\qquad

If a question is wrong, or has no acceptable answer, do not mark any choice.
If a question has several correct answers, choose the most accurate/complete/informative one.
On a separate sheet, write a detailed justification of your choice.
You will be graded on the accuracy and precision of this justification only.
You will get 1 point for each correct answer and 0 points for missing or incorrect answers.
Your grade will be written on the back of this page.

1. The $\mathrm{C}++$ language is:
[-A-] finite
[-B-] countably infinite
[-C-] countable
[-D-] uncountable
2. Let $\mathbb{E}=\{x \mid x \in \mathbb{N}$ and x is even $\}$.

Which function over \mathbb{E} proves that \mathbb{E} is countable.

$$
\begin{array}{ll}
{[-\mathrm{A}-]} & f(x)=2 x \\
{[-\mathrm{B}-]} & f(x)=x / 2 \\
{[-\mathrm{C}-]} & f(x)=x \\
\text { [-D-] } & \text { All of the above }
\end{array}
$$

3. A countable union of countable sets is:
[-A-] either finite or infinite
[-B-] neither finite nor infinite
[-C-] infinite
[-D-] finite
4. Let $A=\{1,2,3\}$ and $B=\{1,2\}$.

Let $C=A \times B$.
[-A-] $|C|=6$
[-B-] $|C|=5$
[-C-] $|C|=4$
[-D-] $\quad|C|=2$
5. The number of permutations of 3 elements out of a set of 7 elements is about:
[-A-] 50
[-B-] 100
[-C-] 200
[-D-] 400
6. The number of permutations of 3 colors, one of which is red, out of a set of 7 colors, one of which is red, is:
[-A-] 45
[-B-] 90
[-C-] 180
[-D-] 210
7. The number of r-combinations (size r) chosen from n distinct objects is:

$$
\begin{array}{ll}
\text { [-A-] } & r! \\
\text { [-B-] } & \frac{n!}{r!} \\
\text { [-C-] } & \frac{n!}{(n-r)!} \\
\text { [-D-] } & \frac{n!}{r!(n-r)!}
\end{array}
$$

8. The number of ways to arrange the letters of the word "LALALA" is:
[-A-] 18
[-B-] 20
[-C-] 36
[-D-] 120
9. The number of different ways 4 people can ride a merry go round (arranged around a circle) is:
[-A-] 6
[-B-] 12
[-C-] 24
[-D-] 36
10. For all n and k :
[-A-] $\quad\binom{n}{k}<\binom{n}{n-k}$
[-B-] $\quad\left(\begin{array}{c}n \\ k \\ k\end{array}\right)=\left(\begin{array}{c}n-k \\ n \\ n-k\end{array}\right)$
[-C-] $\quad\binom{n}{k}>\binom{n}{n-k}$
[-D-] None of the above
11. 10 choose 6 is:
[-A-] 45
[-B-] 90
[-C-] 180
[-D-] 210
