Interconnect and Routing

A Survey of Wormhole Routing
- Direct network architecture
 - Each node has a point-to-point or direct connection to a number of other nodes
 - Paper figures 1, 2
- Nodes communicate using messages of variable size
- A message is often transformed into packets before transmission
- A packet is the smallest unit of communication, containing:
 - A header with routing information
 - Data

Routers
- Communication can be between adjacent or non adjacent nodes
- Dedicated routers can be used within the nodes to handle communication
 - Dedicated routers allow overlap of computation and communication
- A typical router has multiple internal and external, input and output communication channels
- The network topology is defined by how the input channels of one router connects to the outputs of other routers
- Within a router, a cross bar typically connects all inputs to all outputs

Router Performance
- The time required to move messages between nodes is key to performance
 - Determines the granularity of parallelism that can be exploited
 - Granularity refers to the size of the computation task
 - Remember: fine-grain vs. coarse-grain parallelism
- **Communication Latency**: The performance metric used to characterize time to communicate data

Communication Latency
- Communication latency is the sum of
 - **Start-up latency**: Time needed to handle a packet at the source and destination nodes
 - **Network latency**: Elapsed time after the head enters the network until the tail leaves the network
 - **Blockage (congestion) time**: Measure of packet delays due to sharing of network communication resources with other packets
- Communication latency is determined by architectural characteristics
 - e.g., type of switching technology used in the router (Figure B)
 - Store and forward
 - Circuit switching
 - Wormhole

Characteristics of Direct Networks
- Topology defines how nodes are connected
 - Hypercube, torus, 3-D mesh, fully connected (paper figure A)
- **Bisection width**: Minimum number of links that need to be cut to partition the network into two disjoint networks each containing half the nodes
 - Channel width
 - Channel rate
 - Channel bandwidth = width x rate
 - Bisection density = bisection width x channel width
Topology Tradeoffs
- Low-dimensional mesh networks have much lower bisection width than hypercubes
 - So they can offer wider channels
 - But they have larger average communication distance
- Before wormhole routing, hypercubes were popular due to shorter communication distance
- After wormhole routing, mesh networks became more popular
 - Wormhole routing makes communication latency almost independent of path length

Routing
- Routing determines the path a packet traverses from source to destination
- Source routing: the source node chooses the path
 - Each packet must carry the path information
 - Path cannot be changed after header leaves the source
- Distributed routing: each router determines after receiving a packet where to forward the message

Routing Classification
- Deterministic routing: path is determined statically by the source and destination addresses (paper figures 6, 7)
- Adaptive routing: path is determined by source, destination and dynamic state of the network (paper figures 8, 9, 10)
- Minimal routing: selects the shortest possible path
- Non-minimal routing allows packet to traverse a longer path under some network conditions
 - Need to avoid continuously routing a packet without reaching destination

Flow Control
- A network consists of many channels and buffers
- Flow control deals with the allocation of buffers and channels to a packet
- A resource collision occurs when some packet cannot proceed because some resource is occupied by other packets

Collision Control Policy Options
- Drop packet
- Hold packet in place
- Buffer packet
- Reroute packet
- A good flow control policy avoids channel congestion while minimizing latency

Channel Allocation
- Routing algorithm selects which output channel to use for a packet arriving at a particular input
- Many arriving packets may select the same output channel
- An input selection policy determines which packet uses the output channel
 - Round robin
 - Fixed priority
 - First come, first served
Switching
- Mechanism that removes data from an input channel and places it on output channel
- Latency is highly dependent on the switching technique
- Switching techniques: (Figure B, C)
 - Store and forward
 - Circuit switching
 - Virtual cut-through
 - Wormhole

Store and Forward
- Also called packet switching
- Entire packet is stored in a buffer in an intermediate node
- The packet is then forwarded completely to an adjacent node
 - If channel and buffer are available
- Latency = L * D / B
 - L = Packet length (e.g., in bits)
 - D = Path length (between source and destination)
 - B = Channel Bandwidth (e.g., in bits/sec.)

Circuit Switching
- A physical circuit is established between source and destination
- Once established, the channels across the path cannot be shared
- Packet is then transmitted
- Circuit is torn down
- Latency = D * Lc/B + L/B
 - Lc = length of control packet transmitted to establish the circuit

Virtual Cut-Through
- Packet header is examined upon arrival at an intermediate node
- Packet is stored in intermediate node only if output channel is not available
- Latency = D * Lh/B + L/B
 - Lh = length of header field

Wormhole Routing
- Packet is divided into a number of "flits"
- The header flit governs the route
- The remaining flits follow in a pipelined fashion
- If output channel is blocked, flits remain in flit buffers along the route
- Supports broadcast and multicast
- Paper figure 3, 4
- Latency = path * Lf/B + L/B
 - Lf = length of each flit

Deadlocks
- When packets become blocked forever (example, paper figure 5)
- Can happen when packets are allowed to hold on resources while requesting other resources
- Deadlock avoidance
 - Preemption
 - Preempted packets are rerouted or discarded
 - Rerouting could lead to livelocks while discarding increases latency
 - By routing algorithm (deadlock-free routing)
 - Order network resources and allow usage only in strictly monotonic order
 - Use cycle-free dependence graphs
Virtual Channels

- Some adaptive routing algorithms require multiple pairs of channels between adjacent nodes
- Implementing each channel using wormhole routing is expensive and utilization may be low
- Virtual channels: each physical communication channel is time-multiplexed into multiple virtual channels
 - Each virtual channel has its own flit buffer, control, and data path
- Paper figure 12
- Disadvantages?

Reading Assignment

- Thursday
 - Steven Scott, "Synchronization and Communication in the T3E Multiprocessor," ASPLOS, 1996 (Read)
- Project progress report due Tuesday Nov 19