\qquad

If a question is wrong, or has no acceptable answer, do not mark any choice.
If a question has several correct answers, choose the most accurate/complete/informative one.
On a separate sheet, write a detailed justification of your choice.
You will be graded on the accuracy and precision of this justification only.
You will get 1 point for each correct answer and 0 points for missing or incorrect answers.
Your grade will be written on the back of this page.

1. The close form of $\sum_{i=1}^{n}(2 i+2)$ is:
[-A-] $n^{2}+3 n-2$
[-B-] $n(n+1)+2 n$
[-C-] $n^{2}+n$
[-D-] None of the above
2. The value of $\sum_{i=45}^{60} i$ is (remember Gauss):
[-A-] 840
[-B-] 850
[-C-] 880
[-D-] 900
3. How many times does the following program prints "hi" for $n=9$.
```
for (i=0; i<n; i++) {
    for (j=i+1; j<=n; j++) {
            print("hi");
        }
}
[-A-] 45
[-B-] 60
[-C-] 90
[-D-] none of the above
```

4. Let L be a language containing exactly l strings.

Let M be a language containing exactly m strings.
The number of strings in $L \cup M$ is:
[-A-] exactly $l+m$
[-B-] at least $l+m$
[-C-] at most $l+m$
[-D-] None of the above
5. Let $L=\{a a, b\}$ and $M=\{b b, a\}$ be languages over $\{a, b\}$.

Let $X=L M L$.
[-A-] $a^{0} \in X$
[-B-] $a^{3} \in X$
$[-\mathrm{C}-] \quad a^{5} \in X$
[-D-] $a^{7} \in X$
6. Let A be an alphabet.

Which of the following is not a language over A.

```
[-A-] \(\Lambda\)
[-B-] \(\varnothing\)
[-C-] \(A\)
[-D-] \(\{\Lambda\}\)
```

7. Let L be an alphabet.

$$
\begin{array}{ll}
{[-\mathrm{A}-]} & L^{*}=L^{*} L^{*} \\
{[-\mathrm{B}-]} & L^{*} \subseteq L^{*} L^{*} \\
{[-\mathrm{C}-]} & L^{*} \supseteq L^{*} L^{*} \\
{[-\mathrm{D}-]} & \text { None of the above }
\end{array}
$$

8. Let $P(n)$ be a statement where n stands for a natural number.

In a proof by induction of P, the base case proves $P(k)$ where k is:
[-A-] zero
[-B-] zero or greater than zero
[-C-] strictly greater than zero
[-D-] None of the above
9. In a proof by induction of $P(n)$, you must prove:
[-A-] $\quad P(k)$, for $k \geq 0$
[-B-] $\quad P(k) \wedge P(k+1)$, for $k>0$
[-C-] if $P(k)$, then $P(k+1)$, for $k>0$
[-D-] if $P(k)$, then $P(k+1)$, for $k \geq 0$
10. Let $a_{0}=2$ and, for $n>0, a_{n}=a_{n-1}+2$ be a recurrence relation.

The close form of a_{n} is:
[-A-] $2(n-1)$
[-B-] $2 n$
[-C-] $2(n+1)$
[-D-] n^{2}
11. Let $a_{0}=0$ and, for $n>0, a_{n}=a_{n-1}+3$ be a recurrence relation. The close form of a_{n} is:
[-A-] $3(n-1)$
[-B-] $3 n$
[-C-] $3(n+1)$
[-D-] n^{2}

