Chapter 3

Impulse Sampling

If a continuous-time signal x(t) is sampled in a periodic manner, mathe-
matically the sampled signal may be represented by

o (t) = _f: () 8(t — kT) = a(t) _f: 5(t — kT) (1)
2 (t) = _fj 2(kT) 8(t — kT) 2)

x*(t) is the sampled version of the continuous-time signal x(t).
Low limits may be changed to k =0, if z(t) =0, ¢t<0

Carrier
AL T
x(t) ———> Modulator — X*()
Modulating Output
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Relationship between z transform and Laplace transform

Taking the Laplace transform of equation (2)
X*(s) = L

—

= 2(0) +2(T)e ™ + z(2T)e " + - -
= Y a(kT)e "
k=0
Now, define
el* =z
S0,
s=rinz
X*(S) ‘s:%lnz = Zx(kT> Zﬁk
k=0
or
X*(S) ’s:%lnz = X(Z>

This shows how the z transform is related to the Laplace transform.
Note: the notation X(z) does not signify X(s) with s replaced by z, but
rather X*(s = 7inz)

()] = x(0) L[6(t)] + =(T) Lo(t —T)] + x(2T) L[o(t —2T)] + - -



Data Hold

Data hold is a process of generating a continuous-time signal h(t) from a
discrete-time sequence z(kT). The signal h(t) during the time interval
kT <t < (k+ 1)T may be approximated by a polynomial in 7 as follows:

RET 4 7) = ap™ + @y 4+ -+ a1 + ag

where 0<7<T
note:  h(kT) = x(kT)

=  hkTH+7)=a,m" +ap 7™ '+ + a7+ 2(kT)

If the data hold circuit is an n'"-order polynomial extrapolator, it is called
an n'"-order hold. It uses the past n + 1 discrete data z((k —n)T),
z((k—=n+1)T), ---, x(kT) to generate h(kT + 7).

ZERO-ORDER HOLD

If n = 0 in the above equation, we have a zero order hold so that

kT +71)=2(kT) 0<7<T, k=0,1,2 -

% lhc']"'.-"L
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Transfer Function of ZOH
h(t) = ﬂO[()—U@—Tﬂ+wgﬁ[@—TN—U@—QTH+

)
2(2D)[u(t — 2T) — u(t — 3T)] +
_ i u(t — KT)] = u(t — (k + 1)T)

e*kTs

Now, L[u(t — kT)] =

e kTs _ e*(kJrl)Ts

thus,  L[h(t)] = H(s)= ix(k‘T)

k=0
1 — —Ts oo
S S a(kT)e s
* k=0
Gy X+(s)

S

Thus, transfer function of ZOH

FIRST-ORDER HOLD

kT +71)=a;r+2(kT), 0<7<T, k=0,1,2,--

now

h((k—1)T)=x((k—1)T)

so that
W((k —1)T) = —ayT + 2(kT) = o((k — 1)T)
o +(kT) — 2((k — 1)T)
T
2(kT) — o((k — 1)T)
T

a; =

= h(kT +71)=x(kT) + 7, 0<7<T
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TRANSFER FUNCTION
Consider a unit step function input

2 (1) = S u(kT) 8(t — kT) = 3 8(t — kT)

k=0

x T

v

hinT 1

t t—"1T
h(t) = (1+T) u(t) — ( T ) ult—T)—ut—T)
1 1 1 1
H — - N _ - =Ts - =Ts
= (5) (s Ts2) Ts? S ¢
B 1—e_T5+ 1—eTs
a s Ts?
Ts+1
o —Ts
= (I=e™) T's?
The Laplace transform of unit step
X*(s) = Ll (t)] = —
= u =
5 1—eTs
thus
H(s) e I's+1
G = = (1-— 5
m(s) X*(s) ( ) Ts?
B 1—eTs 2 Ts+1
a S T
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Obtaining z transform of functions involving the term

Suppose the transfer function G(s) follows a zero-order hold

\ 4

— ZOH G(s)  —

Suppose a transform function G(s) follows a first-order hold

G(s)  —

A 4

——> FOH

Reconstructing Original Signals from Sampled Signals
Sampling Theorem:

Define wy, = 2% where T is the sampling period, then if

W > 2wy

where w; is the highest-frequency component present in the continuous-time
signal x(t), then the signal x(t) can be reconstructed completely from the
sampled signal x*(t).

Intuitive proof
The frequency spectrum of a sampled signal z*(t) is given by

) 1 = ) )
X*(jw) = > X(jw+ jwsk)

k=—o00

* See next page



Spectrum of Sampled Signal
Fourier series representation of a train of impulses

Z J(t — kT) Z C,, T

k=—o0 n=-—00

where

Sl

C, = / Z 5(t — KT)e ") gy
ki

= T/ t)e -3 g

d(t) is the only value in the integral limit range. So

Rl MH

1
C, = T
note: by sifting property, [0 d(t) g(t) dt = ¢(0)
Thus, (3) & (4) =

SR Ot —RT) = 30 IR

. Fourier series representation of sum of impulses

o0

2 ()= Y x(t) 6(t — kD)

k=—00

= L{r() = /O:O x(t){% 3 efnwst} =T dt

n=—oo

1 & o0 -
X*(s) = T > / z(t) ™t e dt

1 & o0 -
= 7 > / z(t) e~ mInwst gy
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Aliasing

X*(jaw)|
spectrum of x*(t)
| X*{flw, — wah) |

/
s - -
~ P - - —
-~ AL /’4\ P
= \

‘“\‘""J’ ks

If ws < 2wy, aliasing occurs

Consider frequency component wy which falls in the overlap. It has two
components

[ X*(jw2)|  and [ X7 (j(ws — w2))]

from spectrum centered at w = wy

Therefore the frequency spectrum of the sampled signal at w = wy includes
components not only at frequency wg but also at frequency ws; — ws (in gen-
eral, at nws &+ we, where n is an integer).

The frequency ws — woy is known as an alias of ws.
——

In general nw, 4+ wy

Aliasing
Two frequencies x(t) and y(t) differ from each other by an integral mul-
tiple of w,, sampling frequency 7' = 2*

[

z(kT) = sin(wokT + 0)

y(kT) = sin((wy + nws)kT + 0)
= sin(wokT + 2wkn + 0)
= sin(wokT + 0)
= Two signals of different frequencies can have identical samples,

means that we cannot distinguish between them from their samples.



If wg < 2wy , the original spectrum is contaminated, so x(t) cannot be recon-

structed.

If wg > 2wy , the original signal can be recovered by using an ideal low

pass filter.

| X fed | | X={fead |

wy 0wy w =i, wy 0 w,

W w

Ideal filter

Xts) 5 X*(s)

| Gyliewl |

L

Yijwhl

\[7,

“wy 0w,

Gyl jw)

ideal low pass filter
characteristics

Gr(jw) = {

L =3
0

the inverse Fourier transform gives

1 sin(wsk)
)= — —"°27
gI( ) T wsé

1 1
Ws S W < JWws

elsewhere

«— unit impulse response

g;(t) T

Filter is not

Non-causal signal |:> realizable

Use a ZOH to approximate ideal low pass filter.

¥is)



Frequency response of ZOH

G 1— €_TS
ho -
S
Since . . .
1—eTs e Ta(efs —e 1)
S S
—Jjw Jjw Jjw
. % T( T5 Tk )
§ = Jw = -
Jw
. Jw
sin %e 5
w
2
6j9 67]'9
SIDQ =
2)
. T
sin(w %) _. 1
. _ 2 —Jjws
= Gho(]w) =T —p ¢ 2
Wy
Ideal filter—___| ' T
Zero-arder hold 0.637 ___-M
—3w, —2, @y w0 w ow, 2w, 3w, “w
2 2
w, 2, 3
UL T T ] —
180" -
- Jﬁa: | =
-540° |-
7207 |-
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’ G,_ r

The ZOH does not approximate an ideal low pass filter very well. Higher
order holds do a better job but are more complex and have more time delay,
which reduces stability margin. So ZOH’s get used a lot.
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The Pulse Transfer Function

Convolution Summation

y(kT) = fj g(KT — hT) z(kT)

= S w(KT — hT) g(kT)
+(kT) = g(kT)

where g(kT) is the system’s weighting sequence. i.e. g(k) = Z7'{G(2)}

Starred Laplace Transfrom

X P o x’:((‘r)_._ X ()
X(s) 5, X4 - ¥(s)

Y(s) = G(s) X*(s)

Note: X*(s) is periodic with period Z—” since X*(s) = X*(stjwsk), fork =
0, 1, 2,---. G(s) is not periodic.

Taking the starred transform  { See notes on next page }
Y*(s) = [G(s)X"(s)]" = [G(s)]"X"(s) = G"(5)X"(s)
Note: X*(s) = 30 X (s + jwsk) + 52(07)

Y(z) =G(z) X(z)

Since the z transform can be seen to be the starred Laplace transform with
el® replaced by z; i.e. X*(s) = X(2)
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=]
Y*(s) = 2 77 G(s + j @ gk)X*(s + j & gk)
and T K=—oo
¢ N
= —— 1 x(o
X*(s) = -4 Z X(s + j @gh) + —— x(0+)
h=-
we have i
X*(s + jwsk) = L X(s + j ':’)Sh + J“—’lsk) +T— x(0+)

By letting h + k = m, we obtain

b0
X*(s + j W k) = —;— Z X(s + j @ gm) + —2-x(0+) = X*(s)

Substitution of this last equation into the expression for Y*(s) gives

- -J
v(s) = L 2, G(s + j @Wgk)X*(s)

k=—ro

Since G*(s) can be given by

alr-

o0
B G5+J'a')sk)
k=-

we obtain
Y*(s) = G*(s)X*(s)

Obtaining The Pulse Transfer Function

“(t) vie) s
xit} _/ LBLLUE B TP
BT Xlz)
A yrir)
—

5y Y(z)

Fictitious
sampler

(a)

A(t) y)
—»{ Gls)
Xi(s) Y(s)

Y

4 y*(D
— —

Y*(s)

The presence or absence of an input sampler is crucial in determining the
pulse transfer function of a system.
For figure a,

For figure b,
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Methods for obtaining the z transform
1. X(z) = Z[X(s) expanded into partial fractions X;(s)] = >; {Z[X;(s)]}
2. X(2) =2 w(kT)z7F
3. X(2) =X [reszdue of = at pole of X (s )}

Pulse transfer function of cascaded elements

W g [ ‘ yin_
w X || UE Yi re

Xts)
(t el —;”/r Lo I~
- .. (s) et Hls)
o Xs) VG Is) I'*(s)

Xi(s)
b

For figure (a)

= Y*(s) = H'(s) G*(s) X"(s)
= G*(s) H*(s) X*(s
=  Y(2)=G(z) H(z) X(2) = )i(é)) =G(z) H(z)

= Y()=GH(z) X(2) = =GH(z) = Z|GH(s)]

Note that  G(z) H(z) # GH(z) = Z|GH(s)]
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Pulse transfer function of closed-loop systems

TABLE 3-1 FIVE TYPICAL CONFIGURATIONS FOR CLOSED-LOOP DISCRETE-TIME
CONTROL SYSTEMS

Ris) < Cls) ci2)
— LSl
. GizlRla)
Cla) = i)
. Gi2IRiz)
S TP
Als) Cisl Ciz)
gy o]
Clzi = G,IzJG,lzlmzl_
A 1Y G, 26,H12)
o
Ails) Clsl ciz)
@ -
cla « G21216, Al2)
2= 131G, 6, M2
e jpeir] 4
Ris) i-_| Cis) clz
g -I Gish I /—-i-
‘ GALz)
O =13 GHIZ)

U(s) =G1(s) E(s)

lv Cis) C*(s)=C(2)
R(s) E(s) G. () __J;\fU’_;iD_ Gy ls) /+

[ His)
C(s) = Ga(s) U"(s) (5)
= C%(s) = G5(s) U(s) (6)
E(s) = R(s) — H(s) C(s) (7)
U(s) =Gi(s) E(s) = Gi(s) R(s) —Gi(s) H(s) C(s)
G1(s) R(s) — G1(s) H(s) Go(s) U*(s)
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[G1(s) R(s)]" — [G1(s) Gs(s) H(s) U™(s)]"
[G1R(s)]" — [G1G2H (s)]" U™ (s)

= {1+ [G1GH(s)]*} U*(s) = [G1R(s)]"
(G R(s)]*
1+ [G1GoH(s)]* (8)

= U*(s) =

= for H(s)=1

now

G(2) = 2[G(s)] = z[u_e—n)L]

s(s+1)

K K
= (1—2_1)2[—— ]

s s+1

K K
e ()

(1==7) 1—271 1—e Tz
KA -—e M)zt
N 1—e Tz
closed-loop
Clz) K(l—e 1)z !

R(z) 1+[K—(K+1)eT]z"1

15



Obtaining response between consecutive sampling instants

The z transform does not give the response between sampling instants.
Can use the following methods to do so.

1. The Laplace transform method
2. The modified z transform method
3. The state space method

Will look only at first method for now.
1. The Laplace transform method

Example: Consider the following system

E(s) E*(s)

Als) _—E Cisl
by |

Hig) |—

We know that

Thus
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Mapping between the s plane and the z plane

z=el®

let s=0+ jw

5= eT(o—i—gw) To _jTw

—e e Taej (Tw+27k)

=€
now
|z| =" <1  foro<0,ie. LHP

=  jw axis in s plane corresponds to |z| = 1 , the unit circle in z plane

Complementary

strip 5 plane

Z plane

N

Complementary
strip

Complementary N
strip

Complementary
strip

[ I5]
T s plane Im 4 z plane
i
R e e o . e @5 5 58 o - -
® @ 1,
Y ?
Primary @ /
stri :1:}0__.; i) Re
s & 1 ) @
@ ®) .
. === 5
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Constant-attenuation loci

s plane

Z plane
jeo 1 Im
.uzT
s
-0, 0 0, "o i"_// 1 Re
e
Constant-frequency loci
‘;""1 5 plane Im z plane
a Eﬂa-} jedg) B eﬂa* jeq)
U‘:’
2t
Juag
Juwy
|
V] o = 1 Re
_'ju1
- (‘)‘
i 7 .
e feq)
Constant-damping ratio line
Im
Constant
Constant-damping-  jw { locus
ratio Ile__ 5 plane z plane
s—] jwy
A\
| & wﬂ
@ i = “"—l =Q
l
—fw 0 o -
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z plane

Stability analysis of closed-loop systems in the z domain

Consider the following pulse transfer function

c) G
R(z) 1+ GH(z)

Stability may be accessed by looking at the roots of the the characteristic
equation.

P(z)=1+GH(2) =0
1. For stability, require that the roots |z;| < 1

2. If simple pole z; =1 or z; = =1 or (zi=1and z; = —1)
or z; where z; complex such that |z| =1
= critical stability

3. Zeros do not affect absolute stability
Stability tests without finding roots
1. Jury test
2. Bilinear transformation and Routh criteria
The Jury test
F(z) = a,2" + Up 12" P+ Fat Farz+ag=0

a, >0
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General Form of the Jury stability table

Row |Z° z z N ¥ N Mt "
1 a0 T a'2 n-k an 1 n
2 an an—l an—2 ak a1 aO
3 bO bl b2 bn Kk bn—l
4 p™* b™ b™ .. b* b°
5 c® ct c .. c
6 Cn—2 Cn—3 Cn 4 CO
N -
2n-4 p p p p
2n_3 qO ql q2
where
bk _ ap  Gn—k
Ap, ag
p = bO bn— 1-k
bnfl bk
dy = Co Cn—2—k
Cpn—2 Ck
_ bPo P3
o P3 Po ‘
. Po P
© p3 P2 ‘

The necessary and sufficient condition for the F(z) to have no roots on
and outside the unit circle are

F(1)>0
>0 n even

F(=1) { <0 nodd
lag| < ay,
|bo| > [by1]
lco| > |cn—a| ¢ (n —1) constraints
|do| > [dn—s3]
lq0| > |ga|

For a second order system, n=2, Jury’s table contains only one row =-



lag| < ay,

Bilinear transformation and Routh stability criterion

Transform the z plane to the w plane by

w+ 1
7= —
w—1
z+1
= W =
z—1

which maps the inside of the unit circle in the z plane into the left half of
the w plane. The unit circle in z plane maps into the imaginary axis in the
w plane and the outside of the unit circle in z plane maps into RHP of w plane.

The w plane is similar to s plane (but not quantitatively) = can
use Routh test.

Let
P(z) =apz" + a2" "+ +ag1z+a, =0

w4+ 1\" w4 1\"! w+1
SRS CRRES) e EE PO
w—1 w—1 w—1

QW) = bow" + byw" 4+ by W+ b, =0

/" Requires a lot of computation but can now use Routh test.
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