\qquad

If a question is wrong, or has no acceptable answer, do not mark any choice.
If a question has several correct answers, choose the most accurate/complete/informative one.
On a separate sheet, write a detailed justification of your choice.
You will be graded on the accuracy and precision of this justification only.
You will get 1 point for each correct answer and 0 points for missing or incorrect answers.
Your grade will be written on the back of this page.

Consider the function defined to the right.
The range of f is:

1. $\begin{array}{ll}{[-\mathrm{A}-]} & Y \\ {[-\mathrm{B}-]}\end{array}\{C, D\}$
[-C-] X
[-D-] $\{A, B\}$

2. Consider again the previous function:
[-A-] f is surjective
[-B-] f is injective
[-C-] f is bijective
[-D-] None of the above
3. Let $f: A \rightarrow B$ be a function such that for every $x \in A$ there is one and only one $y \in B$ such that $f(x)=y$.
[-A-] f is surjective
[-B-] f is injective
[-C-] f is bijective
[-D-] None of the above
4. Let x and y be rational numbers.

5. Let $f: \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(x)=2 x+1$.
[-A-] f has no inverse
[-B-] f has an inverse
[-C-] $g(x)=(x-1) / 2$ is the inverse of f
[-D-] $g(x)=x / 2-1$ is the inverse of f
6. Let $f: \mathbb{Q} \rightarrow \mathbb{Q}$ defined by $f(x)=2 x+1$.
[-A-] f has no inverse
[-B-] f has an inverse
[-C-] $g(x)=(x-1) / 2$ is the inverse of f
[-D-] $g(x)=x / 2-1$ is the inverse of f
7. Let R be the relation on $\mathbb{N} \times \mathbb{N}$ defined by $x R y$ iff $x<3 y$.
[-A-] $10 R 4$ and $4 R 10$
[-B-] $\quad 10 R 4$ and not $4 R 10$
[-C-] not $10 R 4$ and $4 R 10$
[-D-] not $10 R 4$ and not $4 R 10$
8. Let R and S be binary relations on \mathbb{N} (repeat, \mathbb{N}) defined as follows:
$x R y$ iff $x>y+2$ and $x S y$ iff $x=y-2$.
Let $T=R \circ S$ (composition).
[-A-] $(5,2) \in T$ and $(5,0) \in T$
[-B-] $(5,2) \in T$ and $(5,0) \notin T$
[-C-] $(5,2) \notin T$ and $(5,0) \in T$
[-D-] $(5,2) \notin T$ and $(5,0) \notin T$
9. Let A be a set of n elements and R a binary relation on A.

Assume that R is reflexive and $p=|R|$ (cardinality):
[-A-] $p>n$
[-B-] $p \geqslant n$
[-C-] $p \geqslant 0$
[-D-] $\quad p>0$
10. Let R be the relation on $\mathbb{N} \times \mathbb{N}$ defined by $x R y$ iff x is a factor of y.
[-A-] R is reflexive
[-B-] R is transitive
[-C-] all of the above
[-D-] none of the above
11. Let " \sim " be the relation on \mathbb{N}_{60}, defined by $x \sim y$ iff the leftmost digits of the decimal representation of x and y are the same. The relation " \sim " is an equivalence. The number of equivalence classes (size of the partition) induced by " \sim " is:
[-A-] 1
[-B-] 6
[-C-] 10
[-D-] 60

