
Data Flow GraphsData Flow Graphs
IntroIntro

Sources: Gang Quan

Computational ModelsComputational Models
� What:

– A conceptual notion for expressing the function of a system
� E.g. DFG, FSM, Petri net, Turing machine, etc.

� Computational Models & Languages
– Models express the behavior, languages capture models
– Models are conceptual, languages are concrete

� What is in a computational model
– A set of objects
– Rules
– Semantics

Data Flow Graph (DFG)Data Flow Graph (DFG)
� A modem communications system

– Each box is a single function or sub systems
– The activity of each block in the chain depends on the

input of the previous block
– Data driven

� Each functional block may have to wait until it receives a
"certain amount" of information before it begins processing

� Some place to output the results

Data Flow GraphData Flow Graph
� Definition

– A directed graph that shows the data dependencies
between a number of functions

– G=(V,E)
� Nodes (V): each node having input/output data ports
� Arces (E): connections between the output ports and input

ports
– Semantics

� Fire when input data are ready
� Consume data from input ports and produce data to its output

ports
� There may be many nodes that are ready to fire at a given time

Data Flow Graph ConstructionData Flow Graph Construction

a
acbbx

2
42

1
−+−=

a
acbbx

2
42

2
−−−=

-1

+

-

x

/

**

sqrt

x

x

b 4 c a 2

-
/

X1
X2

a
acbbx

2
42

1
−+−=

a
acbbx

2
42

2
−−−=

Data flow graph constructionData flow graph construction

original code:
x <= a + b;
y <= a * c;
z <= x + d;
x <= y - d;
x <= x + c;

a b c d

+ *

+

+

y xzx

-

x

Data flow graph constructionData flow graph construction
original code:
x <= a + b;
y <= a * c;
z <= x + d;
x <= y - d;
x <= x + c;

single-assignment form:
x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;

Data flow graph constructionData flow graph construction
single-assignment form:
x1 <= a + b;
y <= a * c;
z <= x1 + d;
x2 <= y - d;
x3 <= x2 + c;

a b c d

+ *

+

+
y

x3

z

x1

-

x2

Design IssuesDesign Issues
� Allocating
� Mapping
� Schedule
� Memory management
� Construction and usage of the queues

GoalsGoals
� Guarantee correct behavior
� Utilize hardware efficiently.
� Obtain acceptable performance.

AllocationAllocation
� Decide the numbers and types of different functional

units
– E.g. register allocation

….
x <= a + b;
y <= a + c;
x <= x - c;
….
….x …
….y….

….
x <= a + b;
y <= a + c;
x <= x - c;
….
….x …
….y….

three registers

MappingMapping

� Distributing nodes to different functional
units on which they will fire
– Functional units may provide different functions

� Adder or ALU, MUX or buses, etc

– Functional units may have different delay
� Ripple adder or look ahead adder

– Determines area, cycle time.

A Mapping ExampleA Mapping Example

Subject to:

• Two adders
• Four registers
• b and e cannot be assigned

to the same register

+

+

a b

c

e

+

d

f

A Mapping ExampleA Mapping Example

R1: a
R2: b, c, e
R3: d, f

+

+

a b

c

e

+

d

f

Subject to:
• Two adders
• Three registers
• a and e cannot be

assigned to the same
register

R3

Adder 1

R1 R2

Adder 2

Mapping may not be unique !

Scheduling of DFGScheduling of DFG

� Schedule
– Creating the sequence in which nodes fire
– Determines number of clock cycles required

� Two simple schedules:
– As-soon-as-possible (ASAP) schedule puts

every operation as early in time as possible
– As-late-as-possible (ALAP) schedule puts

every operation as late in schedule as possible

ASAPASAP

+

-

/

*-1

+

** t=0

t=1

t=2

t=3

t=4

+/ **-1

-

*

+

Nodes fire whenever the input data are available.

ALAPALAP

+

-

/

*-1

+

** t=0

t=1

t=2

t=3

t=4

+/

**

-1

-

*

+

Nodes fire when absolutely necessary.

More about ASAP and ALAPMore about ASAP and ALAP
� Unlimited resources

– No limit for the number of registers, adders, etc
� Longest path through data flow determines

minimum schedule length
� Mobility

– tL – tS

MobilityMobility

� u = tL - tS

t=0
t=1
t=2
t=3
t=4

+/ **-1
-
*
+

t=0
t=1
t=2
t=3
t=4

+/
**

-1
-

*
+

ASAP

ALAP

+

/

**

-1

-

*

+

u
0
0

0

1

0

2

0
The node mobility represents its flexibility in the fire sequence.

Restrained SchedulingRestrained Scheduling

� Time constraints
– Time is given, minimize the resource

� Resource constraints
� NP problem

Time ConstraintsTime Constraints

-1

+

-

x

/

**

sqrt

x

x

b 4 c a 2

- /
X1

X2

T
2
2

1

1

1

6 7 8

+/-
*//

**
sqrt

-1

1
2

1
1

1

1
1

1

1

1

Resource ConstraintsResource Constraints

� Resource is given, minimize the long time
� List based scheduling

– Maintain a priority based ready list
� The priority can be decide by mobility for example

– Fire the nodes according to their priorities until all
the resource are used in that stage

List Based SchedulingList Based Scheduling

+

-

/

*+

+

+

t=0

t=1

t=2

t=3

t=4

+/

-

* +

+

S.t: one +/-, one *//

/ + + - * + +

u 0 0 1 0 0 2 0

t=5 +

List Based SchedulingList Based Scheduling

� A general ASAP
� Priority based ready list

Control/Data Flow GraphControl/Data Flow Graph
(CDFG)(CDFG)

x <= a + b;
if (x > 100)
 y <= a * c;
else
 y <= a + c;
endif

Control/Data Flow GraphControl/Data Flow Graph
� Definition

– A directed graph that represents the control
dependencies among the functions

� branch
� fall-through

– G=(V,E)
� Nodes (V)

– Encapsulated DFG
– Decision

� Arces (E)
– flow of the controls

CDFG ExampleCDFG Example
fun0();
if (cond1) fun1();
else fun2();
fun3();
switch(test1) {
case 1: fun4();

break;
case 2: fun5();

break;
case 3: fun6();

break;
}
fun7();

fun0

cond1

fun3

fun2fun1

fun5 fun6fun4

fun7

test1

Y N

CDFG ExampleCDFG Example

fun0();
while(cond1) {
 fun1();
}
fun2();

fun0

cond1

fun3

fun2
Y

N

Design IssuesDesign Issues

� Code optimization
– Loop optimization, dead code detection

� Register allocation

SummarySummary
� Data Flow Graph (DFG)

– models data dependencies.
– Does not require that nodes be fired in a particular

order.
– Models operations in the functional model—no

conditionals.
– Allocation and Mapping
– Scheduling – ASAP, ALAP, List-based scheduling

� Control/Data Flow Graph
– Represents control dependencies

