```
Name:
```

If a question is wrong, or has no acceptable answer, do not mark any choice. If a question has several correct answers, choose the most accurate/complete/informative one. On a separate sheet, write a detailed justification of your choice.

You will be graded on the accuracy and precision of this justification only.

You will get 1 point for each correct answer and 0 points for missing or incorrect answers.

Your grade will be written on the back of this page.

Variations of some problems are suggested under the label "Extra". Instead of selecting a choice, compute a value or formula according to the problem. You should not turn in any variation, but you are welcome to discuss problems and solution in class and with the Teaching Assistant.

- 1. The close form of $\sum_{i=1}^{n} (2i+2)$ is:
 - [-A-] $n^2 + 3n 2$
 - [-B-] n(n+1) + 2n
 - [-C-] $n^2 + n$
 - [-D-] None of the above

Extra:

- 1. Replace the boundaries of the summation with 0 and n + 1.
- 2. Replace the multiplicative coefficient with -2, -1, 0, 1, 3.
- 2. Replace the additive coefficient with -2, -1, 0, 1, 3.

2. The value of $\sum_{i=45}^{60} i$ is (remember Gauss):

- [-A-] 840
- [-B-] 850
- [-C-] 880
- [-D-] 900

Extra:

- 1. Replace the low bounary of the summantion with 25, 35, 40, 48.
- 2. Replace the high boundary with 60, 66, 70, 75. (watch out for odd/even).
- 3. Replace *i* with 2i, 2i + 1, 2i 1.
- 3. How many times does the following program prints "hi" for n = 9.

```
for (i=0; i<n; i++) {
  for (j=i+1; j<=n; j++) {
    print("hi");
  }
}
[-A-] 45
[-B-] 60
[-C-] 90
[-D-] none of the above</pre>
```

Extra:

1. Replace the outer loop high boundary with i<=n.

- 2. Replace the inner loop low boundary with j=i or j=0.
- 3. Replace the inner loop high boundary with j<n.
- 4. Replace n with 7, 8, 10, 12, 20.
- 4. Let L be a language containing exactly l strings. Let M be a language containing exactly m strings. The number of strings in $L \cup M$ is:
 - [-A-] exactly l + m
 - [-B-] at least l+m
 - [-C-] at most l+m
 - [-D-] None of the above

Extra:

- 1. Replace $L \cup M$ with LM and l + m with lm.
- 2. Add a language N with exactly n strings.
- 3. Consider $(L \cup M)N$ and $LN \cup M$.
- 5. Let $L = \{aa, b\}$ and $M = \{bb, a\}$ be languages over $\{a, b\}$. Let X = LML.
 - $\begin{bmatrix} -\mathbf{A} \end{bmatrix} \quad a^0 \in X$
 - $\begin{bmatrix} -\mathbf{B} \end{bmatrix} \quad a^3 \in X$
 - $\begin{bmatrix} -\mathbf{C} \end{bmatrix} \quad a_{\overline{2}}^5 \in X$
 - $[-D-] \quad a^7 \in X$

Extra:

- 1. Consider languages with other strings, e.g. $L = \{aa, b, cc\}$ and similarly for M.
- 2. Consider other expressions for X, e.g., L^2M , L^2M^2 , $L(L \cup M)$, etc.
- 3. Consider other strings for membership, e.g., a^2b^2 , abc, etc.
- 6. Let A be an alphabet.

Which of the following is **not** a language over A.

- [-A-] Λ
- [-B-] Ø
- [-C-] A
- $[-D-] \quad \{\Lambda\}$

7. Let L be an alphabet.

- [-A-] $L^* = L^*L^*$
- $\begin{bmatrix} -\mathbf{B} \end{bmatrix} \quad L^* \subseteq L^* L^*$
- $[-C-] \quad L^* \supseteq L^*L^*$
- [-D-] None of the above

Extra:

1. Consider other languages and other expressions, e.g., $L^+ = L^+L^+$, $L^+ \subseteq L^+L^+$, $L^+ = L^*L^+$, $L^* = L^*L^+$, $L^n = L^m$, for n < m, $n \le m$, etc.

- 8. Let P(n) be a statement where n stands for a natural number. In a proof by induction of P, the base case proves P(k) where k is:
 - [-A-] zero
 - [-B-] zero or greater than zero
 - [-C-] strictly greater than zero
 - [-D-] None of the above
- 9. In a proof by induction of P(n), you must prove:
 - [-A-] P(k), for $k \ge 0$
 - [-B-] $P(k) \wedge P(k+1)$, for k > 0
 - [-C-] if P(k), then P(k+1), for k > 0
 - [-D-] if P(k), then P(k+1), for $k \ge 0$
- 10. Let $a_0 = 2$ and, for n > 0, $a_n = a_{n-1} + 2$ be a recurrence relation. The close form of a_n is:
 - $\begin{array}{ll} [-\text{A-}] & 2(n-1) \\ [-\text{B-}] & 2n \\ [-\text{C-}] & 2(n+1) \\ [-\text{D-}] & n^2 \end{array}$

Extra:

- 1. Choose -2, -1, 0, 1, 3 for a_0 .
- 2. Choose -2, -1, 0, 1, 2, 3 as multiplicative coefficient of a_{n-1} .
- 3. Choose -2, -1, 0, 1, 3 as additive coefficient of a_{n-1} .
- 11. Let $a_0 = 0$ and, for n > 0, $a_n = a_{n-1} + 3$ be a recurrence relation. The close form of a_n is:
 - $\begin{array}{ll} [-\text{A-}] & 3(n-1) \\ [-\text{B-}] & 3n \\ [-\text{C-}] & 3(n+1) \\ [-\text{D-}] & n^2 \end{array}$

Extra:

Like the previous variation.