
Programming Languages
Third Edition

Chapter 2
Language Design Criteria



Objectives

• Describe the history of programming language 
design criteria

• Understand efficiency in programming languages

• Understand regularity in programming languages

• Understand security in programming languages

• Understand extensibility in programming languages

• Understand the design goals of C++

• Understand the design goals of Python

Programming Languages, Third Edition 2



Background

• What is good programming language design?

• What criteria should be used to judge a language?

• How should success or failure of a language be 
defined?

• We will define a language as successful if it 
satisfies any or all of these criteria:
– It achieves the goals of its designers

– It attains widespread use in an application area

– It serves as a model for other languages that are 
successful

Programming Languages, Third Edition 3



Background (cont’d.)

• When creating a new language, decide on an 
overall goal and keep it in mind throughout the 
design process

• This is especially important for special purpose 
languages
– The abstractions for the target application area must 

be built into the language design

• This chapter introduces some general design 
criteria and presents a set of detailed principles as 
potential aids to the designer

Programming Languages, Third Edition 4



Historical Overview

• In the early days, machines were extremely slow 
and memory was scarce
– Program speed and memory usage were prime 

concerns

• Efficiency of execution: primary design criterion
– Early FORTRAN code more or less directly mapped 

to machine code, minimizing the amount of 
translation required by the compiler

• Writability: the quality of a language that enables a 
programmer to use it to express computation 
clearly, correctly, concisely, and quickly

Programming Languages, Third Edition 5



Historical Overview (cont’d.)

• In the early days, writability was less important than 
efficiency

• Algol60 was designed for expressing algorithms in a 
logically clear and concise way
– Incorporated block structure, structured control 

statements, a more structured array type, and 
recursion

• COBOL attempted to improve readability of 
programs by trying to make them look like ordinary 
English
– However, this made them long and verbose

Programming Languages, Third Edition 6



Historical Overview (cont’d.)

• In the 1970s and early 1980s, the emphasis was 
on simplicity and abstraction, along with reliability
– Mathematical definitions for language constructs 

were introduced, along with mechanisms to allow a 
translator to partially prove the correctness of a 
program before translation

– This led to strong data typing

• In the 1980s and 1990s, the emphasis was on 
logical or mathematical precision
– This led to a renewed interest in functional 

languages
Programming Languages, Third Edition 7



Historical Overview (cont’d.)

• The most influential design criteria of the last 25 
years is the object-oriented approach to abstraction
– Led to the use of libraries and other object-oriented 

techniques to increase reusability of existing code

• In addition to the early goals of efficiency, nearly 
every design decision still considers readability, 
abstraction, and complexity control

Programming Languages, Third Edition 8



Efficiency

• Efficiency: usually thought of as efficiency of the 
target code

• Example: strong data typing, enforced at compile 
time, means that the runtime does not need to 
check the data types before executing operations

• Example: early FORTRAN required that all data 
declarations and subroutine calls had to be known 
at compile time to allow the memory space to be 
allocated once at beginning of execution

Programming Languages, Third Edition 9



Efficiency (cont’d.)

• Programmer efficiency: how quickly and easily 
can a person read and write in the programming 
language?

• Expressiveness: how easy is it to express 
complex processes and structures?

• Conciseness of the syntax also contributes to 
programmer efficiency
– Example: Python does not require braces or semi-

colons, only indentation and the colon (:)

Programming Languages, Third Edition 10



Efficiency (cont’d.)

• Reliability of a program can be viewed as an 
efficiency issue
– Unreliable programs require programmer time to 

diagnose and correct

• Programmer efficiency is also impacted by the 
ease with which errors can be found and corrected

• Since roughly 90% of time is spent on debugging 
and maintaining programs, maintainability may be 
the most important index of programming language 
efficiency

Programming Languages, Third Edition 11



Regularity 

• Regularity: refers to how well the features of a 
language are integrated

• Greater regularity implies:
– Fewer restrictions on the use of particular constructs

– Fewer strange interactions between constructs

– Fewer surprises in general in the way the language 
features behave

• Languages that satisfy the criterion of regularity are 
said to adhere to the principle of least 
astonishment

Programming Languages, Third Edition 12



Regularity (cont’d)

• Regularity can be subdivided into three concepts:
– Generality
– Orthogonal design
– Uniformity

• Generality: achieved by avoiding special cases in the 
availability or use of constructs and by combining 
closely related constructs into a single more general 
one

• Orthogonal design: constructs can be combined in 
any meaningful way, with no unexpected restrictions 
or behaviors

Programming Languages, Third Edition 13



Regularity (cont’d)

• Uniformity: a design in which similar things look 
similar and have similar meanings while different 
things look different

• Can classify a feature or construct as irregular if it 
lacks one of these three qualities

Programming Languages, Third Edition 14



Generality

• Generality: A language with this property avoids 
special cases wherever possible

• Example: procedures and functions
– Pascal allows nesting of functions and procedures 

and passing of functions and procedures as 
parameters to other functions and procedures but 
does not allow them to be assigned to variables or 
stored in data structures

• Example: operators
– In C, cannot directly compare two structures with ==; 

thus, this operator lacks generality

Programming Languages, Third Edition 15



Generality (cont’d.)

• Example: constants
– Pascal does not allow the value assigned to 

constants to be computed by expressions, while Ada 
has a completely general constant declaration facility

Programming Languages, Third Edition 16



Orthogonality

• In a language that is truly orthogonal, constructs do 
not behave differently in different contexts
– Restrictions that are context dependent are 

nonorthogonal, while restrictions that apply 
regardless of context exhibit a lack of generality

• Example: function return types
– Pascal allows only scalar or pointer types as return 

values
– C and C++ allow values of all data types except 

array types
– Ada and Python allow all data types

Programming Languages, Third Edition 17



Orthogonality (cont’d.)

• Example: placement of variable declarations
– C requires that local variables be defined only at the 

beginning of a block

– C++ allows variable definitions at any point inside a 
block prior to use

• Example: primitive and reference types
– In Java, primitive types use value semantics 

(values are copied during assignment), while object 
types (or reference types) use reference semantics 
(assignment produces two references to the same 
object)

Programming Languages, Third Edition 18



Orthogonality (cont’d.)

• Orthogonality was a major design goal of Algol68
– It is still the best example of a language in which 

constructs can be combined in all meaningful ways

Programming Languages, Third Edition 19



Uniformity

• Uniformity: refers to the consistency of appearance 
and behavior of language constructs

• Example: extra semicolon
– C++ requires a semicolon after a class definition but 

forbids its use after a function definition

• Example: using assignment to return a value
– Pascal uses the function name in an assignment 

statement to return the function’s value
• Looks confusingly like a standard assignment 

statement

– Other languages use a return statement
Programming Languages, Third Edition 20



Causes of Irregularities

• Many irregularities are case studies in the difficulties 
of language design

• Example: extra semicolon problem in C++ was a 
byproduct of the need to be compatible with C

• Example: irregularity of primitive types and reference 
types in Java is the result of the designer’s concern 
with efficiency

• It is possible to focus too much on a particular goal

• Example: Algol68 met its goals of generality and 
orthogonality, but this led to a somewhat obscure and 
complex language

Programming Languages, Third Edition 21



Security

• Reliability can be affected if restrictions are not 
imposed on certain features
– Pascal: pointers are restricted to reduce security 

problems

– C: pointers are much less restricted and thus more 
prone to misuse and error

– Java: pointers were eliminated altogether (they are 
implicit in object allocation), but Java requires a 
more complicated runtime environment

• Security: closely related to reliability

Programming Languages, Third Edition 22



Security (cont’d.)

• A language designed with security in mind:
– Discourages programming errors

– Allows errors to be discovered and reported

• Types, type-checking, and variable declarations 
resulted from a concern for security

• Exclusive focus on security can compromise the 
expressiveness and conciseness of a language
– Typically forces the programmer to laboriously 

specify as many things as possible in the code

Programming Languages, Third Edition 23



Security (cont’d.)

• ML and Haskell are functional languages that 
attempt to be secure yet allow for maximum 
expressiveness and generality
– They allow multityped objects, do not require 

declarations, and yet perform static type-checking

• Semantically safe: languages that prevent a 
programmer from compiling or executing any 
statements or expressions that violate the 
language definition
– Examples: Python, Lisp, Java

Programming Languages, Third Edition 24



Extensibility

• Extensible language: a language that allows the 
user to add features to it

• Example: the ability to define new data types and 
new operations (functions or procedures)

• Example: new releases that extend the built-in 
features of the language

• Very few languages allow additions to the syntax and 
semantics
– Lisp allows new syntax and semantics via a macro

• Macro: specifies the syntax of a piece of code that 
expands to other standard code when compiled

Programming Languages, Third Edition 25



C++: An Object-Oriented Extension 
of C

• C++: created by Bjarne Stroustrup at Bell Labs in 
1979-80

• He chose to base his new language on C because 
of its:
– Flexibility

– Efficiency

– Availability 

– Portability

• He chose to add the class construct from Simula67 
language

Programming Languages, Third Edition 26



C++: An Object-Oriented Extension 
of C (cont’d.)

• Design goals for C++:
– Support for good program development in the form 

of classes, inheritance, and strong type-checking

– Efficient execution on the order of C or BCPL

– Highly portable, easily implemented, and easily 
interfaced with other tools

Programming Languages, Third Edition 27



C++: First Implementations

• First implementation in 1979-80 in the form of a 
preprocessor called Cpre, which generated 
ordinary C code

• 1985: replaced the preprocessor with a more 
sophisticated compiler (which still generated C 
code for portability)
– Compiler was called Cfront

– Language was now called C++

– Added dynamic binding of methods, type 
parameters, and general overloading

Programming Languages, Third Edition 28



C++: First Implementations (cont’d.)

• Design goals for C++:
– Maintain C compatibility as far as practical

– Should undergo incremental development based firmly 
in practical experience

– Any added feature must not degrade runtime 
efficiency or affect existing programs negatively

– Should not force any one style of programming

– Should maintain and strengthen its type-checking

– Should be learnable in stages
– Should maintain compatibility with other systems and 

languages

Programming Languages, Third Edition 29



C++: Growth

Programming Languages, Third Edition 30

• Cpre and Cfront were distributed for educational 
purposes at no cost, creating interest in the 
language

• 1986: first commercial implementation

• Success of the language indicated that a concerted 
effort at creating a standard language was 
necessary



C++: Standardization

• Because C++ was rapidly growing in use, was 
continuing to evolve, and had several different 
implementations, standardization was a problem

• 1989: Stroustrup produced a reference manual

• 1990-1991: ANSI and ISO standards committees 
accepted the manual as the base document for the 
standardization effort

• 1994: addition of a standard library of containers 
and algorithms

• 1998: proposed standards became the actual 
ANSI/ISO standard

Programming Languages, Third Edition 31



C++: Retrospective

• Why was C++ a success?
– Introduced just as interest in object-oriented 

techniques was exploding

– Straightforward syntax, not tied to any operating 
environment

– Its semantics incurred no performance penalty

– Its flexibility, hybrid nature, and its designer’s 
willingness to extend its features were popular

• Detractors consider C++ to have too many features 
and too many ways of doing similar things

Programming Languages, Third Edition 32



Python: A General-Purpose 
Scripting Language

• Guido van Rossum developed a translator and 
virtual machine for a scripting language called 
Python in 1986

• One of his goals was to allow Python to act as a 
bridge between system languages such as C and 
shell or scripting languages such as Perl

• Included a dictionary, a set of key/value pairs 
implemented via hashing, that was useful for 
representing collections of objects organized by 
content or association instead of by position

Programming Languages, Third Edition 33



Python: Simplicity, Regularity, and 
Extensibility

• Design goals included:
– A simple regular syntax

– A set of powerful data types and libraries

– Easy to use by novices

Programming Languages, Third Edition 34



Python: Interactivity and Portability

• Python was designed for users who do not typically 
write large systems but instead write short 
programs
– Development cycle provides immediate feedback 

with minimal overhead for I/O operations

• Python can be run in two modes:
– Expressions or statements can be run in a Python 

shell for maximum interactivity

– Can be composed into longer scripts saved in files 
and run from a terminal command prompt

Programming Languages, Third Edition 35



Python: Interactivity and Portability 
(cont’d.)

• Design goal of portability was accomplished in two 
ways:
– Python compiler translates source code to machine-

independent byte code, which is run on a Python 
virtual machine (PVM)

– Application-specific libraries support programs that 
must access databases, networks, the Web, GUI, 
and other resources and technologies

Programming Languages, Third Edition 36



Python: Dynamic Typing vs. Finger 
Typing

• Python incorporates the dynamic typing 
mechanism found in Lisp and Smalltalk
– All variables are untyped

– Any variable can name any thing, but all things or 
values have a type

– Type-checking occurs at runtime

• This results in less overhead for the programmer
– Less “finger typing”

– Programmer can get a code segment up and running 
much faster

Programming Languages, Third Edition 37



Python: Retrospective

• Python was not intended to replace C or C++ for 
large or time-critical systems

• Runtime type-checking is not suitable for time-
critical applications

• The absence of static type-checking can be a 
liability in testing and verification of a large software 
system

• Its design goal of ease of use for a novice or 
nonprogrammer has largely been achieved

Programming Languages, Third Edition 38


	Programming Languages Third Edition
	Objectives
	Background
	Background (cont’d.)
	Historical Overview
	Historical Overview (cont’d.)
	Slide 7
	Slide 8
	Efficiency
	Efficiency (cont’d.)
	Slide 11
	Regularity
	Regularity (cont’d)
	Slide 14
	Generality
	Generality (cont’d.)
	Orthogonality
	Orthogonality (cont’d.)
	Slide 19
	Uniformity
	Causes of Irregularities
	Security
	Security (cont’d.)
	Slide 24
	Extensibility
	C++: An Object-Oriented Extension of C
	C++: An Object-Oriented Extension of C (cont’d.)
	C++: First Implementations
	C++: First Implementations (cont’d.)
	C++: Growth
	C++: Standardization
	C++: Retrospective
	Python: A General-Purpose Scripting Language
	Python: Simplicity, Regularity, and Extensibility
	Python: Interactivity and Portability
	Python: Interactivity and Portability (cont’d.)
	Python: Dynamic Typing vs. Finger Typing
	Python: Retrospective

