```
Name:
```

If a question is wrong, or has no acceptable answer, do not mark any choice.

If a question has several correct answers, choose the most accurate/complete/informative one. On a separate sheet, write a detailed justification of your choice.

You will be graded on the accuracy and precision of this justification only.

You will get 1 point for each correct answer and 0 points for missing or incorrect answers. Your grade will be written on the back of this page.

- 1. The close form of $\sum_{i=1}^{n} (2i+2)$ is:
 - [-A-] $n^2 + 3n 2$ [-B-] n(n+1) + 2n
 - [-C-] $n^2 + n$
 - [-D-] None of the above
- 2. The value of $\sum_{i=45}^{60} i$ is (remember Gauss): [-A-] 840 [-B-] 850 [-C-] 880 [-D-] 900
- 3. How many times does the following program prints "hi" for n = 9.

```
for (i=0; i<n; i++) {
  for (j=i+1; j<=n; j++) {
    print("hi");
  }
}
[-A-] 45
[-B-] 60
[-C-] 90
[-D-] none of the above</pre>
```

4. Let L be a language containing exactly l strings. Let M be a language containing exactly m strings. The number of strings in $L \cup M$ is:

- 5. Let $L = \{aa, b\}$ and $M = \{bb, a\}$ be languages over $\{a, b\}$. Let X = LML.
 - [-A-] $a^0 \in X$ [-B-] $a^3 \in X$ [-C-] $a^5 \in X$
 - $[-D-] \quad a^7 \in X$

6. Let A be an alphabet.

Which of the following is **not** a language over A.

- $\begin{bmatrix} -\mathbf{A} \end{bmatrix} \quad \Lambda \\ \begin{bmatrix} -\mathbf{B} \end{bmatrix} \quad \varnothing$
- [-C-] A
- $[-D-] \quad \{\Lambda\}$
- 7. Let L be an alphabet.
 - $\begin{bmatrix} -\mathbf{A} \end{bmatrix} \quad L^* = L^* L^*$
 - $[-B-] \quad L^* \subseteq L^*L^*$
 - $\begin{bmatrix} -\mathbf{C} \end{bmatrix} \quad L^* \supseteq L^* L^*$
 - [-D-] None of the above
- 8. Let P(n) be a statement where n stands for a natural number. In a proof by induction of P, the base case proves P(k) where k is:
 - [-A-] zero
 - [-B-] zero or greater than zero
 - [-C-] strictly greater than zero
 - [-D-] None of the above
- 9. In a proof by induction of P(n), you must prove:
 - [-A-] P(k), for $k \ge 0$
 - [-B-] $P(k) \wedge P(k+1)$, for k > 0
 - [-C-] if P(k), then P(k+1), for k > 0
 - [-D-] if P(k), then P(k+1), for $k \ge 0$
- 10. Let $a_0 = 2$ and, for n > 0, $a_n = a_{n-1} + 2$ be a recurrence relation. The close form of a_n is:
 - $\begin{array}{ll} [-\mathrm{A-}] & 2(n-1) \\ [-\mathrm{B-}] & 2n \\ [-\mathrm{C-}] & 2(n+1) \\ [-\mathrm{D-}] & n^2 \end{array}$
- 11. Let $a_0 = 0$ and, for n > 0, $a_n = a_{n-1} + 3$ be a recurrence relation. The close form of a_n is:
 - [-A-] 3(n-1)[-B-] 3n[-C-] 3(n+1)[-D-] n^2