If a question is wrong, or has no acceptable answer, do not mark any choice.

If a question has several correct answers, choose the most accurate/complete/informative one.

On a separate sheet, write a detailed justification of your choice. You will be graded on the accuracy and precision of this justification only.

You will get 1 point for each correct answer and 0 points for missing or incorrect answers. Your grade will be written on the back of this page.

Consider the function defined to the right. The range of f is:

1. $\begin{bmatrix} -A- \\ -B- \end{bmatrix} \quad \begin{cases} Y \\ C,D \\ \end{bmatrix} \\ \begin{bmatrix} -C- \\ X \end{bmatrix} \\ \begin{bmatrix} -D- \\ \end{bmatrix} \quad \{A,B\}$

- [-A-] f is surjective
- [-B-] f is injective
- [-C-] f is bijective
- [-D-] None of the above
- 3. Let $f : A \to B$ be a function such that for every $x \in A$ there is one and only one $y \in B$ such that f(x) = y.
 - [-A-] f is surjective
 - [-B-] f is injective
 - [-C-] f is bijective
 - [-D-] None of the above
- 4. Let x and y be rational numbers.
 - $\begin{bmatrix} -\mathbf{A} \mathbf{j} & \lfloor x \rfloor + \lfloor y \rfloor = \lfloor x + y \rfloor \\ \begin{bmatrix} \mathbf{D} & \mathbf{j} \end{bmatrix} = \lfloor x + y \rfloor \leq \lfloor x + y \rfloor$
 - $\begin{bmatrix} -\mathbf{B} \end{bmatrix} \quad \lfloor x \rfloor + \lfloor y \rfloor \leqslant \lfloor x + y \rfloor$
 - $\begin{bmatrix} -\mathbf{C} \end{bmatrix} \quad \lfloor x \rfloor + \lfloor y \rfloor \geqslant \lfloor x + y \rfloor$
 - [-D-] None of the above
- 5. Let $f : \mathbb{N} \to \mathbb{N}$ defined by f(x) = 2x + 1.
 - [-A-] f has no inverse
 - [-B-] f has an inverse
 - [-C-] g(x) = (x-1)/2 is the inverse of f
 - [-D-] g(x) = x/2 1 is the inverse of f
- 6. Let $f : \mathbb{Q} \to \mathbb{Q}$ defined by f(x) = 2x + 1.
 - [-A-] f has no inverse
 - [-B-] f has an inverse
 - [-C-] g(x) = (x-1)/2 is the inverse of f
 - [-D-] g(x) = x/2 1 is the inverse of f

- 7. Let R be the relation on $\mathbb{N} \times \mathbb{N}$ defined by x R y iff x < 3 y.
 - [-A-] 10 R 4 and 4 R 10
 - $[-B-] \quad 10 R 4 \text{ and not } 4 R 10$
 - $[-C-] \quad \text{not } 10 \, R \, 4 \text{ and } 4 \, R \, 10$
 - [-D-] not 10 R 4 and not 4 R 10
- 8. Let R and S be binary relations on N (repeat, N) defined as follows: x R y iff x > y + 2 and x S y iff x = y - 2. Let $T = R \circ S$ (composition).
 - [-A-] $(5,2) \in T$ and $(5,0) \in T$
 - [-B-] $(5,2) \in T$ and $(5,0) \notin T$
 - [-C-] $(5,2) \notin T$ and $(5,0) \in T$
 - [-D-] $(5,2) \notin T$ and $(5,0) \notin T$
- 9. Let A be a set of n elements and R a binary relation on A. Assume that R is reflexive and p = |R| (cardinality):
 - $\begin{array}{ll} [-\mathbf{A}\text{-}] & p > n \\ [-\mathbf{B}\text{-}] & p \geqslant n \end{array}$
 - $\begin{bmatrix} D \\ -C \end{bmatrix} \quad p \ge 0$
 - [-D-] p > 0
- 10. Let R be the relation on $\mathbb{N} \times \mathbb{N}$ defined by x R y iff x is a factor of y.
 - [-A-] R is reflexive
 - [-B-] R is transitive
 - [-C-] all of the above
 - [-D-] none of the above
- 11. Let "~" be the relation on \mathbb{N}_{60} , defined by $x \sim y$ iff the leftmost digits of the decimal representation of x and y are the same. The relation "~" is an equivalence. The number of equivalence classes (size of the partition) induced by "~" is:
 - [-A-] 1
 - [-B-] 6
 - [-C-] 10
 - [-D-] 60