RISC Architectures

- Reduced Instruction Set Computer (RISC)
- Alternative to Complex Instruction Set Computer (CISC)
- Simple instructions and addressing modes
 - High effective throughput (low CPI)
 - Effective pipeline: Most instructions execute in one cycle
 - Short cycle time
 - Short design cycle
- But larger programs
 - 2x larger than VAX 11/780

RISC Instruction Format

- Most instructions execute in one cycle
- Fixed size (32-bits)
- Only loads and stores access memory
 - Two cycle instructions (compare current latencies)
 - Rest of instructions operate between registers
- Support high level languages (HLL)
- Paper: Instruction format and addressing modes

RISC I Design Approach

- New architectures should be designed for HLL
- Does not matter which part of the system is in hardware and which is in software
- Architecture tradeoffs to build a cost-effective system:
 - Which language constructs are used frequently?
 - What is the distribution of various instructions?
 - Dedicate available area for the most frequent constructs and operations (Paper: Tables)
 - Remember Amdahl’s law

Amdahl’s Law

\[
\text{Speedup} = \frac{1}{1 - P \frac{1}{S}}
\]

- \(P \): proportion of computation improved
- \(S \): improvement speedup

Example: Parallel Execution

\[
\text{Speedup} = \frac{1}{S + P/N} = \frac{1}{1 - P + P/N}
\]

RISC I Performance Features

- Large number of registers addressable by instructions
 - 32 general purpose registers (GPRs)
 - R0 is always zero (to support addressing modes)
- Register windows for fast call and return operations (Paper)
- Delayed branch
Delayed Branch

Static Program:
I1
Jump Target
I2
Target:
I3
Branch execution sequence: I1, I3
Delayed branch execution sequence: I1, I2, I3

Question: Which modern machine still supports delayed branches?
Question: What is the downside for delayed branches?

Reading Assignment

- Review due before class on Monday