CFG and PDA accept the same languages

Sipser pages 115 - 122

Tim Sheard

Equivalence of CFGs and PDAs

The equivalence is expressed by two theorems.

Theorem 1. Every context-free language is accepted by some PDA.

Theorem 2. For every PDA M, the language L(M) is context-free.

We will describe the constructions, see some examples and proof ideas.

Lemma 2.21 (page 115 Sipser)

Given a CFG G=(V,T,P,S), we define a PDA $M = (\{q_{start}, q_{loop}, q_{accept}\}, T, T \cup V \cup \{\$\}, \delta, q_{accept}, \{q_{start}\}),$ with δ given by

- $\delta(q_{start}, \varepsilon, \varepsilon) = \{(q_{loop}, S^{s})\}$
- If $A \in V$, then $\delta(q_{loop}, \epsilon, A) = \{ (q_{loop}, \alpha) \mid A \rightarrow \alpha \text{ is in } P \}$ If $a \in T$, then $\delta(q_{loop}, a, a) = \{ (q_{loop}, \epsilon) \}$
- $\delta(q_{loop}, \epsilon, \$) = \{(q_{accept}, \epsilon)\}$
- 1. Note that the stack symbols of the new PDA contain all the terminal and non-terminals of the CFG plus \$
- There is only 3 states in the new PDA, all the rest of the info is encoded in the stack. 2
- Most transitions are on ε_{i} , one for each production 3.
- A few other transitions come one for each terminal. 4
- 5. The start and accept state each add a transition and use the marker \$

The automaton simulates leftmost derivations of G producing w, accepting by empty stack. For every intermediate sentential form $uA\alpha$ in the leftmost derivation of w (note first that w = uv for some v), M will have $A\alpha$ on its stack after reading u. At the end (case u=w and $v=\varepsilon$) the stack will be empty.

Example

For our old grammar: $S \rightarrow SS \mid (S) \mid \varepsilon$ The automaton M will have seven transitions, most from q_{loop} to q_{loop} : 1. $\delta(q_{\text{start}}, \varepsilon, \varepsilon) = (q_{\text{loop}}, S\$)$ $S \rightarrow SS$ 2. $\delta(q_{loop}, \epsilon, S) = (q_{loop}, SS)$ $S \rightarrow (S)$ 3. $\delta(q_{loop'} \epsilon, S) = (q_{loop'} (S))$ $S \rightarrow \varepsilon$ 4. $\delta(q_{loop}, \varepsilon, S) = (q_{loop}, \varepsilon)$ 5. $\delta(q_{loop'}(, ()) = (q_{loop'} \epsilon)$ 6. $\delta(q_{loop'}),) = (q_{loop'}\varepsilon)$ 7. $\delta(q_{loop}, \varepsilon, \$) = (q_{accept}, \varepsilon)$

- 1. Most transitions are on ε , one for each production
- 2. A few other transitions come one for each terminal
- 3. Or from the start and accept conditions

Compare

Now compare the leftmost derivation $S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())()$

with the looping part of M's execution on the same string given as input:

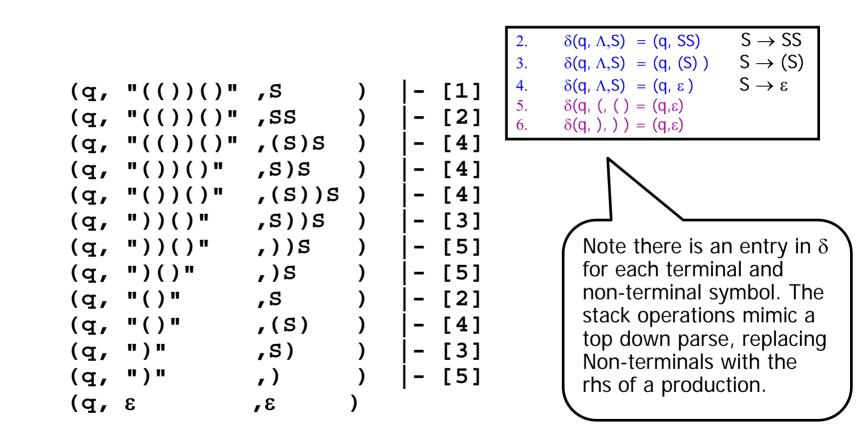
	55			
(q,	"(())()"	,S)	- [1]
(q,	"(())()"	,SS)	- [2]
(q,	"(())()"	, (S)S)	- [4]
(q,	"())()"	, S)S)	- [4]
(q,	"())()"	,(S))S)	- [4]
(q,	"))()"	, S))S)	- [3]
(q,	"))()"	,))S)	- [5]
(q,	")()"	,)S)	- [5]
(q,	"()"	,S)	- [2]
(q,	"()"	,(S))	- [4]
(q,	")"	, S))	- [3]
(q,	")"	,))	- [5]
(q,	3	,8)	

2. 3.	$\delta(q, \varepsilon, S) = (q, SS)$ $\delta(q, \varepsilon, S) = (q, (S))$	$\begin{array}{c} S \to SS \\ S \to (S) \end{array}$
4.	$\delta(q, \varepsilon, S) = (q, \varepsilon)$	$S \rightarrow \varepsilon$ S $\rightarrow \varepsilon$
5. 6.	$\begin{array}{l} \delta(q,\ (,\ (\)=(q,\varepsilon)\\ \delta(q,\),\)\)=(q,\varepsilon) \end{array}$	

Note we write q for q_{loop} for brevity

Transitions simulate left-most derivation

```
S \Rightarrow SS \Rightarrow (S)S \Rightarrow ((S))S \Rightarrow (())S \Rightarrow (())(S) \Rightarrow (())()
```



Note we write q for q_{loop} for brevity

Proof Outline

To prove that every string of L(G) is accepted by the PDA M, prove the following more general fact:

If
$$S \Rightarrow_{left-most}^{*} \alpha$$
 then $(q_{loop}, uv, S) \mid -* (q_{loop}, v, \beta)$

where $\alpha = u\beta$ is the "leftmost factorization" of α (u is the longest prefix of α that belongs to T^{*}, i.e. all terminals).

For example: if α = abcWdXa then u = abc, and β = WdXa, since the next symbol after abc is W \in V (a non-terminal or ε)

 $S \Rightarrow_{Im}^{*} abcW...$ then $(q_{loop}, abcV, S) \mid -* (q_{loop}, V, W...)$

The proof is by induction on the length of the derivation of $\alpha.$

We also need to prove that every string accepted by M belongs to L(G). Again, to make induction work, we need to prove a slightly more general fact:

If $(q_{loop}, W, A) | -^* (q_{loop}, \varepsilon, \varepsilon)$, then $A \Longrightarrow^* W$ For all Stacks A, letting A = Start we have our proof.

This time we induct on the length of execution of M that leads from the ID (q_{loop}, w,A\$) to (q_{loop}, ε,\$).

Grammar from a PDA lemma 2.27 Sipser pg 119

Assume the M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ is given, and that it accepts by empty stack.

Alter it so that it has the following additional properties

- 1. It has a single accept state
- 2. Each transition either
 - 1. Pushes a symbol onto the stack
 - 2. Or pops a symbol off the stack
 - 3. But not both

Why can we do this? (hint add new states)

Symbols of the CFG

For every pair of states $p,q \in Q$

Make a variable (non-terminal) A_{pq}

A symbol A_{pq} should derive a string if that string cause the PDA to move from state p (with an empty stack) to state q (with an empty stack).

Such strings can do the same, starting and ending with the same arbitrary stack. Why?

Productions of the CFG

Consider a string x that moves the PDA from p to q on empty stack.

1. The first move must be a push (why?)

2. The last move must be a pop (why?)

 $(p,x,\epsilon) \mid - (_,_,Z) \mid - ... \mid - (_,_,T) \mid (q,\epsilon,\epsilon)$

There are 2 cases (Z=T)=True or (Z=T)=False

1. (Z=T)=True

Stack is only empty at the beginning and at the end. (p,ay, ϵ) |- (r,y,Z) |- ... |- (s,b,T) -| (q, ϵ , ϵ)

$$A_{pq} \rightarrow a A_{rs}b$$

2. (Z=T)=False

the stack is empty in the middle, at some state r $(p,x,\epsilon) \mid - \dots (r, -, \epsilon) \mid - \dots - \mid (q,\epsilon,\epsilon)$ $A_{pq} \rightarrow A_{pr} A_{rq}$

Given M = $(Q,\Sigma,\Gamma,\delta,s,{f})$ Construct $G = (V, \Sigma, R, S)$ $V = \{ A_{pq} \mid p,q \in Q \}$ $S = A_{sf}$ $\Sigma = \Sigma$ R = cases1. For each $p \in Q$ $A_{pp} \rightarrow \epsilon$ $A_{pq} \rightarrow A_{pr} A_{rq}$ 2. For each $p,q,r \in Q$ 3. For each $p,q,r,s \in Q$ $T \in \Gamma$ a, b $\in \Sigma_{s}$ $(r,T) \in \delta(p,a,\varepsilon)$ $(q,\varepsilon) \in \delta(s,b,T)$ $A_{pq} \rightarrow a A_{rs}b$ $(p,ay,\epsilon) |- (r,y,Z) |- ... |- (s,b,T) -| (q,\epsilon,\epsilon)$

Claim 2.30

If A_{pq} generates x, then x can bring the PDA from p with empty stack to q with empty stack

$$A_{pq} \Rightarrow^* x$$
 implies $(p, x, \varepsilon) | -^* (q, \varepsilon, \varepsilon)$

Proof by induction on the number of steps in the derivation $A_{pq} \Rightarrow^* x$

Claim 2.31

If x can bring the PDA from p with empty stack to q with empty stack then A_{pq} generates x

$$(p, x, \varepsilon) \mid -* (q, \varepsilon, \varepsilon) \quad \text{implies} \quad A_{pq} \Rightarrow^* x$$

Proof by induction on the length of $(p,x,\varepsilon) |-* (q,\varepsilon,\varepsilon)$

The following is additional material for the curious.

It gives a second construction not described in Sipser.

It is not required.

An another algorithm for CFG from a PDA

Assume the $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is given, and that it accepts by empty stack. Consider execution of M on an accepted input string.

If at some point of the execution of M the stack is $Z\zeta$ (Z is on top, ζ is the rest of stack) In terms of instantaneous descriptions (state_i, input, $Z\zeta$) |-...

Then we know that eventually the stack will be ζ . Why? Because we assume the input is accepted, and M accepts by empty stack, so eventually Z must be removed from the stack (state_i, αX , $Z\zeta$) |-* (state_j, X, ζ)

- The sequence of moves between these two instants is the "net popping" of Z from the stack.
- During this sequence of moves, the stack may grow and shrink several times, some input will be consumed (the α), and M will pass through a sequence of states, from state_i to state_j.

Net Popping

Net popping is fundamental for the construction of a CFG G equivalent to M.

We will have a variable (Non-terminal) [qZp] in the CFG G for every triple in (q,Z,p) $\in Q \times \Gamma \times Q$ from the PDA. Recall

- 1. Q is the set of states
- 2. Γ Is the set of stack symbols

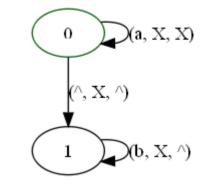
We want the rhs of a production whose lhs is [qZp] to generate precisely those strings $w \in \Sigma^*$ such that M can move from q to p while reading the input w and doing the net popping of Z. A production like [qZp] ->?

This can be also expressed as $(q,w,Z) \mid -* (p, \Lambda, \Lambda)$

Productions of G correspond to transitions of M.

- If $(p,\zeta) \in \delta(q,a,Z)$, then there is one or more corresponding productions, depending on complexity of ζ .
 - 1. If $\zeta = \Lambda$, we have $[qZp] \rightarrow a$
 - 2. If $\zeta = Y$, we have $[qZr] \rightarrow a[pYr]$ for every state r
 - 3. If $\zeta = YY'$ we have $[qZs] \rightarrow a[pYr][rY's]$, for every pair of states r and s.
 - 4. You can guess the rule for longer ζ .

Example



 $Q = \{0,1\} \\ S = \{a,b\} \\ \Gamma = \{X\} \\ \delta(0,a,X) = \{ (0,X) \} \\ \delta(0,\Lambda,X) = \{ (1,\Lambda) \} \\ \delta(1,b,X) = \{ (1,\Lambda) \} \\ O_{0 = 0} \\ Z_{0} = X \\ F = \{\}, \text{ accepts by empty stack} \end{cases}$

Non-terminals $(q, Z, p) \in Q \times \Gamma \times Q$ (0, 'X', 0) (0, 'X', 1) (1, 'X', 0)(1, 'X', 1)

Productions, At least one from each element in delta $(p,z) \in \delta(q,a,Z)$

(0,a,X,0,X) (1,b,X,1,Λ) (0,Λ,X,1,Λ)] 0X0 -> a 0X0 0X1 -> a 0X1 1X1 -> b 0X1 -> Λ