Trace Cache

Trace Cache

- High performance OoO processors require
 - Increased instruction fetch bandwidth
 - Low instruction fetch latency
- Paper proposes supplementing a conventional instruction cache with a trace cache
- Main idea: Non-contiguous instructions appear contiguous in the trace cache

Issues with Instruction Fetch

- Performance issues emerging as processor issue rates increase:
 - Branch throughput
 - Predicting multiple branches, including taken branches every cycle
 - Non-contiguous instructions and alignment
 - Remember Instruction Cache Fragmentation (Superscalar processor lecture)
 - Fetch unit latency
 - Throughput and complexity may increase latency
- Basic block stats: Paper Table 1

Possible Solutions

- One possible solution: allow fetch from multiple non-contiguous basic blocks
 - Multiple addresses have to be generated before fetch begins:
 - Implies a level of indirection
 - Additional fetch stage latency
 - Multi-ported or interleaved ICache is required
 - Instruction merging and alignment increase fetch latency
- Trace cache avoids these problems using redundant instruction storage

Trace Cache: Concept

- **Basic idea:**
 - Conventional instruction cache holds instructions in static program order
 - Trace cache holds instructions in dynamic program order
- **High-level view:** Paper Figure 2
- **Why would it work?**
 - Temporal locality
 - Branches' predictable behavior
- Discuss: Storage overhead

Core Fetch Unit

- **The core fetch unit**
 - Interleaved sequential: 2 consecutive blocks can be accessed in the same cycle
 - Fetch up to the limit or to the next taken branch
 - Limit of 16 instructions and 3 branches
 - 16-way interleaved BTB
 - Multiple branch GAg predictor:
 - 14-bit global history register
 - Rearranged PHT organization: 8 state machines per pattern
- Paper: Figure 3
- Control not on critical path, datapath delay minimal
Trace Cache Organization

- Figure 4 shows the core fetch unit and the trace cache
- Trace cache organization:
 - Up to 16 instructions wide and 3 branches
 - Contains a fill buffer, instruction traces and control information

Trace Cache Control

- Control state:
 - Valid bit
 - Tag to identify trace starting address
 - Branch flags to indicate taken/not-taken direction (except last branch)
 - Branch mask: #branches in a trace, whether it ends in a branch
 - Trace fall through address
 - Trace target address
 - End of trace marker
- Fill buffer has to stop the trace at indirect branches

Discussion

- Trace cache design space
 - Address associativity
 - Path associativity OR partial trace matching
 - Indexing method
 - Index with address, match branch prediction with tag
 - Index with both address and branch prediction bits
 - Fill issues
 - Number of fill buffers
 - Speculative traces
 - Trace selection: Some committed traces never reused
 - Victim trace cache
 - Redundancy

Simulation and Results

- Simulation processor model
 - Very large instruction window (2048)
 - Unlimited renaming
 - Unlimited functional units
 - Perfect data cache
 - Perfect memory disambiguation
- Results shown for trace cache and other techniques of 1, 2 and 3 cycles fetch latency
- Discuss results: Figures 8-12

Reading Assignment

- Thursday
- Project proposals due on Tuesday 4/22
- Project group info due by email (to me) this Friday 4/18