
Automata and Formal Languages

Tim Sheard 1 Lecture 14

CFG and PDA accept the same languages

Sipser pages 115 - 122

Equivalence of CFGs and PDAs

The equivalence is expressed by two theorems.

Theorem 1. Every context-free language is

accepted by some PDA.

Theorem 2. For every PDA M, the language L(M)

is context-free.

We will describe the constructions, see some

examples and proof ideas.

Lemma 2.21 (page 115 Sipser)

Given a CFG G=(V,T,P,S), we define a PDA
M=({qstart,qloop,qaccept},T, T∪V∪{$}, δ, qaccept,{qstart}),
with δ given by

• δ(qstart,ε,ε) = {(qloop,S$)}
• If A ∈ V, then δ(qloop,ε,A) = { (qloop,α) | A → α is in P}
• If a ∈ T, then δ(qloop,a,a) = { (qloop,ε) }
• δ(qloop,ε,$) = {(qaccept,ε)}

1. Note that the stack symbols of the new PDA contain all the terminal

and non-terminals of the CFG plus $
2. There is only 3 states in the new PDA, all the rest of the info is

encoded in the stack.
3. Most transitions are on ε, one for each production
4. A few other transitions come one for each terminal.
5. The start and accept state each add a transition and use the marker $

The automaton simulates leftmost
derivations of G producing w, accepting
by empty stack. For every intermediate
sentential form uAα in the leftmost
derivation of w (note first that w = uv for
some v), M will have Aα on its stack after
reading u. At the end (case u=w and v=ε)
the stack will be empty.

Example

For our old grammar: S → SS | (S) | ε
The automaton M will have seven

transitions, most from qloop to qloop:
1. δ(qstart, ε, ε) = (qloop, S$)
2. δ(qloop, ε,S) = (qloop, SS) S → SS
3. δ(qloop, ε,S) = (qloop, (S)) S → (S)
4. δ(qloop, ε,S) = (qloop, ε) S → ε
5. δ(qloop, (, () = (qloop,ε)
6. δ(qloop,),)) = (qloop,ε)
7. δ(qloop,ε,$) = (qaccept,ε)

1. Most transitions are on ε, one for each production
2. A few other transitions come one for each terminal
3. Or from the start and accept conditions

Compare

Now compare the leftmost derivation
S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

with the looping part of M's execution on the same
string given as input:
(q, "(())()" ,S) |- [1]
(q, "(())()" ,SS) |- [2]
(q, "(())()" ,(S)S) |- [4]
(q, "())()" ,S)S) |- [4]
(q, "())()" ,(S))S) |- [4]
(q, "))()" ,S))S) |- [3]
(q, "))()" ,))S) |- [5]
(q, ")()" ,)S) |- [5]
(q, "()" ,S) |- [2]
(q, "()" ,(S)) |- [4]
(q, ")" ,S)) |- [3]
(q, ")" ,)) |- [5]
(q, ε ,ε)

Note we write q for qloop for brevity

2. δ(q, ε,S) = (q, SS) S → SS
3. δ(q, ε,S) = (q, (S)) S → (S)
4. δ(q, ε,S) = (q, ε) S → ε
5. δ(q, (, () = (q,ε)
6. δ(q,),)) = (q,ε)

Transitions simulate left-most derivation

S ⇒ SS ⇒ (S)S ⇒ ((S))S ⇒ (())S ⇒ (())(S) ⇒ (())()

(q, "(())()" ,S) |- [1]
(q, "(())()" ,SS) |- [2]
(q, "(())()" ,(S)S) |- [4]
(q, "())()" ,S)S) |- [4]
(q, "())()" ,(S))S) |- [4]
(q, "))()" ,S))S) |- [3]
(q, "))()" ,))S) |- [5]
(q, ")()" ,)S) |- [5]
(q, "()" ,S) |- [2]
(q, "()" ,(S)) |- [4]
(q, ")" ,S)) |- [3]
(q, ")" ,)) |- [5]
(q, ε ,ε)

Note we write q for qloop for brevity

2. δ(q, Λ,S) = (q, SS) S → SS
3. δ(q, Λ,S) = (q, (S)) S → (S)
4. δ(q, Λ,S) = (q, ε) S → ε
5. δ(q, (, () = (q,ε)
6. δ(q,),)) = (q,ε)

Note there is an entry in δ
for each terminal and
non-terminal symbol. The
stack operations mimic a
top down parse, replacing
Non-terminals with the
rhs of a production.

Proof Outline

To prove that every string of L(G) is accepted by the
PDA M, prove the following more general fact:

 If S ⇒left-most

* α then (qloop,uv,S) |-* (qloop,v,β)

 where α = uβ is the “leftmost factorization” of α (u is

the longest prefix of α that belongs to T*, i.e. all
terminals).

 For example: if α = abcWdXa then u = abc, and β = WdXa, since the
next symbol after abc is W∈V (a non-terminal or ε)

 S ⇒lm
* abcW… then (qloop, abcV,S) |-* (qloop,V, W…)

The proof is by induction on the length of the derivation
of α.

We also need to prove that every string
accepted by M belongs to L(G). Again, to
make induction work, we need to prove a
slightly more general fact:

If (qloop,w,A) |-* (qloop, ε, ε), then A ⇒∗ w
For all Stacks A, letting A = Start we have our proof.

This time we induct on the length of

execution of M that leads from the ID
(qloop,w,A$) to (qloop, ε ,$).

Grammar from a PDA
lemma 2.27 Sipser pg 119

Assume the M = (Q,Σ,Γ,δ,q0,F) is given, and that it
accepts by empty stack.

Alter it so that it has the following additional

properties

1. It has a single accept state
2. Each transition either

1. Pushes a symbol onto the stack
2. Or pops a symbol off the stack
3. But not both

Why can we do this? (hint add new states)

Symbols of the CFG

For every pair of states p,q ∈Q

Make a variable (non-terminal) Apq

A symbol Apq should derive a string if that
string cause the PDA to move from state p
(with an empty stack) to state q (with an
empty stack).

Such strings can do the same, starting and ending
with the same arbitrary stack. Why?

Productions of the CFG

Consider a string x that moves the PDA from p to q
on empty stack.
1. The first move must be a push (why?)
2. The last move must be a pop (why?)
(p,x,ε) |- (_,_,Z) |- … |- (_,_,T) -| (q,ε,ε)

There are 2 cases (Z=T)=True or (Z=T)=False
1. (Z=T)=True

Stack is only empty at the beginning and at the end.
(p,ay,ε) |- (r,y,Z) |- … |- (s,b,T) -| (q,ε,ε)

 Apq → a Arsb
2. (Z=T)=False

the stack is empty in the middle, at some state r
(p,x,ε) |- … (r,_, ε) |- … -| (q,ε,ε)

Apq → Apr Arq

Given M = (Q,Σ,Γ,δ,s,{f})
Construct G= (V,Σ,R,S)
V = { Apq | p,q ∈Q}
S = Asf

Σ = Σ
R = cases

1. For each p∈Q App → ε
2. For each p,q,r ∈Q Apq → Apr Arq
3. For each p,q,r,s ∈Q

T∈Γ a,b∈Σε
(r,T)∈δ(p,a,ε) (q,ε)∈δ(s,b,T)

 Apq → a Arsb

(p,ay,ε) |- (r,y,Z) |- … |- (s,b,T) -| (q,ε,ε)

Claim 2.30

If Apq generates x, then x can bring the PDA
from p with empty stack to q with empty
stack

Apq ⇒∗ x implies (p,x,ε) |-* (q,ε,ε)

Proof by induction on the number of steps

in the derivation Apq ⇒∗ x

Claim 2.31

If x can bring the PDA from p with empty
stack to q with empty stack then Apq
generates x

(p,x,ε) |-* (q,ε,ε) implies Apq ⇒∗ x

Proof by induction on the length of
 (p,x,ε) |-* (q,ε,ε)

The following is additional material for the
curious.

It gives a second construction not described

in Sipser.

It is not required.

An another algorithm for
CFG from a PDA

Assume the M = (Q,Σ,Γ,δ,q0,F) is given, and that it
accepts by empty stack. Consider execution of M
on an accepted input string.

If at some point of the execution of M the stack is

Zζ (Z is on top, ζ is the rest of stack)
In terms of instantaneous descriptions
 (statei, input, Zζ) |− . . .

Then we know that eventually the stack will be ζ.
 Why? Because we assume the input is accepted,

and M accepts by empty stack, so eventually Z
must be removed from the stack

 (statei, αX, Zζ) |−∗ (statej, X, ζ)

The sequence of moves between these two

instants is the “net popping” of Z from the
stack.

During this sequence of moves, the stack

may grow and shrink several times, some
input will be consumed (the α), and M will
pass through a sequence of states, from
statei to statej.

Net Popping

Net popping is fundamental for the construction of a CFG G
equivalent to M.

We will have a variable (Non-terminal) [qZp] in the CFG G for

every triple in (q,Z,p) ∈ Q×Γ×Q from the PDA. Recall
1. Q is the set of states
2. Γ Is the set of stack symbols

We want the rhs of a production whose lhs is [qZp] to

generate precisely those strings w ∈ Σ* such that M can
move from q to p while reading the input w and doing the
net popping of Z. A production like [qZp] -> ?

This can be also expressed as (q,w,Z) |-* (p, Λ , Λ)

Productions of G correspond to transitions of M.

If (p,ζ) ∈ δ(q,a,Z), then there is one or more
corresponding productions, depending on
complexity of ζ.

1. If ζ = Λ, we have [qZp] → a
2. If ζ = Y, we have [qZr] → a[pYr] for every

state r
3. If ζ = YY’ we have [qZs] → a[pYr][rY's], for

every pair of states r and s.
4. You can guess the rule for longer ζ.

Example

Q = {0,1}
S = {a,b}
Γ = {X}
δ(0,a,X) = { (0,X) }
δ (0,Λ,X) = { (1,Λ) }
δ (1,b,X) = { (1,Λ) }
Q0 = 0
Z0 = X
F = {}, accepts by empty stack

Non-terminals
(q,Z,p) ∈ Q×Γ×Q
(0,'X',0)
(0,'X',1)
(1,'X',0)
(1,'X',1)

Productions, At least one
from each element in delta
(p,z) ∈ δ(q,a,Z)

(0,a,X,0,X)
(1,b,X,1,Λ)
(0,Λ,X,1,Λ)]

0X0 -> a 0X0
0X1 -> a 0X1
1X1 -> b
0X1 -> Λ

	CFG and PDA accept the same languages
	Equivalence of CFGs and PDAs
	Lemma 2.21 (page 115 Sipser)
	Slide Number 4
	Example
	Compare
	Transitions simulate left-most derivation
	Proof Outline
	Slide Number 9
	Grammar from a PDA�lemma 2.27 Sipser pg 119
	Symbols of the CFG
	Productions of the CFG
	Given M = (Q,S,G,d,s,{f})
	Claim 2.30
	Claim 2.31
	Slide Number 16
	An another algorithm for�CFG from a PDA
	Slide Number 18
	Net Popping
	Slide Number 20
	Example

