IBM Power4 System Microarchitecture

© Copyright by Alaa Alameldeen 2018

IBM Power4 Design Principles

- SMP optimization
 - Designed for high-throughput multi-tasking environments
- Full system design approach
 - Whole system designed together, processor designed with full system in mind
- High frequency design
 - Important for single-threaded applications
- RAS: Reliability, Availability, and Serviceability
- Balanced scientific vs. commercial performance
 - Good performance for both high-performance computing scientific applications & commercial server applications
- Binary compatibility with previous IBM processors

Power4 Chip Features

- Two processors on a chip (Figure 1, die photo in Figure 2)
- Each processor has private L1 caches
- Both processors share an on-chip L2 cache through a core interface unit (CIU)
 - Crossbar between two processors’ I and D L1 caches and three L2 controllers
 - Each L2 controller can feed 32B per cycle
 - Accepts 8B processor stores to L2 controllers
- Each processor has a noncacheable unit (NC)
 - Logically part of L2, handles noncacheable operations
- L3 directory and L3 controller on chip
 - Actual L3 cache on separate chip
 - Fabric controller controls data flow between L2 & L3 controller

Power4 Processor Features

- On-chip, two identical processors provide two-way SMP to software (an example for chip multiprocessing)
- Each processor is a superscalar out-of-order processor
 - Issue width: up to 8, retire width: 5
 - 8 instruction units, each capable of issuing one inst/cycle
 - Two floating point execution units, each can start an FP add and FP multiply every cycle
 - Two load/store units, each can perform address generation arithmetic
 - Two fixed point execution units
 - Branch execution unit
 - Condition register logical execution unit
- Core block diagram: paper figure 3

Power4 Microarchitecture

- Complex branch prediction
 - Branch target and direction prediction
 - Has a selector table to choose between a Local branch history table and global history vector
 - Selective pipeline flush on branch misprediction
- Instructions are decoded, cracked into internal instructions (IOPs), then grouped into five-instruction groups
 - Fifth IOP is always a branch
 - Groups dispatched in order, IOPs in a group issued out of order
 - Whole group committed together (up to 5 IOPs)
- Issue queues: paper table 1, rename resources: table 2
- Pipeline in paper figure 4

Load/Store Unit Operation

- Main structures
 - Load Reorder Queue (LRQ), i.e., load buffer
 - Store Reorder Queue (SRRQ), i.e., store address buffer
 - Store Data Queue (SDQ)
- Hazards avoided by Load/store unit
 - Load hit store (RAW1): Younger load executes before older store writes data to memory. Load should get data from SDQ. Possible flush or reissue
 - Store hit load (RAW2): Younger load executes before recognizing an older store will write to same location. Store checks LRO and flushes all subsequent groups on hit
 - Load hit load (RAR): If younger load got old data, older load should not get new data. Older load checks snooping bit in LRO for younger loads, flushes all subsequent groups on hit
Memory Hierarchy
- Memory hierarchy details in paper table 3
- L2 logical view in paper figure 5
- L3 logical view in paper figure 6
- Memory subsystem logical view in paper figure 7
- Hardware prefetching
 - Eight sequential stream prefetchers per processor
 - Prefetch data to L1 from L2, to L2 from L3, and to L3 from memory
 - Streams initiated when processor misses sequential cache access
 - L3 prefetches 512B lines

Cache Coherence
- Each L2 controller has four coherency processors to handle requests from either processor’s caches or store queues
 - Controls return of data from L2 (hit) or fabric controller (miss) to the requesting processor
 - Updates L2 directory state
 - Issues commands to fabric on L2 misses
 - Controls writing to L2
 - Initiates invalidates to a processor if a processor’s store hits a cache line marked as being resident in another processor’s L1
- L2 controller has four snoop processors to handle coherency operations from fabric
 - Can source data to another L2 from this L2

Coherence Protocol
- L2 has enhanced version of MESI (paper table 4)
 - I: Invalid
 - SL: Shared, can be sourced to local requesters
 - Entered when processor load or I-fetch misses L2, data is sourced from another L2 or from memory
 - S: Shared, cannot be sourced
 - Entered when another processor snoops cache in SL state
 - M: Modified, can be sourced
 - Entered on processor store
 - Me: Exclusive
 - Mu: Unsolicited modified
 - Entered when data is sourced from another L2 in M state
 - T: Tagged (valid, modified, sourced to another L2)
 - Entered on a snoop read from M state
- L3 has simpler protocol (paper)

Connecting into larger SMPs
- Basic building block is Multi-Chip Module (MCM)
 - Four Power4 chips form an 8-way SMP (paper figure 9)
 - Each chip writes to its own bus (with arbitration among L2, I/O controller and L3 controller)
- Each of the four chips snoops all buses
- 1-4 MCMs can be connected to form 8-way, 16-way, 24-way and 32-way SMPs
 - 32-way SMP shown in paper figure 10
 - Intermodule buses act as repeaters, moving requests and responses from one module to another in a ring topology
 - Each chip writes to its own bus but snoops all buses

Reading Assignment
- Wednesday
 - No class on Wednesday. Lecture to be recorded.
- Monday
- Project progress report due next Monday (Feb 26)