Non-Uniform Cache Architectures

- **Designing Large Caches**
 - UMA vs. NUMA architectures
 - Large cache latency dominated by wire delay
 - Design Issues for large caches
 - Mapping: How many banks, and how lines map to banks
 - Search: How to find the set of possible locations for a line
 - Movement: Static (line always in same bank) vs. dynamic (line moves while in cache or across different lifetimes in the cache)
 - Options for designing a 16MB cache: Kim paper Figure 1

- **Uniform Cache Architecture (UCA)**
 - Similar to a traditional cache
 - Uses sub-banks, but limited by number of ports
 - Moore's law scaling leads to increasing wire delay
 - Latency and performance: Kim Paper Table 2

- **Multi-Level Uniform Cache Architecture (ML-UCA)**
 - Cache split into two levels: L2 and L3
 - Both levels aggressively banked to support parallel accesses
 - Inclusion is enforced
 - L3 includes everything in L2
 - Simplifies design but consumes extra space due to data duplication
 - Latency and performance: Kim Paper Table 8

- **Statically-Mapped Non-Uniform Cache Architecture (S-NUCA)**
 - Aggressively banked and supports non-uniform access
 - No inclusion (avoid duplication)
 - Mapping of data into banks is statically predetermined based on the block index
 - Could use private per-bank channel or 2D switched network (Kim Paper Figure 1c, 1d)
 - Latency and performance: Kim Paper Table 3, 4

- **Dynamically-Mapped Non-Uniform Cache Architecture (D-NUCA)**
 - Mapping of data into banks is dynamic: data can be mapped to many banks within the cache
 - Cache management attempts to have most requests served by faster banks
 - Frequently used data promoted to faster banks
 - Could be implemented by splitting cache sets across banks, one way per bank (Figure 4)
 - Latency and performance: Kim Paper Table 5
 - Comparing performance of all options: Figure 6
NUCA on CMPs

- New challenges with chip multiprocessing:
 - Private vs. shared caches
 - Data: private, shared read-only, shared read-write
 - How to allow replication
- Go to Chishti et al. Slides

Reading Assignment

- Arthur Veen, "Dataflow Machine Architecture," ACM Computing Surveys, 1986 (Read sections 1, 2, 3 and skim the rest of the paper)
- Gregory Papadopoulos and David Culler, "Monsoon: An Explicit Token-Store Architecture," ISCA, 1990 (Read)