Chip Multiprocessors (Multicore Processors)

Why CMPs?
- It is now possible to implement a single-chip multiprocessor in the same area as a wide issue superscalar
- Motivation
  - Area and Power has been increasing at rates greater than single-thread performance
  - Under-utilized superscalar execution resources
    - Branch mispredictions
    - Data dependences
    - Cache misses

Comparing CMPs to Superscalar Processors
- Performance comparison depends on application
- Wall’s classification
  - Applications with low to moderate parallelism
    - IPC < 10
    - Mostly integer applications
  - Applications with large amount of parallelism
    - IPC > 40
    - Mostly floating point applications

Two Microarchitectures: 6-way SS vs. 4 2-way CMP
- For fair comparison, we need almost equal areas (die sizes) for SS and CMP
- Superscalar: 6-way R10000-like machine
  - More ports, bigger structures compared to the 4-way R10000
- CMP: 4 cores, each 2-way superscalar
  - Each core similar to the Alpha 21064 (1992)
  - Shared L2 cache
  - Clock speed?
- Design parameters: Paper Table 1
- Floor plans: Paper Figures 2 and 3

Results: CMP vs. Superscalar
- Paper tables 4-7, figures 4-6
- CMP or Superscalar?
  - Low parallelism favors superscalar
  - Medium parallelism about even
  - High parallelism favors CMP

Discussion: CMP Issues
- For CMPs, focus is less on core and more on “uncore”
  - Cache hierarchy and organization
  - Interconnection network
  - Bus interface
- Increased demand for bus bandwidth
- Cache miss latency
- Programmability
- Amdahl’s law
Reading Assignment

- Alaa Alameldeen and David Wood, "IPC Considered Harmful for Multiprocessor Workloads," IEEE Micro, 2006 (Read)