\qquad

If a question is wrong, or has no acceptable answer, do not mark any choice.
If a question has several correct answers, choose the most accurate/complete/informative one.
On a separate sheet, write a detailed justification of your choice.
You will be graded on the accuracy and precision of this justification only.
You will get 1 point for each correct answer and 0 points for missing or incorrect answers.
Your grade will be written on the back of this page.

1. Which of the following is a post-order traversal of the tree to the right:
[-A-] rbcdxyzweu
[-B-] rbxecdywuz
[-C-] zcdywubxer

[-D-] cdbzywxuer
2. Consider again the previous tree. Which of the following is a pre-order traversal of the tree:

$$
\begin{array}{ll}
\text { [-A-] } & r b c d x y z w e u \\
\text { [-B-] } & r b x e c d y w u z \\
\text { [-C-] } & z c d y w u b x e r \\
\text { [-D-] } & \text { cdbzywxuer }
\end{array}
$$

3. Consider again the previous tree.

The set of all the siblings of b is:
[-A-] $\{x\}$
[-B-] $\{x, e\}$
[-C-] $\{c, d\}$
[-D-] $\}$
4. Consider again the previous tree.

Its depth (also called height) is:

$[-\mathrm{A}-]$	2
$[-\mathrm{B}-]$	3
$[-\mathrm{C}-]$	5
$[$ [-D-]	10

5. The Polish notation of the expression $a+b * c+d$ is (where " + " is left associative):

$$
\begin{array}{ll}
{[-\mathrm{A}-]} & ++a * b c d \\
{[-\mathrm{B}-]} & +a * b c+d \\
\text { [-C-] } & ++* a b c d \\
\text { [-D-] } & +* b c+a d
\end{array}
$$

6. Language L consists of strings of a, b, and c with equal frequency.

String $s=$ aaaaabbbbbccccc (5 of each letter).
The length in bits of s with an optimal Huffman code is:

[-A-]	15
[-B-]	20
[-C-]	25
$[$ [-D-]	30

7. Consider the binary search tree to the right

If value 12 is inserted into the tree, the node holding this value will be:
[-A-] a child of 11
[-B-] the left child of 11
[-C-] the right child of 11
[-D-] not a child of 11

8. Consider again the previous tree.

If value 5 is deleted from the tree, the value of the node holding 5 is replaced by:
[-A-] 1
[-B-] 9
[-C-] either 1 or 9
[-D-] none of the above
9. Which traversal of a binary search tree produces a sorted sequence:
[-A-] Pre-order
[-B-] In-order
[-C-] Post-order
[-D-] Level-order
10. A binary tree is perfect is all its leaves are at the same depth.

The number of leaves in a perfect binary tree of depth d is:

$[-\mathrm{A}-]$	d^{2}
$[-\mathrm{B}-]$	2^{d}
$[-\mathrm{C}-]$	$2^{d}-1$
$[-\mathrm{D}-]$	$2^{d+1}-1$

11. Let P be a problem with 20 outcomes.

The depth of a binary decision tree that solves P must be at least:
[-A-] 2
[-B-] 3
[-C-] 4
[-D-] 5

