
Chapter 3

Impulse Sampling

If a continuous-time signal x(t) is sampled in a periodic manner, mathe-
matically the sampled signal may be represented by

x∗(t) =
∞∑

k=−∞
x(t) δ(t− kT ) = x(t)

∞∑
k=−∞

δ(t− kT ) (1)

or

x∗(t) =
∞∑

k=−∞
x(kT ) δ(t− kT ) (2)

x*(t) is the sampled version of the continuous-time signal x(t).
Low limits may be changed to k = 0, if x(t) = 0, t < 0
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Relationship between z transform and Laplace transform

Taking the Laplace transform of equation (2)

X∗(s) = L[x∗(t)] = x(0) L[δ(t)] + x(T ) L[δ(t− T )] + x(2T ) L[δ(t− 2T )] + · · ·
= x(0) + x(T )e−Ts + x(2T )e−2Ts + · · ·
=

∞∑
k=0

x(kT )e−kTs

Now, define
eTs = z

so,

s =
1

T
ln z

X∗(s) |s= 1
T

lnz =
∞∑

k=0

x(kT ) z−k

or
X∗(s) |s= 1

T
lnz = X(z)

This shows how the z transform is related to the Laplace transform.
Note: the notation X(z) does not signify X(s) with s replaced by z, but
rather X∗(s = 1

T
lnz)
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Data Hold

Data hold is a process of generating a continuous-time signal h(t) from a
discrete-time sequence x(kT). The signal h(t) during the time interval
kT ≤ t ≤ (k + 1)T may be approximated by a polynomial in τ as follows:

h(kT + τ) = anτn + an−1τ
n−1 + · · ·+ a1τ + a0

where 0 ≤ τ ≤ T
note: h(kT ) = x(kT )

⇒ h(kT + τ) = anτn + an−1τ
n−1 + · · ·+ a1τ + x(kT )

If the data hold circuit is an nth-order polynomial extrapolator, it is called
an nth-order hold . It uses the past n + 1 discrete data x((k − n)T ),
x((k − n + 1)T ), · · · , x(kT ) to generate h(kT + τ).

ZERO-ORDER HOLD
If n = 0 in the above equation, we have a zero order hold so that

h(kT + τ) = x(kT ) 0 ≤ τ < T, k = 0, 1, 2, · · ·
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Transfer Function of ZOH

h(t) = x(0) [u(t)− u(t− T )] + x(T ) [u(t− T )]− u(t− 2T )] +

x(2T )[u(t− 2T )− u(t− 3T )] + · · ·
=

∞∑
k=0

x(kT ) [u(t− kT )]− u(t− (k + 1)T )]

Now, L[u(t− kT )] = e−kTs

s

thus, L[h(t)] = H(s) =
∞∑

k=0

x(kT )
e−kTs − e−(k+1)Ts

s

=
1− e−Ts

s︸ ︷︷ ︸
Gh0(s)

∞∑
k=0

x(kT )e−kTs

︸ ︷︷ ︸
X∗(s)

Thus, transfer function of ZOH

=
H(s)

X∗(s)
=

1− e−Ts

s

FIRST-ORDER HOLD

h(kT + τ) = a1τ + x(kT ), 0 ≤ τ < T, k = 0, 1, 2, · · ·
now

h((k − 1)T ) = x((k − 1)T )

so that
h((k − 1)T ) = −a1T + x(kT ) = x((k − 1)T )

or

a1 =
x(kT )− x((k − 1)T )

T

⇒ h(kT + τ) = x(kT ) +
x(kT )− x((k − 1)T )

T
τ, 0 ≤ τ < T

 

kT 4T 3T 2T T 

x (kT) 

h(t) 

Input to FOH 

Output from FOH 

-T 
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TRANSFER FUNCTION
Consider a unit step function input

x∗(t) =
∞∑

k=0

u(kT ) δ(t− kT ) =
∞∑

k=0

δ(t− kT )

h(t) = (1 +
t

T
) u(t)− (t− T )

T
u(t− T )− u(t− T )

⇒ H(s) = (
1

s
+

1

Ts2
)− 1

Ts2
e−Ts − 1

s
e−Ts

=
1− e−Ts

s
+

1− e−Ts

Ts2

= (1− e−Ts)
Ts + 1

Ts2

The Laplace transform of unit step

X∗(s) = L[u∗(t)] =
1

1− e−Ts

thus

Gh1(s) =
H(s)

X∗(s)
= (1− e−Ts)2 Ts + 1

Ts2

=

(
1− e−Ts

s

)2
Ts + 1

T
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Obtaining z transform of functions involving the term 1−e−Ts

s

Suppose the transfer function G(s) follows a zero-order hold

 
ZOH G(s) 

X(s) =
1− e−Ts

s
G(s)

X(z) = Z[X(s)] = (1− z−1) Z
[
G(s)

s

]

Suppose a transform function G(s) follows a first-order hold

 
FOH G(s) 

X(s) = (
1− e−Ts

s
)2 Ts + 1

T
G(s)

X(z) = (1− z−1)2 Z[
Ts + 1

Ts2
G(s)]

Reconstructing Original Signals from Sampled Signals
Sampling Theorem:

Define ωs = 2π
T

where T is the sampling period, then if

ωs > 2ω1

where ω1 is the highest-frequency component present in the continuous-time
signal x(t), then the signal x(t) can be reconstructed completely from the
sampled signal x∗(t).

Intuitive proof
The frequency spectrum of a sampled signal x∗(t) is given by

X∗(jω) =
1

T

∞∑
k=−∞

X(jω + jωsk)

* See next page
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Spectrum of Sampled Signal
Fourier series representation of a train of impulses

∞∑
k=−∞

δ(t− kT ) =
∞∑

n=−∞
Cn ej( 2πn

T
)t (3)

where

Cn =
1

T

∫ T
2

−T
2

∞∑
k=−∞

δ(t− kT )e−jn( 2πt
T

) dt

=
1

T

∫ T
2

−T
2

δ(t)e−jn( 2πt
T

) dt

δ(t) is the only value in the integral limit range. So

Cn =
1

T
(4)

note: by sifting property,
∫∞
−∞ δ(t) g(t) dt = g(0)

Thus, (3) & (4)⇒
∑∞

k=−∞ δ(t− kT ) = 1
T

∑∞
n=−∞ ej( 2πn

T
)t

↖ Fourier series representation of sum of impulses

x∗(t) =
∞∑

k=−∞
x(t) δ(t− kT )

⇒ L{x∗(t)} =
∫ ∞

−∞
x(t)

{
1

T

∞∑
n=−∞

ejnωst

}
e−sT dt

where ωs = 2π
T

X∗(s) =
1

T

∞∑
n=−∞

∫ ∞

−∞
x(t) ejnωst e−st dt

=
1

T

∞∑
n=−∞

∫ ∞

−∞
x(t) e−(s−jnωs)t dt

↗ Laplace transform with a change of variable

X∗(s) =
1

T

∞∑
n=−∞

X(s− jnωs)
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Aliasing

If ωs < 2ω1, aliasing occurs

Consider frequency component ω2 which falls in the overlap. It has two
components

|X∗(jω2)| and |X∗(j(ωs − ω2))|︸ ︷︷ ︸
from spectrum centered at ω = ωs

Therefore the frequency spectrum of the sampled signal at ω = ω2 includes
components not only at frequency ωs but also at frequency ωs − ω2 (in gen-
eral, at nωs ± ω2, where n is an integer).

The frequency ωs − ω2︸ ︷︷ ︸ is known as an alias of ω2.

In general nωs ± ω2

Aliasing
Two frequencies x(t) and y(t) differ from each other by an integral mul-

tiple of ωs, sampling frequency T = 2π
ωs

.

x(kT ) = sin(ω2kT + θ)

y(kT ) = sin((ω2 + nωs)kT + θ)

= sin(ω2kT + 2πkn + θ)

= sin(w2kT + θ)

⇒ Two signals of different frequencies can have identical samples,
means that we cannot distinguish between them from their samples.
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If ωs < 2ω1 , the original spectrum is contaminated, so x(t) cannot be recon-
structed.

If ωs > 2ω1 , the original signal can be recovered by using an ideal low
pass filter.

GI(jω) =

{
1 −1

2
ωs ≤ ω ≤ 1

2
ωs

0 elsewhere

the inverse Fourier transform gives

gI(t) =
1

T

sin(ωs
t
2
)

ωs
t
2

← unit impulse response

Use a ZOH to approximate ideal low pass filter.
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Frequency response of ZOH

Gh0 =
1− e−Ts

s

Since
1− e−Ts

s
=

e−T s
2 (eT s

2 − e−T s
2 )

s

s = jω ⇒ e
−jω

2
T (eT jω

2 − e−T jω
2 )

jω

sin ωT
2

e
jω
2

T

ω
2

sin θ =
ejθ − e−jθ

2j

⇒ Gh0(jω) = T
sin(ω T

2
)

ω T
2

e−jω T
2

The ZOH does not approximate an ideal low pass filter very well. Higher
order holds do a better job but are more complex and have more time delay,
which reduces stability margin. So ZOH’s get used a lot.
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The Pulse Transfer Function

Convolution Summation

y(kT ) =
∞∑

k=0

g(kT − hT ) x(kT )

=
∞∑

k=0

x(kT − hT ) g(kT )

≡ x(kT ) ∗ g(kT )

where g(kT) is the system’s weighting sequence. i.e. g(k) = Z−1 {G(z)}

Starred Laplace Transfrom

Y (s) = G(s) X∗(s)

Note: X∗(s) is periodic with period 2π
ωs

since X∗(s) = X∗(s±jωsk), for k =
0, 1, 2, · · ·. G(s) is not periodic.

Taking the starred transform { See notes on next page }

Y ∗(s) = [G(s)X∗(s)]∗ = [G(s)]∗X∗(s) = G∗(s)X∗(s)

Note: X∗(s) = 1
T

∑∞
k=−∞ X(s + jωsk) + 1

2
x(0+)

Y (z) = G(z) X(z)

Since the z transform can be seen to be the starred Laplace transform with
eTs replaced by z; i.e. X∗(s) = X(z)
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Obtaining The Pulse Transfer Function

The presence or absence of an input sampler is crucial in determining the
pulse transfer function of a system.
For figure a,

Y (s) = G(s) X∗(s)

⇒ Y ∗(s) = G∗(s) X∗(s)

⇒ Y (z) = G(z) X(z)

For figure b,
Y (s) = G(s) X(s)

⇒ Y ∗(s) = [G(s) X(s)]∗ = [GX(s)]∗ = GX(z) �= G(z)X(z)
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Methods for obtaining the z transform

1. X(z) = Z [X(s) expanded into partial fractions Xi(s)] =
∑

i {Z[Xi(s)]}
2. X(z) =

∑∞
k=0 x(kT )z−k

3. X(z) =
∑[

residue of X(s)z
z−eTs at pole of X(s)

]
Pulse transfer function of cascaded elements

For figure (a)

U(s) = G(s) X∗(s) ⇒ U∗(s) = G∗(s) X∗(s)

Y (s) = H(s) U∗(s) ⇒ Y ∗(s) = H∗(s) U∗(s)

⇒ Y ∗(s) = H∗(s) G∗(s) X∗(s)

= G∗(s) H∗(s) X∗(s)

⇒ Y (z) = G(z) H(z) X(z) ⇒ Y (z)

X(z)
= G(z) H(z)

For figure (b)

Y (s) = G(s) H(s) X∗(s) = GH(s) X∗(s)

⇒ Y ∗(s) = [GH(s)]∗ X∗(s)

⇒ Y (z) = GH(z) X(z) ⇒ Y (z)

X(z)
= GH(z) = Z[GH(s)]

Note that G(z) H(z) �= GH(z) = Z[GH(s)]
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Pulse transfer function of closed-loop systems

C(s) = G2(s) U∗(s) (5)

⇒ C∗(s) = G∗
2(s) U∗(s) (6)

E(s) = R(s)−H(s) C(s) (7)

U(s) = G1(s) E(s) = G1(s) R(s)−G1(s) H(s) C(s)

= G1(s) R(s)−G1(s) H(s) G2(s) U∗(s)
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U∗(s) = [G1(s) R(s)]∗ − [G1(s) Gs(s) H(s) U∗(s)]∗

= [G1R(s)]∗ − [G1G2H(s)]∗ U∗(s)

⇒ {1 + [G1G2H(s)]∗} U∗(s) = [G1R(s)]∗

⇒ U∗(s) =
[G1R(s)]∗

1 + [G1G2H(s)]∗
(8)

(6)&(8) ⇒

C∗(s) =
G∗

2(s) [G1R(s)]∗

1 + [G1G2H(s)]∗
⇒ C(z) =

G2(z) G1R(z)

1 + G1G2H(z)

Example

Find C(z)
R(z)

C(z)

R(z)
=

G(z)

1 + G(z)
, for H(s) = 1

now

G(z) = Z[G(s)] = Z
[
(1− e−Ts)

K

s(s + 1)

]

= (1− z−1) Z
[
K

s
− K

s + 1

]

= (1− z−1)
(

K

1− z−1
− K

1− e−T z−1

)

=
K(1− e−T )z−1

1− e−T z−1

closed-loop

⇒ C(z)

R(z)
=

K(1− e−T )z−1

1 + [K − (K + 1)e−T ]z−1
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Obtaining response between consecutive sampling instants

The z transform does not give the response between sampling instants.
Can use the following methods to do so.

1. The Laplace transform method

2. The modified z transform method

3. The state space method

Will look only at first method for now.

1. The Laplace transform method

Example: Consider the following system

We know that

C(s) = G(s) E∗(s) = G(s)
R∗(s)

1 + GH∗(s)

Thus

c(t) = L−1[C(s)] = L−1

{
G(s)

R∗(s)
1 + GH∗(s)

}
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Mapping between the s plane and the z plane

z = eTs

let s = σ + jω

z = eT (σ+jω) = eTσ ejTω = eTσej(Tω+2πk)

now
|z| = eTσ < 1 for σ < 0, i.e. LHP

⇒ jω axis in s plane corresponds to |z| = 1 , the unit circle in z plane
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Constant-attenuation loci

Constant-frequency loci

Constant-damping ratio line
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Stability analysis of closed-loop systems in the z domain

Consider the following pulse transfer function

C(z)

R(z)
=

G(z)

1 + GH(z)

Stability may be accessed by looking at the roots of the the characteristic
equation.

P (z) = 1 + GH(z) = 0

1. For stability, require that the roots |zi| < 1

2. If simple pole zi = 1 or zi = −1 or (zi = 1 and zi = −1)
or zi where zi complex such that |z| = 1
⇒ critical stability

3. Zeros do not affect absolute stability

Stability tests without finding roots

1. Jury test

2. Bilinear transformation and Routh criteria

The Jury test

F (z) = anzn + an−1z
n−1 + · · ·+ a2z

2 + a1z + a0 = 0

an > 0
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General Form of the Jury stability table 

 

Row z0 z1 z2 … zn-k … zn-1 zn 
1 a0 a1 a2 … an-k … an-1 an 
2 an an-1 an-2 … ak … a1 a0 
3 b0 b1 b2 … bn-k … bn-1  

4 bn-1 bn-2 bn-3 … bk … b0  
5 c0 c1 c2 …  cn-2   
6 cn-2 cn-3 cn-4   c0   
: 
: 

: 
: 

: 
: 

: 
: 

: 
: 

 
 

   

2n-5 p0 p1 p2 p3     
2n-4 p3 p2 p1 p0     
2n-3 q0 q1 q2      

where

bk =

∣∣∣∣∣ a0 an−k

an ak

∣∣∣∣∣
ck =

∣∣∣∣∣ b0 bn−1−k

bn−1 bk

∣∣∣∣∣
dk =

∣∣∣∣∣ c0 cn−2−k

cn−2 ck

∣∣∣∣∣
...

q0 =

∣∣∣∣∣ p0 p3

p3 p0

∣∣∣∣∣
q2 =

∣∣∣∣∣ p0 p1

p3 p2

∣∣∣∣∣
The necessary and sufficient condition for the F(z) to have no roots on

and outside the unit circle are

F (1) > 0

F (−1)

{
> 0 n even
< 0 n odd

|a0| < an

|b0| > |bn−1|
|c0| > |cn−2|
|d0| > |dn−3|
|q0| > |q2|




(n− 1) constraints

For a second order system, n=2, Jury’s table contains only one row ⇒

F (1) > 0

F (−1) > 0
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|a0| < an

Bilinear transformation and Routh stability criterion

Transform the z plane to the w plane by

z =
w + 1

w− 1

⇒ w =
z + 1

z − 1

which maps the inside of the unit circle in the z plane into the left half of
the w plane. The unit circle in z plane maps into the imaginary axis in the
w plane and the outside of the unit circle in z plane maps into RHP of ω plane.

The w plane is similar to s plane (but not quantitatively) ⇒ can
use Routh test.

Let
P (z) = a0z

n + a1z
n−1 + · · ·+ an−1z + an = 0

⇒ a0

(
w + 1

w− 1

)n

+ a1

(
w + 1

w− 1

)n−1

+ · · ·+ an−1

(
w + 1

w− 1

)
+ a0 = 0

Q(w) = b0w
n + b1w

n−1 + · · ·+ bn−1w + bn = 0

↗ Requires a lot of computation but can now use Routh test.
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