• Basic operation of lambda calculus is the
application of expressions such as the lambda
abstraction

Programming Languages, Third Edition 101

Lambda Calculus (cont’d.)

• This expression:
– Represents the application of the function that adds

1 to x to the constant 2

• A reduction rule permits 2 to be substituted for x
in the lambda, yielding this:

Programming Languages, Third Edition 102

Lambda Calculus (cont’d.)

• Syntax for lambda calculus:

• Third rule represents function application

• Fourth rule gives lambda abstractions

• Lambda calculus as defined here is fully curried

Programming Languages, Third Edition 103

Lambda Calculus (cont’d.)

• Lambda calculus variables do not occupy memory

• The set of constants and the set of variables are
not specified by the grammar
– It is more correct to speak of many lambda calculi

• In the expression
– x is bound by the lambda

– The expression E is the scope of the binding

– Free occurrence: any variable occurrence outside
the scope

– Bound occurrence: an occurrence that is not free

Programming Languages, Third Edition 104

Lambda Calculus (cont’d.)

• Different occurrences of a variable can be bound
by different lambdas

• Some occurrences of a variable may be bound,
while others are free

• Can view lambda calculus as modeling functional
programming:
– A lambda abstraction as a function definition

– Juxtaposition of two expressions as function
application

Programming Languages, Third Edition 105

Lambda Calculus (cont’d.)

• Typed lambda calculus: more restrictive form that
includes the notion of data type, thus reducing the set
of expressions that are allowed

• Precise rules must be given for transforming
expressions

• Substitution (or function application): called beta-
reduction in lambda calculus

• Beta-abstraction: reversing the process of
substitution

• Beta-conversion: either beta-reduction or beta-
abstraction

Programming Languages, Third Edition 106

Lambda Calculus (cont’d.)

• Name capture problem: when doing beta-
conversion and replacing variables that occur in
nested scopes, an incorrect reduction may occur
– Must change the name of the variable in the inner

lambda abstraction (alpha-conversion)

• Eta-conversion: allows for the elimination of
“redundant” lambda abstractions
– Helpful in simplifying curried definitions in functional

languages

Programming Languages, Third Edition 107

Lambda Calculus (cont’d.)

• Applicative order evaluation (pass by value) vs.
normal order evaluation (pass by name)

• Example: evaluate this expression:
– Use applicative order; replacing (1 2 3) by its value and

then applying beta-reduction gives:

– Use normal order; applying beta-reduction first and
then evaluating gives:

• Normal order evaluation is a kind of delayed
evaluation

Programming Languages, Third Edition 108

Lambda Calculus (cont’d.)

• Different results can occur, such as when parameter
evaluation gives an undefined result
– Normal order will still compute the correct value
– Applicative order will give an undefined result

• Functions that can return a value even when
parameters are undefined are said to be nonstrict

• Functions that are undefined when parameters are
undefined are said to be strict

• Church-Rosser theorem: reduction sequences are
essentially independent of the order in which they are
performed

Programming Languages, Third Edition 109

Lambda Calculus (cont’d.)

• Fixed point: a function that when passed to
another function as an argument returns a function

• To define a recursive function in lambda calculus,
we need a function Y for constructing a fixed point
of the lambda expression for the function
– Y is called a fixed-point combinator

• Because by its nature, Y will actually construct a
solution that is in some sense the “smallest”; one
can refer to the least-fixed-point semantics of
recursive functions in lambda calculus

Programming Languages, Third Edition 110

	Programming Languages Third Edition
	Objectives
	Background
	Background (cont’d.)
	Slide 5
	Slide 6
	Programs as Functions
	Programs as Functions (cont’d.)
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Scheme: A Dialect of Lisp
	Scheme: A Dialect of Lisp (cont’d.)
	The Elements of Scheme
	The Elements of Scheme (cont’d.)
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Dynamic Type Checking
	Dynamic Type Checking (cont’d.)
	Tail and Non-Tail Recursion
	Tail and Non-Tail Recursion (cont’d.)
	Slide 40
	Slide 41
	Data Structures in Scheme
	Data Structures in Scheme (cont’d.)
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Programming Techniques in Scheme
	Higher-Order Functions
	Higher-Order Functions (cont’d.)
	Static (Lexical) Scoping
	Static (Lexical) Scoping (cont’d.)
	Slide 53
	Symbolic Information Processing and Metalinguistic Power
	ML: Functional Programming with Static Typing
	ML: Functional Programming with Static Typing (cont’d.)
	The Elements of ML
	The Elements of ML (cont’d.)
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Data Structures in ML
	Data Structures in ML (cont’d.)
	Higher-Order Functions and Currying in ML
	Higher-Order Functions and Currying in ML (cont’d.)
	Slide 73
	Slide 74
	Delayed Evaluation
	Delayed Evaluation (cont’d.)
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Haskell – A Fully Curried Lazy Language with Overloading
	Elements of Haskell
	Elements of Haskell (cont’d.)
	Slide 91
	Higher-Order Functions and List Comprehensions
	Higher-Order Functions and List Comprehensions (cont’d.)
	Slide 94
	Lazy Evaluation and Infinite Lists
	Type Classes and Overloaded Functions
	Type Classes and Overloaded Functions (cont’d.)
	Slide 98
	Slide 99
	The Mathematics of Functional Programming: Lambda Calculus
	Lambda Calculus (cont’d.)
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110

