\qquad

If a question is wrong, or has no acceptable answer, do not mark any choice.
If a question has several correct answers, choose the most accurate/complete/informative one.
On a separate sheet, write a detailed justification of your choice.
You will be graded on the accuracy and precision of this justification only.
You will get 1 point for each correct answer and 0 points for missing or incorrect answers.
Your grade will be written on the back of this page.

1. How many iterations does Euclid $g c d$ algorithm executes on input 15 and 4:
[-A-] 1
[-B-] 2
[-C-] 3
[-D-] 4
2. Let $f: \mathbb{N}_{24} \rightarrow \mathbb{N}_{24}$ be defined by $f(n)=a n+5(\bmod 24$ is intended $)$. For which value of a is f bijective.

$[-\mathrm{A}-]$	2
$[-\mathrm{B}-]$	3
$[-\mathrm{C}-]$	4
$[-\mathrm{D}-]$	5

3. Let $f: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ be defined by

$$
\begin{aligned}
& f(0, y)=y \\
& f(x+1, y)=1+f(x, y)
\end{aligned}
$$

the value of $f(4,4)$ is:

$[-\mathrm{A}-]$	0
$[-\mathrm{B}-]$	4
$[-\mathrm{C}-]$	8
$[-\mathrm{D}-]$	12

4. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be defined by

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=0 \\
& f(n+2)=1+f(n)
\end{aligned}
$$

the value of $f(7)$ is:
[-A-] 1
[-B-] 3
[-C-] 4
[-D-] 7
5. Consider the Hasse diagram of the poset P to the right. Which of the following is not a topological sort of P.

$$
\begin{array}{ll}
\text { [-A-] } & 1,2,3,4,5,6,7,8,9 \\
\text { [-B-] } & 1,2,4,6,7,8,9,3,5 \\
\text { [-C-] } & 3,2,1,5,4,7,6,8,9 \\
\text { [-D-] } & 3,5,1,2,4,6,7,8,9
\end{array}
$$

6. Let $f: \mathbb{N}_{9} \rightarrow \mathbb{N}_{9}$ be defined by $f(x)=(4 x+6) \bmod 9$.
[-A-] f has a fixpoint
[-B-] 4 is a fixpoint of f
[-C-] 5 is a fixpoint of f
[-D-] f has no fixpoints
7. $\quad f(n)=O(g(n))$ iff there exist constants c and m such that:
[-A-] $|g(n)| \leqslant|f(n)|$, for $n \geqslant m$
[-B-] $|f(n)| \leqslant|g(n)|$, for $n \geqslant m$
[-C-] $|g(n)| \leqslant c|f(n)|$, for $n \geqslant m$
[-D-] $|f(n)| \leqslant c|g(n)|$, for $n \geqslant m$
8. if $f(n)=O(g(n))$ then
[-A-] $\quad f(n) \leqslant g(n)$, for all n
[-B-] $|f(n)| \leqslant|g(n)|$, for all n
[-C-] $|f(n)| \leqslant c|g(n)|$, for some c and all n
[-D-] none of the above
9. Comparing rates of growth:

```
[-A-] log(n}\mp@subsup{n}{}{2})=O(\operatorname{log}(n)
[-B-] log(n}\mp@subsup{n}{}{2})=O(n
[-C-] log(n}\mp@subsup{n}{}{2})=O(\mp@subsup{n}{}{2}
[-D-] All of the above
```

10. Let $f: \mathbb{N}_{12} \rightarrow \mathbb{N}_{12}$ be defined by $f(x)=(7 x+2) \bmod 12$. The inverse, say g, of f is:
[-A-] $\quad g(x)=(7 x+5) \bmod 12$
[-B-] $g(x)=(5 x+7) \bmod 12$
[-C-] $\quad g(x)=(7 x+10) \bmod 12$
[-D-] $\quad g(x)=(10 x+7) \bmod 12$
11. Which function of n is computed by mistery:
[-A-] n^{2}
[-B-] $2 * n+1$
[-C-] $n(n-1) / 2$
```
procedure mistery(n)
    r := 0
    for i := 1 to n
        r := r + 2*i - 1
    return r
end
```

