\qquad

If a question is wrong, or has no acceptable answer, do not mark any choice.
If a question has several correct answers, choose the most accurate/complete/informative one.
On a separate sheet, write a detailed justification of your choice.
You will be graded on the accuracy and precision of this justification only.
You will get 1 point for each correct answer and 0 points for missing or incorrect answers.
Your grade will be written on the back of this page.

1. Let $A=$ false and $B=$ false.

Let $X=A$ or $(\operatorname{not} B)$ and $Y=\operatorname{not}(A$ and $B)$.
[-A-] $\quad X=$ false and $Y=$ false
[-B-] $\quad X=$ false and $Y=$ true
[-C-] $X=$ true and $Y=$ false
[-D-] $\quad X=$ true and $Y=$ true
2. Let X be the proposition: $A \rightarrow B$.

Let Y be the proposition: $B \rightarrow A$.
[-A-] X is the antecendent of Y
[-B-] X is the consequent of Y
[-C-] X is the converse of Y
[-D-] X is the contrapositive of Y
3. The proposition $A \leftrightarrow(A \vee B)$ is a:
[-A-] tautology
[-B-] contradiction
[-C-] contingency
[-D-] none of the above
4. Let $X=A$ or B, where A and B are Boolean variables.
[-A-] if A then X
[-B-] if X then A
[-C-] X if and only if A
[-D-] None of the above
5. Let $X=$ not $(A$ and $B)$, where A and B are Boolean variables.

If $X=$ true then:
[-A-] $\quad A=$ true
[-B-] $\quad B=$ true
[-C-] $\quad A=$ true and $B=$ true
[-D-] None of the above
6. Let $A=\{1,2,3\}$ and $B=\{2,3,4\}$.
[-A-] $\{2,3\}=A \cup B$
[-B-] $\{2,3\}=A \cap B$
[-C-] $\{2,3\}=A-B$
[-D-] $\quad\{2,3\}=A \oplus B$
7. Let \mathbb{E} be the set of the even integers.

Which of the following sets is finite.
$[-\mathrm{A}-] \quad \mathbb{E} \cap \mathbb{E}$
$[-\mathrm{B}-] \quad \mathbb{E} \cup \mathbb{E}$
$[-\mathrm{C}-] \quad \mathbb{E} \oplus \mathbb{E}$
[-D-] None of the above
8. Let $P=\{x \mid x=4 k-3$, for $k \in \mathbb{N}\}$.
[-A-] $0 \in P$ and $1 \in P$
[-B-] $0 \in P$ and $1 \notin P$
[-C-] $0 \notin P$ and $1 \in P$
[-D-] $0 \notin P$ and $1 \notin P$
9. Let A and B be sets.

Suppose that $A-B \subseteq A$.
[-A-] $B \subseteq A$
[-B-] $B \supseteq A$
[-C-] $\quad B=\varnothing$
[-D-] B can be any set
10. Let $X=\{1,2\}$ be a set and $Y=2^{X}$, the powerset of X.
[-A-] $|Y|=2$
[-B-] $|Y|=4$
[-C-] $|Y| \leqslant 4$
[-D-] $|Y| \geqslant 2$
11. Let B and P be the multisets (bags) made with the letters of the words "banana" and "panama", respectively. The number of elements of $B \cup P$ is:
[-A-] 0
[-B-] 4
[-C-] 8
[-D-] 12

This is a sample question/answer
12. Let $A=\{1,(2, a), 3\}$ and $B=\{a,(3, a), 4\}$. Let C denote $A \times B$.
[-A-] $(2, a) \in C$ and $(3, a) \in C$
[-B-] $(2, a) \in C$ and $(3, a) \notin C$
[-C-] $\quad(2, a) \notin C$ and $(3, a) \in C$
[-D-] $\quad(2, a) \notin C$ and $(3, a) \notin C$
The correct answer is [-C-] because:
By definition $A \times B=\{(x, y) \mid x \in A \wedge y \in B\}$.
$2 \notin A$, hence $(2, y) \notin A \times B$ no matter what y is, and
$3 \in A$ and $a \in B$, hence $(3, a) \in A \times B$.

