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Objectives

• Understand the concepts of functional 
programming

• Become familiar with Scheme

• Become familiar with ML

• Understand delayed evaluation

• Become familiar with Haskell

• Understand the mathematics of functional 
programming
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Background

• Several different styles of programming, including:
– Functional programming

– Logic programming

– Object-oriented programming

• Different languages have evolved to support each 
style of programming
– Each type of language rests on a distinct model of 

computation, which is different from the von 
Neumann model
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Background (cont’d.)

• Functional programming: 
– Provides a uniform view of programs as functions

– Treats functions as data

– Provides prevention of side effects

• Functional programming languages generally have 
simpler semantics and a simpler model of 
computation
– Useful for rapid prototyping, artificial intelligence, 

mathematical proof systems, and logic applications 
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Background (cont’d.)

• Until recently, most functional languages suffered 
from inefficient execution
– Most were originally interpreted instead of compiled

• Today, functional languages are very attractive for 
general programming
– They lend themselves very well to parallel execution

– May be more efficient than imperative languages on 
multicore hardware architectures

– Have mature application libraries
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Background (cont’d.)

• Despite these advantages, functional languages 
have not become mainstream languages for 
several reasons:
– Programmers learn imperative or object-oriented 

languages first

– OO languages provide a strong organizing principle 
for structuring code that mirrors the everyday 
experience of real objects

• Functional methods such as recursion, functional 
abstraction, and higher-order functions have 
become part of many programming languages
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Programs as Functions

• A program is a description of specific computation

• If we ignore the “how” and focus on the result, or 
the “what” of the computation, the program 
becomes a virtual black box that transforms input 
into output
– A program is thus essentially equivalent to a 

mathematical function

• Function: a rule that associates to each x from set 
of X of values a unique y from a set Y of values
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Programs as Functions (cont’d.)

• In mathematical terminology, the function can be 
written as y=f(x) or f:XY

• Domain of f: the set X

• Range of f: the set Y

• Independent variable: the x in f(x), representing 
any value from the set X

• Dependent variable: the y from the set Y, defined 
by y=f(x)

• Partial function: occurs when f is not defined for 
all x in X
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Programs as Functions (cont’d.)

• Total function: a function that is defined for all x in 
the set X

• Programs, procedures, and functions can all be 
represented by the mathematical concept of a 
function
– At the program level, x represents the input, and y 

represents the output

– At the procedure or function level, x represents the 
parameters, and y represents the returned values
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Programs as Functions (cont’d.)

• Functional definition: describes how a value is to 
be computed using formal parameters

• Functional application: a call to a defined function 
using actual parameters, or the values that the 
formal parameters assume for a particular 
computation

• In math, there is not always a clear distinction 
between a parameter and a variable
– The term independent variable is often used for 

parameters
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Programs as Functions (cont’d.)

• A major difference between imperative 
programming and functional programming is the 
concept of a variable
– In math, variables always stand for actual values

– In imperative programming languages, variables 
refer to memory locations that store values

• Assignment statements allow memory locations to 
be reset with new values
– In math, there are no concepts of memory location 

and assignment
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Programs as Functions (cont’d.)

• Functional programming takes a mathematical 
approach to the concept of a variable
– Variables are bound to values, not memory locations

– A variable’s value cannot change, which eliminates 
assignment as an available operation

• Most functional programming languages retain 
some notion of assignment
– It is possible to create a pure functional program 

that takes a strictly mathematical approach to 
variables
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Programs as Functions (cont’d.)

• Lack of assignment makes loops impossible
– A loop requires a control variable whose value 

changes as the loop executes

– Recursion is used instead of loops

• There is no notion of the internal state of a function
– Its value depends only on the values of its 

arguments (and possibly nonlocal variables)

• A function’s value cannot depend on the order of 
evaluation of its arguments
– An advantage for concurrent applications
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Programs as Functions (cont’d.)
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Programs as Functions (cont’d.)

• Referential transparency: the property whereby a 
function’s value depends only on the values of its 
variables (and nonlocal variables)

• Examples:
– gcd function is referentially transparent
– rand function is not because it depends on the state 

of the machine and previous calls to itself

• A referentially transparent function with no 
parameters must always return the same value
– Thus it is no different than a constant
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Programs as Functions (cont’d.)

• Referential transparency and the lack of assignment 
make the semantics straightforward

• Value semantics: semantics in which names are 
associated only to values, not memory locations 

• Lack of local state in functional programming makes 
it opposite of OO programming, wherein computation 
proceeds by changing the local state of objects

• In functional programming, functions must be 
general language objects, viewed as values 
themselves
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Programs as Functions (cont’d.)

• In functional programming, functions are first-
class data values
– Functions can be computed by other functions

– Functions can be parameters to other functions

• Composition: essential operation on functions
– A function takes two functions as parameters and 

produces another function as its returned value

• In math, the composition operator o is defined:

    If f:XY and g:YZ, then g o f:XZ is given by

 (g o f)(x) = g(f(x))

Programming Languages, Third Edition 17



Programs as Functions (cont’d.)

• Qualities of functional program languages and 
functional programs:
– All procedures are functions that distinguish 

incoming values (parameters) from outgoing values 
(results)

– In pure functional programming, there are no 
assignments

– In pure functional programming, there are no loops
– Value of a function depends only on its parameters, 

not on order of evaluation or execution path
– Functions are first-class data values
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Scheme: A Dialect of Lisp

• Lisp (LISt Processing): first language that 
contained many of the features of modern functional 
languages
– Based on the lambda calculus

• Features included:
– Uniform representation of programs and data using a 

single general structure: the list
– Definition of the language using an interpreter written 

in the same language (metacircular interpreter)
– Automatic memory management by the runtime 

system
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Scheme: A Dialect of Lisp (cont’d.)

• No single standard evolved for Lisp, and there are 
many variations

• Two dialects that use static scoping and a more 
uniform treatment of functions have become 
standard:
– Common Lisp

– Scheme
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The Elements of Scheme

• All programs and data in Scheme are considered 
expressions

• Two types of expressions: 
– Atoms: like literal constants and identifiers of an 

imperative language

– Parenthesized expression: a sequence of zero or 
more expressions separated by spaces and 
surrounded by parentheses

• Syntax is expressed in extended Backus-Naur 
form notation
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The Elements of Scheme (cont’d.)
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The Elements of Scheme (cont’d.)

• Syntax of Scheme:
expression  atom | ‘(‘ {expression} ’)’

atom  number | string | symbol | 
character | boolean

• When parenthesized expressions are viewed as 
data, they are called lists

• Evaluation rule: the meaning of a Scheme 
expression

• An environment in Scheme is a symbol table that 
associates identifiers with values
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The Elements of Scheme (cont’d.)

• Standard evaluation rule for Scheme expressions:
– Atomic literals evaluate to themselves

– Symbols other than keywords are treated as identifiers 
or variables that are looked up in the current 
environment and replaced by values found there

– A parenthesized expression or list is evaluated in one 
of two ways:

• If the first item is a keyword, a special rule is applied to 
evaluate the rest of the expression

• An expression starting with a keyword is called a 
special form
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The Elements of Scheme (cont’d.)

• Otherwise, the parenthesized expression is a function 
application

• Each expression within the parentheses is evaluated 
recursively

• The first expression must evaluate to a function, which 
is then applied to remaining values (its arguments)

• The Scheme evaluation rule implies that all 
expressions must be written in prefix form
– Example: (+ 2 3) 

• + is a function, and it is applied to the values 2 and 3, 
to return the value 5
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The Elements of Scheme (cont’d.)

• Evaluation rule also implies that the value of a 
function (as an object) is clearly distinguished from a 
call to the function
– Function is represented by the first expression in an 

application
– Function call is surrounded by parentheses

• Evaluation rule represents applicative order 
evaluation:
– All subexpressions are evaluated first

– A corresponding expression tree is evaluated from 
leaves to root
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The Elements of Scheme (cont’d.)
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The Elements of Scheme (cont’d.)

• Example: (* (+ 2 3) (+ 4 5 ))
– Two additions are evaluated first, then the 

multiplication
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The Elements of Scheme (cont’d.)

• A problem arises when data are represented 
directly in a program, such as a list of numbers

• Example:  (2.1 2.2 3.1)
– Scheme will try to evaluate it as a function call

– Must prevent this and consider it to be a list literal, 
using a special form with the keyword quote

• Example: (quote (2.1 2.2 3.1))

• Rule for evaluating a quote special form is to 
simply return the expression following quote 
without evaluating it
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The Elements of Scheme (cont’d.)
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• Loops are provided by recursive call
• Selection is provided by special forms:

– if form: like an if-else construct
– cond form: like an if-elseif construct; cond 

stands for conditional expression



The Elements of Scheme (cont’d.)

• Neither the if nor the cond special form obey the 
standard evaluation rule
– If they did, all arguments would be evaluated each 

time, rendering them useless as control mechanisms

– Arguments to special forms are delayed until the 
appropriate moment

• Scheme function applications use pass by value, 
while special forms in Scheme and Lisp use 
delayed evaluation
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The Elements of Scheme (cont’d.)

• Special form let: binds a variable to a value within 
an expression
– Example:  (let ((a 2) (b 3)) (+ 1 b))

• First expression in a let is a binding list

• let provides a local environment and scope for a 
set of variable names
– Similar to temporary variable declarations in block-

structured languages

– Values of the variables can be accessed only within 
the let form, not outside it
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The Elements of Scheme (cont’d.)

• lambda special form: creates a function with the 
specified formal parameters and a body of code to 
be evaluated when the function is applied
– Example: 

(lambda (radius) (* 3.14 (* radius radius)))

– Can apply the function to an argument by wrapping it 
and the argument in another set of parentheses:
((lambda (radius) (* 3.14 (* radius radius))) 
10)
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The Elements of Scheme (cont’d.)

• Can bind a name to a lambda within a let:
  (let ((circlearea (lambda (radius) (* 3.14 (* 

radius radius))))) (circlearea 10))

• let cannot be used to define recursive functions 
since let bindings cannot refer to themselves or 
each other

• letrec special form: works like a let but allows 
arbitrary recursive references within the binding list

(letrec ((factorial (lambda (n) (if (= n 0) 1 (* 
n (factorial (- n 1))))))) (factorial 10)
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The Elements of Scheme (cont’d.)

• let and letrec forms create variables visible 
within the scope and lifetime of the let or letrec

• define special form: creates a global binding of a 
variable visible in the top-level environment
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Dynamic Type Checking

• Scheme’s semantics include dynamic or latent type 
checking
– Only values, not variables, have data types

– Types of values are not checked until necessary at 
runtime

• Automatic type checking happens right before a 
primitive function, such as +

• Arguments to programmer-defined functions are 
not automatically checked

• If wrong type, Scheme halts with an error message
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Dynamic Type Checking (cont’d.)

• Can use built-in type recognition functions such as 
number? and procedure? to check a value’s type
– This slows down programmer productivity and the 

code’s execution speed
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Tail and Non-Tail Recursion

• Because of runtime overhead for procedure calls, 
loops are always preferable to recursion in 
imperative languages

• Tail recursive: when the recursive steps are the 
last steps in any function
– Scheme compiler translates this to code that 

executes as a loop with no additional overhead for 
function calls other than the top-level call

– Eliminates the performance hit of recursion
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Tail and Non-Tail Recursion (cont’d.)
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Tail and Non-Tail Recursion (cont’d.)

• Non-tail recursive function example in Figure 3.4:
– After each recursive call, the value returned by the 

call must be multiplied by n (the argument to the 
previous call)

– Requires a runtime stack to track the value of this 
argument for each call as the recursion unwinds

– Entails a linear growth of memory and a substantial 
performance hit
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Tail and Non-Tail Recursion (cont’d.)

• Tail recursive function example in Figure 3.4:
– All the work of computing values is done when the 

arguments are evaluated before each recursive call

– Argument result is used to accumulate intermediate 
products on the way down through the recursive 
calls

– No work remains to be done after each recursive 
call, so no runtime stack is necessary to remember 
arguments of previous calls
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Data Structures in Scheme

• Basic data structure in Scheme is the list
– Can represent a sequence, a record, or any other 

structure

• Scheme also supports structured types for vectors 
(one-dimensional arrays) and strings

• List functions:
– car: accesses the head of the list
– cdr: returns the tail of the list (minus the head)
– cons: adds a new head to an existing list
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Data Structures in Scheme (cont’d.)

• Example: a list representation of a binary search 
tree
("horse" ("cow" () ("dog" () ())) 

("zebra" ("yak" () ()) () ))

• A tree node is a list of three items (name left right)
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Data Structures in Scheme (cont’d.)

• List can be visualized as a pair of values: the car 
and the cdr
– List L is a pointer to a box of two pointers, one to its 
car and the other to its cdr 
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Data Structures in Scheme (cont’d.)

• Box and pointer notation for a simple list (1 2 3)
– Black rectangle in the end box stands for the empty 

list ( )
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Data Structures in Scheme (cont’d.)
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Data Structures in Scheme (cont’d.)

• All the basic list manipulation operations can be 
written as functions using the primitives car, cdr, 
cons, and null?
– null? returns true if the list is empty or false 

otherwise
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Programming Techniques in Scheme

• Scheme relies on recursion to perform loops and 
other repetitive operations
– To apply repeated operations to a list, “cdr down and 

cons up”: apply the operation recursively to the tail of 
a list and then use the cons operator to construct a 
new list with the current result

• Example:
(define square-list (lambda (L)

  (if (null? L) '()

    (cons (* (car L) (car L)) (square-list 

(cdr L)))))
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Higher-Order Functions

• Higher-order functions: functions that take other 
functions as parameters and functions that return 
functions as values

• Example: function with a function parameter that 
returns a function value
(define make-double (lambda (f)

   (lambda (x) (f x x)))

• Can now create functions using this:
(define square (make-double *))

(define double (make-double +))
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Higher-Order Functions (cont’d.)

• Runtime environment of functional languages is 
more complicated than the stack-based 
environment of a standard block-structured 
imperative language

• Garbage collection: automatic memory 
management technique to return memory used by 
functions
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Static (Lexical) Scoping

• Early dialects of Lisp were dynamically scoped

• Modern dialects, including Scheme and Common 
Lisp, are statically scoped

• Static scope (or lexical scope): the area of a 
program in which a variable declaration is visible
– For static scoping, the meaning or value of a variable 

can be determined by reading the source code

– For dynamic scoping, the meaning depends on the 
runtime context
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Static (Lexical) Scoping (cont’d.)

• Declaration of variables can be nested in block-
structured languages

• Scope of a variable extends to the end of the block 
in which it is declared, including any nested blocks 
(unless it is redeclared within a nesting block)
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Static (Lexical) Scoping (cont’d.)

• Free variable: a variable referenced within a 
function that is not also a formal parameter to that 
function and is not bound within a nested function

• Bound variable: a variable within a function that is 
also a formal parameter to that function

• Lexical scoping fixes the meaning of free variables 
in one place in the code, making a program easier 
to read and verify than dynamic scoping
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Symbolic Information Processing 
and Metalinguistic Power

• Metalinguistic power:  the capacity to build, 
manipulate, and transform lists of symbols that are 
then evaluated as programs

• Example: let form is actually syntactic sugar for 
the application of a lambda form to its arguments
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ML: Functional Programming 
with Static Typing

• ML (or MetaLanguage): a functional programming 
language quite different from the dialects of Lisp
– Has more Algol-like syntax, which avoids the use of 

many parentheses

– Is statically typed, allows for type-checking

• Advantages:
– Makes the language more secure since more errors 

are found prior to execution

– Improves efficiency by making type-checking at 
runtime unnecessary
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ML: Functional Programming 
with Static Typing (cont’d.)

• ML was first developed in the late 1970s for proving 
the correctness of programs
– Part of the Edinburgh Logic for Computable 

Functions (LCF) system

• Was later combined with the HOPE language and 
named Standard ML, or SML

• Current standard reflects another revision in 1997, 
called SML97, or ML97
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The Elements of ML

• In ML, the basic program is a function declaration
• fun: reserved word that introduces a function 

declaration

• Parentheses are almost completely unnecessary 
since the meaning of items can be determined 
based solely on their position
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The Elements of ML (cont’d.)

• A declared function can be called by its name:

• ML responds with the returned value and its type
– it is the name of the current expression under 

evaluation

• Values can be defined using the val keyword
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The Elements of ML (cont’d.)

• Arithmetic operators are written as infix operators
– Different from the prefix notation of Lisp

– Operator precedence and associativity are an issue

– ML adheres to the standard math conventions for 
arithmetic operators

• Can turn infix operators into prefix operators using 
the op keyword:

Programming Languages, Third Edition 59



The Elements of ML (cont’d.)

• Note that binary arithmetic operators take pairs of 
integers as their argument
– Pairs are elements of the Cartesian product type, or 

tuple type int * int
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The Elements of ML (cont’d.)

• In ML, programs are not themselves lists, as they 
are in Lisp

• A list in ML is indicated by square brackets, with 
elements separated by commas
– A list’s elements must all have the same type

• To mix data types, must use a tuple:
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The Elements of ML (cont’d.)

• The operator :: corresponds to cons in Scheme, 
for constructing a list out of an element (the head) 
and a previously constructed list (the tail)
– Every list is constructed by a series of applications of 

the :: operator, wherein [] is the empty list

• Type variable: denoted by ‘a
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The Elements of ML (cont’d.)

• ML operators hd (for head) and tl (for tail) 
correspond to Scheme’s car and cdr operators

• ML’s pattern-matching ability makes these 
functions unnecessary
– Can use h::t to identify the head and tail of a list
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The Elements of ML (cont’d.)

• Pattern matching can eliminate most uses of if 
expressions

• Example: recursive factorial function using pattern 
matching:

• Patterns can also contain wildcards, written as the 
underscore character
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The Elements of ML (cont’d.)

• Because of its strong typing, you must manually 
convert between data types using a conversion 
function

• ML does not allow overloading of functions
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The Elements of ML (cont’d.)

• rev function: built-in function that reverses a list

• ML makes a strong distinction between types that 
can be compared for equality and types that cannot
– Real numbers cannot be compared for equality

• When a polymorphic function definition involves an 
equality comparison, the type variables can only 
range over the equality types, written with two 
quotes
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The Elements of ML (cont’d.)

• Structure: ML’s version of the library package
– Includes several standard predefined resources 

useful for input and output 

– Examples: TextIO structure and inputLine and 
output functions

• unit type in ML is similar to the void type of C
– Has one value () that represents “no actual value”

• Can convert between strings and numbers with 
toString and fromString functions
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The Elements of ML (cont’d.)

• Expression sequence: a semicolon-separated 
sequence of expressions surrounded by 
parentheses, whose value is the value of the last 
expression listed
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Data Structures in ML

• ML has a rich set of data types, including 
enumerated types, records, tuples, and lists

• type keyword: gives a synonym to an existing data 
type

• datatype keyword produces a user-defined data 
type

• Value constructors (or data constructors): 
names used in the construction of data types that 
can be used as patterns
– Vertical bar is used to indicate alternative values

Programming Languages, Third Edition 69



Data Structures in ML (cont’d.)

• Example of a value constructor:

• Binary search tree can be declared with 
datatype:
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Higher-Order Functions and Currying 
in ML

• fn keyword: denotes a function expression and is 
followed by =>
– Can be used to build anonymous functions and 

function return values
– fun definition is just syntactic sugar for the use of an 
fn expression

• Example:

is equivalent to: 
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Higher-Order Functions and Currying 
in ML (cont’d.)

• rec keyword: used to declare a recursive function 
when using fn
– Similar to Scheme letrec

• Function composition can be done with the letter o
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Higher-Order Functions and Currying 
in ML (cont’d.)

• Currying: a process in which a function of multiple 
parameters is viewed as a higher-order function of 
a single parameter that returns a function of the 
remaining parameters
– A function to which this process is applied is said to 

be curried

• Can use a tuple to get an “uncurried” version of a 
function or two separate parameters to get a 
curried version
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Higher-Order Functions and Currying 
in ML (cont’d.)

• A language is said to be fully curried if function 
definitions are automatically treated as curried and 
all multiparameter built-in functions are curried
– ML is not fully curried since all built-in binary 

operators are defined as taking tuples
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Delayed Evaluation

• In a language with an applicative order evaluation 
rule, all parameters to user-defined functions are 
evaluated at the time of a call

• Examples that do not use applicative order 
evaluation:
– Boolean special forms and and or
– if special form

• Short-circuit evaluation of Boolean expressions 
allows a result without evaluating the second 
parameter
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Delayed Evaluation (cont’d.)

• Delayed evaluation is necessary for if special form

• Example:  (if a b c)
– Evaluation of b and c must be delayed until the result 

of a is known; then either b or c is evaluated, but not 
both

• Must distinguish between forms that use standard 
evaluation (function applications) and those that do 
not (special forms)

• Using applicative order evaluation for functions 
makes semantics and implementation easier
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Delayed Evaluation (cont’d.)

• Nonstrict: a property of a function in which delayed 
evaluation leads to a well-defined result, even 
though subexpressions or parameters may be 
undefined

• Languages with the property that functions are strict 
are easier to implement, although nonstrictness can 
be a desirable property

• Algol60 included delayed execution in its pass by 
name parameter passing convention
– A parameter is evaluated only when it is actually used 

in the code of a called procedure
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Delayed Evaluation (cont’d.)

• Example: Algol60 delayed execution

• When called as p(true, 1 div 0), it returns 1 
since y is never reached in the code of p
– The undefined expression 1 div 0 is never 

computed
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Delayed Evaluation (cont’d.)

• In a language with function values, it is possible to 
delay evaluation of a parameter by enclosing it in a 
function “shell” (a function with no parameters)

• Example: C pass by name equivalent
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Delayed Evaluation (cont’d.)

• Such “shell” procedures are sometimes referred to 
as pass by name thunks, or just thunks

• In Scheme and ML, the lambda and fn function 
value constructors can be used to surround 
parameters with function shells

• Example:

which can be called as follows:
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Delayed Evaluation (cont’d.)

• delay special form: delays evaluation of its 
arguments and returns an object like a lambda 
“shell” or promise to evaluate its arguments

• force special form: causes its parameter, a 
delayed object, to be evaluated

• Previous function can now be written as:

and called as:
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Delayed Evaluation (cont’d.)

• Delayed evaluation can introduce inefficiency when 
the same delayed expression is repeatedly 
evaluated

• Scheme uses a memoization process to store the 
value of the delayed object the first time it is forced 
and then return this value for each subsequent call 
to force
– This is sometimes referred to as pass by need
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Delayed Evaluation (cont’d.)

• Lazy evaluation: only evaluate an expression once 
it is actually needed

• This can be achieved in a functional language 
without explicit calls to delay and force

• Required runtime rules for lazy evaluation:
– All arguments to user-defined functions are delayed

– All bindings of local names in let and letrec 
expressions are delayed

– All arguments to constructor functions are delayed
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Delayed Evaluation (cont’d.)

• Required runtime rules for lazy evaluation (cont’d.):
– All arguments to other predefined functions are 

forced

– All function-valued arguments are forced

– All conditions in selection forms are forced

• Lists that obey lazy evaluation may be called 
streams

• Primary example of a functional language with lazy 
evaluation is Haskell
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Delayed Evaluation (cont’d.)

• Generator-filter programming: a style of 
functional programming in which computation is 
separated into procedures that generate streams 
and other procedures that take streams as 
arguments

• Generators: procedures that generate streams

• Filters: procedures that modify streams

• Same-fringe problem for lists: two lists have the 
same fringe if they contain the same non-null 
atoms in the same order
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Delayed Evaluation (cont’d.)

• Example: these lists have the same fringe:

  ((2 (3)) 4) and (2 (34 ()))
• To determine if two lists have the same fringe, must 

flatten them to just lists of their atoms
• flatten function: can be viewed as a filter; 

reduces a list to a list of its atoms

• Lazy evaluation will compute only enough of the 
flattened lists as necessary before their elements 
disagree
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Delayed Evaluation (cont’d.)

• Delayed evaluation complicates the semantics and 
increases complexity in the runtime environment
– Delayed evaluation has been described as a form of 

parallelism, with delay as a form of process 
suspension and force as a kind of process 
continuation

• Side effects, in particular assignment, do not mix 
well with lazy evaluation
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Haskell – A Fully Curried Lazy 
Language with Overloading

• Haskell: a pure functional language developed in 
the late 1980s

• Builds on and extends a series of purely functional 
lazy languages

• Contains a number of novel features, including 
function overloading and a mechanism called 
monads for dealing with side effects such as I/O
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Elements of Haskell

• Haskell’s syntax is very similar to that of ML
– Uses a layout rule with indentation and line 

formatting to resolve ambiguities

• Differences from ML:
– Cannot redefine any predefined functions
– cons operator is written as a single colon

– Types are given using a double colon

– Pattern matching does not require the use of the . 
symbol

– List concatenation is given by the ++ operator
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Elements of Haskell (cont’d.)

• Haskell is a fully curried language, with all 
predefined operators curried

• Section construct: allows a binary operator to be 
partially applied to either argument using 
parentheses

• Examples:  
– plus2 = (2 +) defines a function that adds 2 to 

its argument on the left
– times3 = (* 3) defines a function that multiples 

3 times its argument on the right

Programming Languages, Third Edition 90



Elements of Haskell (cont’d.)

• Infix functions can be turned into prefix functions by 
surrounding them with parentheses

• Haskell has anonymous functions or lambda forms, 
with the backslash representing the lambda
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Higher-Order Functions 
and List Comprehensions

• Haskell includes many predefined higher-order 
functions, such as map, that are all in curried form

• It has built-in lists and tuples, type synonyms, and 
user-defined polymorphic types

Programming Languages, Third Edition 92



Higher-Order Functions 
and List Comprehensions (cont’d.)

• Type variables are written without the quote of ML 
and are written after the data type name, not before

• data keyword replaces ML’s datatype keyword

• Type and constructor names must be uppercase, 
while function and value names must be lowercase

• Functions on new data type can use data 
constructors as patterns, as in ML
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Higher-Order Functions 
and List Comprehensions (cont’d.)

• List comprehension: a special notation for 
operations applied to lists

• Example: squaring a list of integers

• This is syntactic sugar for:
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Lazy Evaluation and Infinite Lists

• Haskell is a lazy language – no value is computed 
unless it is actually needed
– Lists in Haskell are the same as streams and can be 

potentially infinite

• Haskell has several shorthand notations for infinite 
lists, such as [n..], which means a list of 
integers beginning with n

• take function: extracts the first n items from a list
• drop function: discards the first n items from a list
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Type Classes and 
Overloaded Functions

• Haskell allows overloading of functions

• Type class: 
– A set of types that all define certain functions

– Specifies the names and types (called signatures) of 
the functions that every type belonging to it must 
define

– Similar to Java interfaces
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Type Classes and 
Overloaded Functions (cont’d.)

• Instance definition: contains the actual working 
definitions for each of the required functions

• Many type classes themselves are defined to be 
part of other type classes
– This dependency is called type class inheritance
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Type Classes and 
Overloaded Functions (cont’d.)

• Type inheritance relies upon a hierarchy of type 
classes

• Eq and Show classes are the base classes
– All predefined Haskell types are instances of the 
Show class

– Eq class establishes the ability of two values of a 
member type to be compared using == operator
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The Mathematics of Functional 
Programming: Lambda Calculus

• Lambda calculus: invented by Alonzo Church in 
the 1930s 
– A mathematical formalism for expressing 

computation by functions

– Can be used as a model for purely functional 
programming languages

• Many functional languages, including Lisp, ML and 
Haskell, were based on lambda calculus
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Lambda Calculus (cont’d.)

• Lambda abstraction: the essential construct of 
lambda calculus:

• Can be interpreted exactly as this Scheme lambda 
expression:
– An unnamed function of parameter x that adds 1 to 
x

• Basic operation of lambda calculus is the 
application of expressions such as the lambda 
abstraction
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Lambda Calculus (cont’d.)

• This expression: 
– Represents the application of the function that adds 

1 to x to the constant 2

• A reduction rule permits 2 to be substituted for x 
in the lambda, yielding this:
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Lambda Calculus (cont’d.)

• Syntax for lambda calculus:

• Third rule represents function application

• Fourth rule gives lambda abstractions

• Lambda calculus as defined here is fully curried
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Lambda Calculus (cont’d.)

• Lambda calculus variables do not occupy memory 

• The set of constants and the set of variables are 
not specified by the grammar
– It is more correct to speak of many lambda calculi

• In the expression 
– x is bound by the lambda

– The expression E is the scope of the binding

– Free occurrence: any variable occurrence outside 
the scope 

– Bound occurrence: an occurrence that is not free 
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Lambda Calculus (cont’d.)

• Different occurrences of a variable can be bound 
by different lambdas

• Some occurrences of a variable may be bound, 
while others are free

• Can view lambda calculus as modeling functional 
programming:
– A lambda abstraction as a function definition

– Juxtaposition of two expressions as function 
application
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Lambda Calculus (cont’d.)

• Typed lambda calculus: more restrictive form that 
includes the notion of data type, thus reducing the set 
of expressions that are allowed

• Precise rules must be given for transforming 
expressions

• Substitution (or function application): called beta-
reduction in lambda calculus

• Beta-abstraction: reversing the process of 
substitution

• Beta-conversion: either beta-reduction or beta-
abstraction
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Lambda Calculus (cont’d.)

• Name capture problem: when doing beta-
conversion and replacing variables that occur in 
nested scopes, an incorrect reduction may occur
– Must change the name of the variable in the inner 

lambda abstraction (alpha-conversion)

• Eta-conversion: allows for the elimination of 
“redundant” lambda abstractions
– Helpful in simplifying curried definitions in functional 

languages
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Lambda Calculus (cont’d.)

• Applicative order evaluation (pass by value) vs. 
normal order evaluation (pass by name)

• Example: evaluate this expression: 
– Use applicative order; replacing (1 2 3) by its value and 

then applying beta-reduction gives:

– Use normal order; applying beta-reduction first and 
then evaluating gives:

• Normal order evaluation is a kind of delayed 
evaluation
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Lambda Calculus (cont’d.)

• Different results can occur, such as when parameter 
evaluation gives an undefined result
– Normal order will still compute the correct value
– Applicative order will give an undefined result

• Functions that can return a value even when 
parameters are undefined are said to be nonstrict

• Functions that are undefined when parameters are 
undefined are said to be strict

• Church-Rosser theorem: reduction sequences are 
essentially independent of the order in which they are 
performed
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Lambda Calculus (cont’d.)

• Fixed point: a function that when passed to 
another function as an argument returns a function

• To define a recursive function in lambda calculus, 
we need a function Y for constructing a fixed point 
of the lambda expression for the function
– Y is called a fixed-point combinator

• Because by its nature, Y will actually construct a 
solution that is in some sense the “smallest”; one 
can refer to the least-fixed-point semantics of 
recursive functions in lambda calculus 
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