
About the Presentations

• The presentations cover the objectives found in the
opening of each chapter.

• All chapter objectives are listed in the beginning of
each presentation.

• You may customize the presentations to fit your
class needs.

• Some figures from the chapters are included. A
complete set of images from the book can be found
on the Instructor Resources disc.

1

Programming Languages
Third Edition

Chapter 1
Introduction

Objectives

• Describe the origins of programming languages

• Understand abstractions in programming
languages

• Understand computational paradigms

• Understand language definition

• Understand language translation

• Describe the future of programming languages

Programming Languages, Third Edition 3

Introduction

• How we program computers influences how we
think about computation, and vice versa

• Basic principles and concepts of programming
languages are part of the fundamental body of
knowledge of computer science
– The study of these principles is essential to

programmers and computer scientists

• This chapter introduces basic notions of
programming languages and outlines some basic
concepts

Programming Languages, Third Edition 4

Programming Languages, Third Edition 5

Origins of Programming Languages

• Programming language: often defined as “a
notation for communicating to a computer what we
want it to do”

• Before the mid 1940s, computer operators set
switches to adjust the internal wiring of a computer
to perform the requested tasks

• Programming languages allowed computer users
to solve problems without having to reconfigure
hardware

Programming Languages, Third Edition 6

Machine Language and the First
Stored Programs

• John von Neumann: proposed that computers
should be permanently hardwired with a small set
of general-purpose operations
– Would allow the operator to input a series of binary

codes to organize the basic hardware operations to
solve more specific problems

– Operators could flip switches to enter these codes,
called machine language, into memory

Programming Languages, Third Edition 7

Machine Language and the First
Stored Programs (cont’d.)

Programming Languages, Third Edition 8

Machine Language and the First
Stored Programs (cont’d.)

• Each line of code has 16 bits or binary digits
– Represents either a single machine language

instruction or a single data value

• Program execution begins with the first line of code
– Code is fetched from memory, decoded (interpreted),

and executed

• Control then moves to the next line of code and
continues until a halt instruction is reached

• Opcode: the first 4 bits of a line of code
– Indicates the type of operation to be performed

Programming Languages, Third Edition 9

Machine Language and the First
Stored Programs (cont’d.)

• Next 12 bits contain code for the instruction’s
operands

• Operand codes are either the numbers of machine
registers or relate to addresses of other data or
instructions in memory

• Machine language programming was tedious and
error prone

Programming Languages, Third Edition 10

Assembly Language, Symbolic Codes,
and Software Tools

• Assembly language: a set of mnemonic symbols
for instruction codes and memory locations
– Example: LD R1, FIRST

• Assembler: a program that translates the symbolic
assembly language code to binary machine code

• Loader: a program that loads the machine code
into computer memory

• Input devices:
– Keypunch machine

– Card reader

Programming Languages, Third Edition 11

Assembly Language, Symbolic Codes,
and Software Tools (cont’d.)

Programming Languages, Third Edition 12

Assembly Language, Symbolic Codes,
and Software Tools (cont’d.)

• Mnemonic symbols were an improvement over
binary machine codes but still had shortcomings
– Lacks abstraction of conventional mathematical

notation

– Each type of computer hardware architecture has its
own machine language instruction set and requires
its own dialect of assembly language

• Assembly languages first appeared in the 1950s
and are still used today for low-level system tools
or for hand-optimization

Programming Languages, Third Edition 13

FORTRAN and Algebraic Notation

• FORTRAN: FORmula TRANslation language
– Developed by John Backus in the early 1950s

– Reflected the architecture of a particular type of
machine

– Lacked the structured control statements and data
structures of later high-level languages

• Popular with scientists and engineers for its
support for algebraic notation and floating-point
numbers

Programming Languages, Third Edition 14

The ALGOL Family: Structured
Abstractions and Machine

Independence
• ALGOL: ALGOrithmic Language released in 1960

– Provided a standard notation for computer scientists
to publish algorithms in journals

– Included structured control statements for
sequencing (begin-end blocks), loops (for loop),
and selection (if and if-else statements)

– Supported different numeric types

– Introduced the array structure

– Supported procedures, including recursive
procedures

Programming Languages, Third Edition 15

The ALGOL Family (cont’d.)

• ALGOL achieved machine independence with the
requirement for an ALGOL compiler with each type
of hardware

• Compiler: translates programming language
statements into machine code

• ALGOL was the first language to receive a formal
specification or definition
– Included a grammar that defined its features for both

programmers and for compiler writers

Programming Languages, Third Edition 16

The ALGOL Family (cont’d.)

• Large number of high-level languages descended
from ALGOL, including:
– Pascal: language for teaching programming in the

1970s

– Ada: for embedded applications of U.S. Dept. of
Defense

Programming Languages, Third Edition 17

Computation without the von
Neumann Architecture

• High-level languages still echoed the underlying
architecture of the von Neumann model of a
machine
– Memory area for programs and data are stored

– Separate central processing unit that sequentially
executes instructions fetched from memory

• Improvements in processor speed and increasing
abstraction in programming languages led to the
information age

Programming Languages, Third Edition 18

Computation without the von
Neumann Architecture (cont’d.)

• Progress in language abstraction and hardware
performance ran into separate roadblocks:
– Hardware began to reach the limits of improvements

predicted by Moore’s Law, leading to the multi-core
approach

– Large programs were difficult to debug and correct

– Single-processor model of computation cannot be
easily mapped into new architecture of multiple
CPUs executing in parallel

Programming Languages, Third Edition 19

Computation without the von
Neumann Architecture (cont’d.)

• Solution: languages need not be based on a
particular model of hardware but need only to
support models of computation suitable for styles of
problem solving

• Lambda calculus: computational model developed
by mathematician Alonzo Church
– Based on the theory of recursive functions

• Lisp: programming language that uses the
functional model of computation

Programming Languages, Third Edition 20

Computation without the von
Neumann Architecture (cont’d.)

• Other languages modeled on non-von Neumann
models of computing that lend themselves to
parallel processing include:
– A formal logic model with automatic theorem proving

– A model involving the interaction of objects via
message passing

Programming Languages, Third Edition 21

Abstractions in Programming
Languages

• Two types of programming language abstractions:
– Data abstraction

– Control abstraction

• Data abstractions: simplify the behavior and
attributes of data for humans
– Examples: numbers, character strings, search trees

• Control abstractions: simplify properties of the
transfer of control
– Examples: loops, conditional statements, procedure

calls

Programming Languages, Third Edition 22

Abstractions in Programming
Languages (cont’d.)

• Abstractions can also be categorized by levels
(measures of the amount of information contained
or hidden in the abstraction)

• Basic abstractions: collect the most localized
machine information

• Structured abstractions: collect intermediate
information about the structure of a program

• Unit abstractions: collect large-scale information
in a program

Programming Languages, Third Edition 23

Data: Basic Abstractions

• Basic data abstraction:
– Hides internal representation of common data values

• Values are also called “primitive” or “atomic” because
the programmer cannot normally access the
component parts or bits of the internal representation

– Variables: use of symbolic names to hide computer
memory locations containing data values

– Data types: names given to kinds of data values

– Declaration: the process of giving a variable a name
and a data type

Programming Languages, Third Edition 24

Data: Basic Abstractions (cont’d.)

• Basic data abstractions (cont’d.):
– Standard mathematical operations, such as addition

and multiplication

Programming Languages, Third Edition 25

Data: Structured Abstractions

• Data structure: collects related data values into a
single unit
– Hides component parts but can be constructed from

parts, and parts can be accessed and modified

• Examples:
– Employee record contains name, address, phone,

salary (different data types)

– Array: sequence of individually indexed items with
the same data type

– Text file: a sequence of characters for transfer to and
from an external storage device

Programming Languages, Third Edition 26

Data: Unit Abstractions

• Information hiding: defining new data types (data
and operations) that hide information

• Unit abstraction: often associated with the
concept of an abstract data type
– A set of data values and the operations on those

values

• Separates the interface from the implementation
– Interface: set of operations available to the user

– Implementation: internal representation of data
values and operations

Programming Languages, Third Edition 27

Data: Unit Abstractions (cont’d.)

• Examples:
– Module in ML, Haskell, and Python

– Package in Lisp, Ada, and Java

– Class mechanism in object-oriented languages

• Unit abstraction also provides reusability

• Typically, components are entered into a library
and become the basis for library mechanisms
– Interoperability allows combination of units

• Application programming interface (API): gives
information about the resource’s components

Programming Languages, Third Edition 28

Control: Basic Abstractions

• Basic control abstractions: statements that
combine a few machine instructions into an
abstract statement that is easier to understand

• Syntactic sugar: a mechanism that allows you to
replace a complex notation with a simpler,
shorthand notation
– Example: x += 10 instead of x = x + 10

Programming Languages, Third Edition 29

Control: Structured Abstractions

• Structured control abstractions: divide a
program into groups of instructions nested within
tests that govern their execution
– Help to express the logic of primary control

structures of sequencing, selection, and iteration

• Branch instructions: instructions that support
selection and iteration to memory locations other
than the next one

Programming Languages, Third Edition 30

Control: Structured Abstractions
(cont’d.)

Programming Languages, Third Edition 31

Control: Structured Abstractions
(cont’d.)

Programming Languages, Third Edition 32

Control: Structured Abstractions
(cont’d.)

• Iterator: an object associated with a collection
(such as array, list, set, or tree)
– Open an iterator on a collection, then visit all the

elements by using the iterator’s methods

• Syntactic sugar for iterator in Java: enhanced for
loop

Programming Languages, Third Edition 33

Control: Structured Abstractions
(cont’d.)

Programming Languages, Third Edition 34

• Procedure (or subprogram or subroutine):
groups a sequence of actions into a single action
that can be called or invoked from other points in
the program
– Procedure declaration: names a procedure and

associates it with the actions to be performed

– Invocation (or procedure activation): the act of
calling the procedure

– Parameters: values that can change from call to call
– Arguments (or actual parameters): values supplied

by the caller for the parameters

Control: Structured Abstractions
(cont’d.)

Programming Languages, Third Edition 35

Control: Structured Abstractions
(cont’d.)

• Runtime environment: the system implementation
of the program
– Stores information about the condition of the

program and the way procedures operate

• Function: closely related to a procedure
– Returns a value or result to its caller

– Can be written to correspond more closely to
mathematical abstractions

• Recursion: a mechanism that further exploits the
abstraction mechanism

Programming Languages, Third Edition 36

Control: Structured Abstractions
(cont’d.)

Programming Languages, Third Edition 37

Control: Structured Abstractions
(cont’d.)

• Higher-order functions: functions that can accept
other functions as arguments and return functions
as values

• Example: map function
– Expects another function and a collection as

arguments

– Applies the argument function to each element in the
argument collection and returns a list of results

Programming Languages, Third Edition 38

Control: Unit Abstractions

• Unit: a stand-alone collection of procedures
providing logically related services to other parts of a
program
– Allows a program to be understood as a whole without

needing to know the details of the services provided
by the unit

• Threads: separately executed control paths within
the Java system

• Processes: other programs executing outside the
Java system

• Task: mechanism in Ada for parallel execution
Programming Languages, Third Edition 39

Computational Paradigms

• Imperative language: a language with three
properties
– Sequential execution of instructions

– Use of variables representing memory locations

– Use of assignment to change the values of variables

• Represents one paradigm (pattern) for
programming languages

• von Neumann bottleneck: requirement that a
program be described as a sequence of
instructions

Programming Languages, Third Edition 40

Computational Paradigms (cont’d.)

• Functional paradigm:
– Based on the abstract notion of a function in lambda

calculus

• Logic paradigm:
– Based on symbolic logic

• Both functional and logic paradigms correspond to
mathematical foundations
– Makes it easier to determine if a program will

execute correctly

Programming Languages, Third Edition 41

Computational Paradigms (cont’d.)

• Object-oriented paradigm:
– Reusable code that operates in a way to mimic

behaviors of real-world objects

Programming Languages, Third Edition 42

Language Definition

• Formal language definition provides benefits:
– Helps to allow you to reason mathematically about

programs

– Promotes standardization for machine or
implementation independence

– Defines program behavior and interaction

– Ensures discipline when a language is designed

• Language definition can be loosely divided into:
– Syntax, or structure

– Semantics, or meaning

Programming Languages, Third Edition 43

Language Syntax

• Language syntax: similar to the grammar of a
natural language

• Grammar: formal definition of the language’s
syntax

• Lexical structure: structure of the language’s
words
– Similar to spelling in natural languages

• Tokens: the language’s words
– Includes keywords, identifiers, symbols for

operations, special punctuation symbols, etc.

Programming Languages, Third Edition 44

Language Syntax (cont’d.)

• Example: if statement in C

Programming Languages, Third Edition 45

Language Semantics

• Semantics: meaning of a language
– Describes the effects of executing the code

– Difficult to provide a comprehensive description of
meaning in all contexts

• Example: if statement in C

Programming Languages, Third Edition 46

Language Semantics (cont’d.)

• No generally accepted formal method for
describing semantics

• Several notational systems have been developed:
– Operational semantics

– Denotational semantics

– Axiomatic semantics

Programming Languages, Third Edition 47

Language Translation

• Translator: a program that accepts other programs
and either directly executes them or transforms
them into a form suitable for execution

• Two major types of translators:
– Interpreter: executes a program directly

– Compiler: produces an equivalent program in a form
suitable for execution

Programming Languages, Third Edition 48

Language Translation (cont’d.)

• Interpretation is a one-step process
– Both the program and the input are provided to the

interpreter, and the output is obtained

Programming Languages, Third Edition 49

Language Translation (cont’d.)

• Compilation requires at least two steps
– Source program is input to the compiler

– Target program is output from the compiler

• Target language is often assembly language, so
the target program must be:
– Translated by an assembler into an object program

– Linked with other object programs

– Loaded into appropriate memory locations

Programming Languages, Third Edition 50

Language Translation (cont’d.)

• Target language may be byte code (a form of low-
level code)
– Byte code is then executed by an interpreter called a

virtual machine

• Virtual machine: written differently for different
hardware architectures
– Byte code is machine-independent

– Examples: Java, Python

Programming Languages, Third Edition 51

Language Translation (cont’d.)

Programming Languages, Third Edition 52

Language Translation (cont’d.)

Programming Languages, Third Edition 53

• Possible for a language to be defined by the
behavior of a particular interpreter or compiler
– Called a definitional translator

– Not common

Future of Programming Languages

• In the 1960s, computer scientists wanted a single
universal programming language to meet all needs

• In the late 1970s and early 1980s, they wanted
specification languages that would allow users to
define the needs and then generate the system
– This is what logic programming languages attempt to

do

• Programming has not become obsolete
– New languages will arise to support new

technologies that arise

Programming Languages, Third Edition 54

Future of Programming Languages
(cont’d.)

• Relative popularity of programming languages
since 2000, based on number of posts on
newsgroups:

Programming Languages, Third Edition 55

	About the Presentations
	Programming Languages Third Edition
	Objectives
	Introduction
	Slide 5
	Origins of Programming Languages
	Machine Language and the First Stored Programs
	Machine Language and the First Stored Programs (cont’d.)
	Slide 9
	Slide 10
	Assembly Language, Symbolic Codes, and Software Tools
	Assembly Language, Symbolic Codes, and Software Tools (cont’d.)
	Slide 13
	FORTRAN and Algebraic Notation
	The ALGOL Family: Structured Abstractions and Machine Independence
	The ALGOL Family (cont’d.)
	Slide 17
	Computation without the von Neumann Architecture
	Computation without the von Neumann Architecture (cont’d.)
	Slide 20
	Slide 21
	Abstractions in Programming Languages
	Abstractions in Programming Languages (cont’d.)
	Data: Basic Abstractions
	Data: Basic Abstractions (cont’d.)
	Data: Structured Abstractions
	Data: Unit Abstractions
	Data: Unit Abstractions (cont’d.)
	Control: Basic Abstractions
	Control: Structured Abstractions
	Control: Structured Abstractions (cont’d.)
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Control: Unit Abstractions
	Computational Paradigms
	Computational Paradigms (cont’d.)
	Slide 42
	Language Definition
	Language Syntax
	Language Syntax (cont’d.)
	Language Semantics
	Language Semantics (cont’d.)
	Language Translation
	Language Translation (cont’d.)
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Future of Programming Languages
	Future of Programming Languages (cont’d.)

