1. What iIs Evolvable Hardware?

2. History and Motivation of Cube Calculus
Machines and Logic Machines

3. Evolving In Hardware or Learning In
Hardware?

e 4. VVariants of Cube Calculus
e 5. Cube Calculus Machines

* 6. Evaluation of previous Cube Calculus
Machines

Learning in Hardware
using Symbolic Methods
based on Multiple-Valued
Logic

*This set of slides includes a general information
about learning in hardware and motivation for
building Cube Calculus Machines

oIt IS not necessary to successfully complete the
project

Real time symbolic learning

o SAT, graph coloring, covering, equation solving in
MV algebras

e Image processing, pattern recognition, speech
processing, language understanding, sensor
Integration, WWW technologies, anti-terrorist
biometric technologies, military and aerospace
(Ulug/Bowen, GE - extended cube algebra), DNF
minimization for real time learning, Ventura
Quantum DNF minimization, morphological and
relational algebras, data base algebras.

Plan

1. What is evolvable hardware?
2. Learning in Hardware not Evolutionary Hardware
3. Symbolic Learning in Hardware using MVL

4. Cube Calculus (binary, mv, generalized mv, simplified
binary, rough sets)

5. Cube Calculus in Hardware (CCM, Decomposition
Machine, Rough Set Machine)

6. Cube Calculus in Reconfigurable Hardware
— arbitrary word length

— pipelining and parallelism, scalable
— selecting subset of operation from a repertoire

WHAT IS
EVOLVABLE
HARDWARE?

Demonstration of Learning
Hardware in Robotics

Learning is done with the human as the feedback loop.

The set of sequences is incomplete, so the machine
performs the generalization automatically. Adding or
removing new rules, by the human supervisor or
automatically/randomly, will change the behavior.

Mimique the human's behaviors seen by the camera
Like the Furby toy, but with real learning.

Capable of building its own "world model'* and internal
model with unlimited behaviors.

WHAT IS EVOLVABLE
HARDWARE?

This talk reviews the in the domain of EHW in years 1989 - 1999 and
points out some fundamental open research issues.

What Is Evolvable Hardware (EHW)

EHW as an Alternative to Electronic Circuit Design
EHW as an Adaptive System

Other EHW-Related Work

Evolvable Hardware versus Learning Hardware
Learning Multi-Valued Functions

Universal Logic Machine - Current PSU approach to Learning
Hardware

Our Proposed Extensions: Learning Finite State Machines.
Concluding Remarks

WHAT IS EVOLVABLE
HARDWARE ? (cont)

There are different views on what EHW is, depending on the purpose
of EHW.

EHW can be regarded as “applications of evolutionary techniques to
circuit synthesis." (A. Hirst)

EHW is hardware which is capable of on-line adaptation through
reconfiguring its architecture dynamically and autonomously. (T.
Higuchi et al.).

EHW is Genetic Algorithm realized in hardware (DeGaris). (Intrinsic
Evolvable Hardware).

LEARNING IS MORE GENERAL
THAN EVOLVING

Learning is more general than evolving.
Evolving is learning by Nature: blind, random, chaotic.
Learning is any kind of behavior that improves something.

Learning Hardware is any kind of hardware system that can change
itself and its future behavior dynamically and autonomously by
Interacting with its environment.

EHW is a child of the marriage between evolutionary computation
techniques and electronic hardware.

LH is a child of the marriage of Machine Learning and hardware (so
far, electronic, but see Hanyu et al for DNA and molecular
computing).

EHW AS AN ALTERNATIVE TO
ELECTRONIC CIRCUIT DESIGN

« Using EASs to design VLSI chips and boards has a 12 year long
history.

Used in Digital and Analog design; (mixed?).

Few examples:

— Evolving Hardware Description Language (HDL) programs.

— Evolving Electronically Programmable Logic Devices (EPLDs).

— Evolving analog circuits.

— Unconstrained evolution of an electronic oscillator (Adrian Thompson).
— Generalized Reed-Muller Logic using GA (Karen Dill).

— Arbitrary Tree logic networks using GP (Karen Dill).

TWO MAJOR APPROACHES

Early and some of the recent work related to EHW only
dealt with optimization of VVLSI circuits, such as cell
placement, logic minimization and compaction of symbolic
layout.

Circuit functions were not designed/evolved by EAs.

Recent work concentrates on evolving circuit architectures
and thus functions.
Two major approaches have been used:

— Indirect Approach,
— Direct Approach.

INDIRECT APPROACH TO EHW
CIRCUIT DESIGN

The indirect approach does not evolve hardware directly, but evolves
an intermediate representation (such as trees) which species hardware
circuits.

Evolving digital circuits.

For example, SFL (Structured Function Description Language)
programs (represented by production trees) can be evolved by a
genetic algorithm. A binary adder which considers all 4-bit numbers
was evolved successfully.

Evolving analog circuits.

For example, Koza ’ s work on evolving a low-pass “brick wall" filter,
an asymmetric bandpass filter, an amplifier, etc. Trees were used to
represent circuits. The results were competitive with human designs.

href="http://www-cs-faculty.stanford.edu/ koza/#anchor5384423"

DIRECT APPROACH TO EHW
CIRCUIT DESIGN - GATE LEVEL

The direct approach evolves hardware circuit's architecture bits
directly. It works well only with reconfigurable hardware, such as

FPGA (field programmable gate array) from "http://www.xilinx.com/"
(Xilinx).
The gate level evolution implies that the “atomic™ hardware

functional units are logical gates like AND , OR , and NOT . The
evolution is used to search for different combinations of these gates.

Typical examples include XOR, counters, FSMs (Finite State
Machines), multiplexors, and an electronic oscillator.

One argument for the direct approach is to exploit hardware resources
by unconstrained hardware evolution.

DIRECT APPROACH TO EHW
CIRCUIT DESIGN -
FUNCTIONAL LEVEL

The gate level evolution runs into the scalability problem
quickly.

The function level evolution uses high-level functions such
as addition, multiplication, sine, cosine, etc., and thus Is
much more powerful.

Typical examples: two-spiral, Iris, FSMs, image rotation.

The work Is better viewed as an attempt towards adaptive
hardware , rather than as a design alternative.

ADVANTAGES OF
EVOLUTIONARY DESIGN

Explores a larger design space and thus may be able to discover novel
designs.

Does not assume a priori knowledge and thus can be applied to
various domains.

Does not require exact specification and thus can design complex
systems which cannot be handled by conventional specification-based
design approach.

However, constraints and special requirements could be imposed on
the evolution if necessary through the fitness function and
chromosome representation.

Some analog circuits might be too difficult (or costly) to design by
human experts.

SCALABILITY OF EHW

 Scalability of the algorithm: Time complexity
of the EA for EHW?

o Scalability of the representation: Size of
chromosomes vs. Size of EHW?

e Time 1S more cruclal since the size of
chromosome (space) Is usually polynomial in
the size of EHW circuits.

WILL ELECTRONIC SPEED SOLVE
THE SCALABILITY PROBLEM?

e There have been some expectations that the speed of simulated
evolution would not be a problem in a few years as faster VLSI chips
come out.

e This statement can be misleading. Electronic speed is not a solution
to the scalability problem. The scalability problem has to be addressed
at the fundamental level.

* | o The importance of the time complexity issue can be illustrated by an
artificial example. If the time complexity of simulated evolution is
O(2"), where n is the size of EHW, then an EHW with 10

components would need 2'Y = 1024 nanoseconds (~ 10" seconds) to
evolve. An EHW with 100 components would need 2!V ~ 10"

nanoseconds (10'* years).

CIRCUIT VERIFICATION/TEST
AND FITNESS FUNCTION

How to verify the correctness of EHW? How to find a fitness function
which guarantee the correctness of EHW?

For example, if all 4-bit numbers have been correctly added, would
all 5-bit, 6-bit, etc., numbers be added correctly by the same circuit?

Exploiting hardware resources is attractive. Has an EHW exploit
something totally irrelevant, such as room temperature or minor Earth
movement?

Is it practical to test all possible situations in which an EHW might be
used?

How robust is EHW to minor environmental changes? Does it
degrade gracefully?

When to stop simulated evolution? How to know whether a correct
circuit has been evolved?

EHW AS AN ADAPTIVE SYSTEM

o Current work on adaptive EHW can be classified
Into two major categories:

— EHW controllers.
— EHW recognizers and classifiers.

EHW CONTROLLERS

* A number of control tasks can be performed by

EHW, e.g., ATM control and robot control among
others.

e Some examples:

— Evolving an artificial ant to follow the John Muir Trail
In simulation.

— Evolving a wall following robot in a simulated
environment, “virtual reality".

"http://www.cogs.susx.ac.uk/users/adrianth/" .
— Evolving an ATM traffic shaper.
— Evolving an adaptive equalizer.

EHW RECOGNIZERS AND
CLASSIFIERS

e Evolving FPGA to perform learning tasks, such as
letter recognition, the comparator in a V-shape ditch
tracer, two-spiral, Iris, FSMs, etc.

 Unlike most other studies, generalization Is
explicitly emphasized here.

o A complexity (regularization) term was included in
the fitness evaluation function.

OTHER EHW-RELATED WORK

Self-reproduction and self-repair hardware at Logic Systems
Laboratory (LSL), Computer Science Department, Swiss

Federal Institute of Technology - Lausanne. http://Islsun5.ep
.ch/" .

Artificial brains.

CAM-BRAIN (CBM) from ATR's Department 6
(Evolutionary Systems) "http://www.hip.atr.co.jp/
XIATRCAMS" .

Artificial Brain Systems at RIKEN. (No hardware
Implementation.)
"http://www.bip.riken.go.jp/absl/Welcome.html" .

SOME CHALLENGES TO
ADAPTIVE EHW

Scalability: Efficiency of simulated evolution.
Generalization: Dealing with new environments.

Disaster prevention in fitness evaluation during on-
line adaptation.

On-line adaptation: incremental evolution/learning.

A BEHAVIORAL VIEW
TOWARDS EHW

What is being evolved? A circuit or the circuit's behaviors?
In other words, what Is actually being evaluated by a fitness
function?

Is It genetic evolution or behavioral evolution?

Claim: It 1Is EHW behavior, not its circuitry, that is being
evolved.

Some conseguences of taking the behavioral view towards
EHW:

— 1. The environment is crucial. Generalization should be discussed
with respect to environments.

— 2. The role of crossover needs to be re-evaluated.

CONCLUDING REMARKS ON
EVOLVABLE HARDWARE

Population-based learning (simulated evolution) is good at following
slow environmental changes, but not at real-time on-line adaptation.

Individual learning should be introduced.

There is some existing work on EANNSs and GP which may be useful
for function-level EHW, e.g., mutations and other techniques for
maintaining behavioral links between parents and their offspring.

Co-evolution is a very promising approach to deal with the problem
of fitness evaluation. That is, co-evolution can be used to generate
changing and challenging environments.

FURTHER REMARKS

Evolutionary design of digital circuits would not be
able to compete with the conventional approach.

Evolutionary design of analog circuits needs to
address the 1ssues of circuit verification and
robustness.

Adaptive EHW has most potentials, but would need
Individual learning to implement on-line learning.

The most profitable application domains for EHW
would be those which are very complex but highly
specialized.

WWW RESOURCES

* The following papers are available on-line.

e X.Yao and T. Higuchi, “Promises and
Challenges of Evolvable Hardware,"
Submitted to ICES'96. (Available as
"ftp://www.cs.adfa.oz.au/pub/xin/ices96-
challenge.ps.gz" .

History and
Motivation for Cube
Calculus Machines anc
Logic Machines

History and Motivation

« |CCAD 85 - our paper about hardware Logic Design
Machine that was solving the following problems:
— satisfiability
— graph coloring
— set covering
— tautology
e ISMVL 1992 - our paper that generalized cube

calculus for MVL and showed many other
operations and applications as well. Reconfigurable

e |SCAS 92 and about 6 other conferences - variants
e ULSI 97 - ESOP and SAT - reconfigurable

Tabu search for learning in
reconfigurable hardware

Evolution and Learning for Digital Circuit Design

1

Alexander Nicliolson
Learning Systems Group
California Institute of Technology
136-93 Pasadena, CA, 91125
zander@work. caltech.edu

Abstract

We investigate the nse of learming and evolu-
tion for digital hardware design. Using the
reactive tabu search for discrete optimiza-
tion, we show that we can learn a mmltiplier
circuit from a set of examples. The learned
cirenit makes less than 2% ermor and uses
fewer chip resources than the standard digi-
tal design. We compare use of a genetic algo-
rithm and the reactive tabu search for fitness
optimization. On a 2-bit adder design prob-
lem, the reactive tabu search performs signif-
icantly better for a similar ececution time.

Introduction

The process of designing and implementing an ASIC

made use of unconventional properties of the physical
devire, ¥ielding designs that defy conventional analysis
[14].

It is this unrestricted model that interests us. Dart
of the advantage of EH is the removal of conventional
digital design constraints. We do not wish to arbi-
trarily add new ones by imposing our own structure
on the hardware device. Unfortunately this presents
problems for a genetic representation of the model.
Without some such structure, genetic operators hawve
little meaning, We are therefore interested in other
optimization techniques for maximizing a fitness crite-
T

Taking acue from Perkowski et al. [10], we refer to this
hardware adaptation as legrnang handuvare, with EH as
a special case. We compare a genetic algorithm with
a non-genetic discrete optimization algorithm (the re-
artive tabu search | on adaptive arithmetic cireuit de-

Student of Abu-Mostafa

Acknowledge ments

The author would like to thank Yaser Abu-Mostafa,
Roberto Battiti, Arrigo Benedetti, and Dietro Perona
for helpful suggestions and discussions.

This work was supported by the Center for Neuromor-
phic Systems Engineering (a National Science Foun-
dation supported Engineering Research Center) under
National science Foundation Cooperative Agreement
EEC 9402726.

References

[1] R. Battiti and G. Terchiolli. The reactive tabu
search. ORSA Jowrnal, 612):126-140, 1994,

[2] R. Battiti and G. Tecchiolli. Training neural nets
with the reactive tabu search., IFEE Transactions
omn Neural Networks, 6(3): 11851200, 1995.

[3] F. Bermett, J. Koza, M. Keane, J. Yu, W. Myd-
lower, and O. Stiffelman. Ewolution by means of
genetic programming of analog circnits that per-
form digital functions. In GECCO-99; Proceed-
ings of the Genetic and Evolutionary Computa-
tiom Comference,];1.-]51:5 1477-1483, san Francison,

1y ST v -

[5] J. Miller. On the filtering properties of evolved
gate arrays. In A, Stoica, D. Keymeulen. and
J. Lohn, editors, The First NASA /DoD Work-
shop on Evolvable Hardwore, pages 2-11, Los
Alamitos, CA. 1999, IEEE Computer Society.

[0] J. Miller, . Thompson, and T. Fogarty., De-
signing elertronic circuits using evolutionary al-
gorithms. Arithmetic cirenits: A case study.
In D. Quagharella, J. Periaux, C, Poloni, and
G. Winter, editors, Genetic Algoritfons and Evo-

Iution Stritegies s Engmeering and C’ﬂmjmtﬂ"

SEIE'F!.L‘E

M. Perkowslkd, A, Chebotarev, an
A, Mishchenkn, Ewolvable hardware or learn-
ing hardware? induction of state machines
from temporal logle constraints. In A. Stoica,
D. Keyvmeulen, and J. Lohn, editors, The First
NASA/DoD) Workshop on BEvolvable Hardware,

nputer Soclety.

[11] J. schew
temn usmg E’Gnﬁgurtilic Computing Technology.
Virtual Computer Corp., 1997.

We compare use of a genetic algorithm and the reactive tabu search for fitness

optimization. On a 2-bit adder design problem, the reactive tabu search performs significantly better for a similar execution time.
1 Introduction

The process of designing and implementing an ASIC

is typically a long and expensive one. Field Pro-

grammable Gate Arrays (FPGAS) are available as an

alternative to reduce the concept-to-product time and

the cost of making modications. Recent FPGAS have

It is this unrestricted model that interests us. Part

of the advantage of EH is the removal of conventional
digital design constraints. We do not wish to arbi-
trarily add new ones by imposing our own structure

on the hardware device. Unfortunately this presents

problems for a genetic representation of the model.
Without some such structure, genetic operators have
little meaning. We are therefore interested in other
optimization techniques for maximizing a tness crite-
rion.

Taking a cue from Perkowski et al. [10], we refer to this
hardware adaptation as learning hardware, withEHas
a special case. We compare a genetic algorithm with
a non-genetic discrete optimization algorithm (the re-
active tabu search) on adaptive arithmetic circuit de-
sign. Section 2 introduces the problem and the two
optimization algorithms. The physical system imple-
mentation is described in section 3, and experimental
results are given in section 4.

1.3 Hardware Learning

In order to improve expected generalization, it is desirable to obtain as many examples
as possible. With a very large data set, however, carrving out a learning algorithm
may take a very long time. A major issue in learning from examples is the computation
time required to carry out a learning algorithm. One direct way to improve the speed
of leaning is by moving from software to hardware.

For some time, there have been hardware implementations of learmning systems,
and in particular neural network models [Mead, 1989] [Ramacher and Ruckert, 1991].
More recently, a different approach to hardware machine learning has arisen. Instead
of designing a hardware representation of an established learning system, a learning
algorithm can be designed for use with existing reconfigurable hard ware devices. Maost
of the results along these lines have involved genetic or evolutionary algorithms, and
the field is generally known as evolvable hardware (EH). Some success has been shown
in evolving analog and mj ennett ef al., 1999],
ers |[Miller, 1999], control circuitry [Keymeulen ef al., 1998] and a va

of components for practical applications [Higuchi ef al., 1999]. Like Perkowski et al.
[Perkowski et al., 1999], we refer to this hardware adaptation as learning hardware,
ith EH as a special case.

Cube Algebra in software

A FAULT TOLERANT ROUTING ALGORITHM
BASED ON CUBE ALGEBRA FOR HYPERCUBE
SYSTEMS

Novruz M. Allahverd: 7., Shirzad 5. Kahramanh 1. Kayhan Erciyes]
TComputer Programming Section, Teknik Bilimler Meslek Yuksekokulu, Selcuk University,
42031, Konya. TURKEY . e-mailmevroz@mevlana.ce.selcuk edu-tr
1The International Computer Institute, Ege University, 35100 Bornova-IZMIR, TURKEY e-

mail:erciyes@uhbe.ege.edu.tr

Keywords: : Hypercube, fault-tolerance, shortest path. routing, cube algebra

We propose an approach o determine the shortest path heiween the source and
the destination nodes in a faulty (or nonfaulty) hypercube. The munber of fauliy
nodes and links may be rather large and if any path hetween the nodes exisis,
the proposed algorithm allows o determine i, If many paihs exisi, the algorithm
yields the shortesi path among them. To construct this algorithm, some proper-
ties of the cube algchra are considered and some transformations based on this
algehra are developed. Such logical operations as 7 -subiraction and @ - star
prodict are used.

Cube algebra in hardware
accelerator

Mapping switch-level simulation onto gate-level hardware accelerators
Alok Jain

Dept of ECE
Carnegie Mel | on
Pittsburgh, PA15213

Randal E. Bryant

School of Computer Sci ence
Car negi e Mel | on
Pittsburgh, PA15213

Generalized Cube Calculus for
Data Bases and Data Mining

Generalization-Based Data Mining in Object-Oriented Databases
Using an Object Cube Model *

Jiawei Han® Shaojiro Nishiof Hiroyuki Kawano' Wei Wang§

& School of Computing Science, Simon Fraser University, Bumaby, BC, Canada W5A 156
1 Department of Information Systems Engineering, Osaka Universily, Osaka 565, Japan

1 Depariment of Applied Sysiems Science, Kyolo Universily, Kyolo 606, Japan

{hanfics.sfu.ca, nishio@ise.csaka-u.ac.jp, kawano@kuamp. kyolo-u.ac.jp, weiw@cs.sfunca}

Data mining

Abstract

Data mining 15 the discovery ol knowledge and uselul information [rom the large amounts ol data stored in
databases. With the increasing popularity of object-oriented database systems in advanced database applications,
it is important to study the data mining methods for object-oriented databases because mining knowledge from
such databases may improve understanding. organization, and utilization ol the data stored there.

In this paper, issues on generalization-based data mining in object-oriented databases are investigated in three
aspectis: (1) generalization of complex objects, {2) class-based generalization, and {3) extraction of different kinds
of rules. An object cube model is proposed for class-based generalization, on-line analytical processing, and data
mining. The study shows it (i) a set of sophisticated generalization operators can be constructed for generalization
ol complex data objects, {1\ a dimension-based class generalization mechanism can be developed for object cube
construction, and (iii) sophis\cated rule formation methods can be developed for extraction of different kinds of
knowledge [rom data, includiny characteristic rules, discriminant rules, assocation rules, and cdassification rules.
Furthermore, the application ol\uch discovered knowledge may substantially enhance the power and flexibility of
browsing database, organizing daNabase, and querying data and knowledge in object-oriented databases.

Keywords: Data mining, knowleNge discovery in databases, oblect-oriented databases, object cube model.

Cubical model but still for
software applications

Cube Calculus for Data Mining

A Data Cube Algebra Engine for Data Mining

M.L. Kersten, A.P..J.M. Siebes
CWI, Amsterdam, The Netherlands
M. Holsheimer ., F. Kwakkel
Data Distilleries, Amsterdam, The Netherlands

Abstract

On line data mining products, such as Data Surveyor, illustrate that an extensible ar-
chitecture to accommodate a variety of mining algorithms and database interconnectivity is
technically feasible. In this paper we describe the interaction between Data Surveyor and
its DBMS backends using an extended relational algebra, the Data Cube Algebra, to en-
code the mining requests. Subsequently, a drill engine produces optimized code for several
database back-ends. Amongst others, the optimizer exploits commonalities amongst multiple
query batches and target platform specific optimizations rules. The effectiveness of several
strategies is illustrated using the Monet database engine.

This is still software engine, not hardware....

D algorithm reconfigurable hardware

Concurrent D-Algorithm on Reconfigurable Hardware
Fatih Kocan and Daniel G. Saab

Electrical Engineering and Computer Science Depariment

Case Western Reserve University, Cleveland, Ohio

(kocan,saab)@eecs.cwru.edu

Abstract

In this paper, a new approach for generating test vectors that
detects faults in combinational circuits is introduced. The
approach is based on autnmatlcally designing a circuit which
implements the ' : atic Test Pattern
Generation P(T) algorithm, apeclahzed for the combinational

approach exploits fine-grain parallelism
the following in three clock cycles:

ate to propagate fault or to justify a line, decisions on gate
uts, lnadlng the state of the circuit atter backup In this paper,

1. [ntruducﬁun

ATPG is the process of either finding input vectors that detect
a fault in digital circuits by distinguishing the faulty and fault-
free circuit behavior at Primary Outputs (PO) or flagging a fault
redundant when no such vector exists. This process requires a
large amount of CPU time and in many cases they abort many of
the hard-to-detect faults. It is known that the ATPG is NP-
complete even for combinational circuits[13].

Most existing deterministic ATPG techniques employ a
branch-and-bound |1] technique to examine all input

independent of other nodes [10]. SOCRATES utilizes a unique
sensitization technique based on dominators and implication
learning to speed the justification process [11]. Recursive
learning that avoids the use of decision tree is proposed in [14].
Other improvement to speed the ATPG process is found in [16].
Emulation systems are being used increasingly in the design,
verification, and in rapid prototyping of digital systems [3]. To
increase the use of these emulation systems, several methods are
proposed to emulate Computer-Aided-Design (CAD) algorithms
uch as fault simulation [4,5], Automatic Test Pattern Generation
(ATPG) [1], Satisfiability (SAT) [1.6], and Fault diagnosis
[8.15]. In [4]. a method is proposed to emulate serial fault
simulation. In [5], a method is proposed to emulate critical path-

tracing algorithm. In [1], a method is proposed to emulate
PODEM algnrlthm with its application to SAT. In all of those
algorithms, a significant speed-up was obtain r software
based intplementation.

n this paper, we present a new method to emulate the
gorithm on a reconfigurable hardware. The method achieves
ignificant speed-up over software-based ATPG techniques with
similar or better results. The quality of the results is measured i
tering of fault coverage. This is achieved by utilizi
recontl ble hardware that provides a way to exploit fine-
orain parallelis D-aleorithm.

Tautology and Binate Covering

On Acceleration of Logic Synthesis Algorithms using

FPGA-based Reconfigurable Coprocessors
Technical Report: TR-970010

Jason Cong and John Peck
Department of Computer Science
University of California, Los Angeles, CA 90024
cong(acs.ucla.edu peck(@cs.ucla.edu
http://ballade.cs.ucla.edu

Abstract

In this technical report, we present our studies on implementing two fundamental logic synthesis

thms, tautology checking and binate covering, using an FPGA-based reconfigurable ap

rocessor. The uses of each algorithm are first discussed followed by the specific ware

accelerator implementation and interface to application software. We compare our hardware accelerator
for the tautology check algorithm with the software implementation of the tautology check algorithm in

our accelerator is capable of achieving a

Espresso Il [R

. Our experimental results show

maximum speedup factor of 2.94 and averaging 1.36 on 11(Lmodified industry benchmarks included with

the Espresso 1l package.

Satisfiability Reconfigurable

A Massively-Parallel Easily-Scalable Satisfiability Solver
Using Reconfigurable Hardware

Miron Abramovici

Bell Labs - Lucent Technologies
Murray Hill, NJ 07974
miron@research.bell-labs.com

ABSTRACT: Satisfiability (SAT) is a computationally
expensive algorithm central to many CAD and test appli-
cations. In this paper, we present the architecture of a
new SAT solver using reconfigurable logic. Our main
contributions include new forms of massive fine-grain
parallelism and structured design techniques based on
iterative logic arrays that reduce compilation times from
hours to a few minutes. Our architecture is easily scalable.
Our results show several orders of magnitude speed-up
compared with a state-of-the-art software implementa-
tion, and with a prior SAT solver using reconfigurable
hardware.

1. INTRODUCTION

The satisfiability (SAT) problem - given a boolean formula
Fix, x5,...,x,), find an assignment of binary values to (a sub-
set of the) vanables, so that F'1s set to 1, or prove that no such
assignment exists - i1s a central computer science prob-
lem[12][18]. Typically /' 1s expressed as a product-of-sums
which 1s also called conjunctive normal form (CNF). Here we
review the terminology via an example: in the formula

Jose T. de Sousa

sousa@research.bell-labs.com

Daniel Saab

Case Western Reserve University
Cleveland, Ohio 44106
saab@alpha.cwru.edu

computation. In the DIMACS set of SAT benchmarks[§],
there are still several problems so difficult that, to the best of
our knowledge, no SAT algorithm has ever been able to solve
them. Applied to complex VLSI circuits, SAT-based algo-
rithms have long run-times. Thus speeding up SAT will result
in improving the efficiency of many CAD and test algorithms
relying on SAT.

2. PREVIOUS WORK

Recently, several research groups have explored different
approaches to implement SAT on reconfigurable hard-
ware[22][1][24][17][25][16][2]. Figure 1 illustrates the
general data flow of such an approach, whose goal is to speed
up an algorithm ALG working on a given circuit C. A map-
ping program generates the model of a new circuit ALG(C),
which executes ALG for C. Since ALG(C) will be used only
once, 1t 1s not economically feasible to actually construct it.
Using reconfigurable hardware allows one to “virtually " cre-
ate ALG(C), then execute the algorithm by emulating this
circuit. In contrast to a hardware accelerator for ALG (for
example, a simulation accelerator), where the same spe-

MYV cubes used in MVSIS of Brayton

MV SIS group

Minxi Gao

Yinghua Li

Jie-Hong Jiang

Yunjian Jiang

Alan Mishchenko, (PSU, Portland OR)
Subarnareka Sinha

Tiziano Villa

Robert K. Brayton

Publications on MVSIS

EVOLVABLE
HARDWARE OR
LEARNING
HARDWARE?

» Evolvable Hardware iIs Genetic Algorithm (GA) plus
reconfigurable hardware.

* One may ask: "Why Genetic Algorithm"?

* We question the usefulness of GA as a sole learning method
to reconfigure binary FPGAs.

EVOLVABLE HARDWARE OR
LEARNING HARDWARE?

* We propose the ""Learning Hardware'" approach.

e Creating a sequential/combinational network
based on feedback from the environment (for
Instance, positive and negative examples from the
trainer), and realizing this network in an array of
Field Programmable Gate Arrays (FPGAS).

Symbolic Learning from
binary and MVL data

DNF minimization

Problems reducible to exorlink (ESOP, etc)

Factorization, problems reducible to covering and binate covering
Problems reducible to graph coloring

Problems reducible to maximum clique (robotics, image
processing)

Constraints solving.
Finite State Machine (FSM) minimization.
FSM assignment and encoding

Functional decomposition of multi-valued logic functions and
relations

LEARNING ON A
HIGHER LEVEL

Learning on the level of constraints acquisition and functional
decomposition rather than on the low level of programming
binary switches.

Occam's Razor learning that allows for generalization and
discovery.

Fast operations on complex logic expressions and solving NP-
complete problems such as satisfiability .

Algorithms realized in hardware to obtain the necessary speed-
ups.

Fast prototyping tool, the DEC-PERLE-1 board based on an
array of Xilinx FPGA:s.

Now we have better boards - Dr. Greenwood

SOFT COMPUTING AND MACHINE
LEARNING VERSUS
HARDWARE DESIGN

Artificial Neural Nets (ANNSs), Cellular Neural Nets (CNN), Fuzzy
Logic, Rough Sets, Genetic Algorithms (GA), Genetic and
Evolutionary Programming, Artificial Life, solving problems by
analogy to Nature, decision making, knowledge acquisition, new
approaches to intelligent robotics.

Learning, adapting, modifying, evolving or emerging.
Mixed approaches.

The computer is taught on examples rather than completely
programmed (instructed) what to do.

Machine Learning becomes a new and most general system design
paradigm unifying these previously disconnected research areas.

It starts to become a new hardware construction paradigm as well.

EVOLVABLE HARDWARE

DeGaris - Evolvable Hardware is realization of genetic
algorithm (GA) In reconfigurable hardware.

Brain Builder CBM (DeGaris), ROBOKONEKO.
Neural Nets PLUS Genetic Algorithm.

The Genetic Algorithm iIs a simple and practically blind
mechanism of Nature.

It is easily realizable in hardware.

Although it is relatively easy to do crossover and mutation
In hardware, the fitness function evaluation is difficult.

UNIVERSAL LOGIC MACHINE

 Started in Poland, 1977. Logic Design Machine. (TTL logic
model):

o Satisfiability, Petrick Function (ICCAD'85).

e Tsutomu Sasao, 1985: Tautology Engine in EPLDs
(ICCD'85).

e Cube Calculus Machine, since 1990. (realization In
FPGAS). (Sendai'92).

e Decomposition Machine, since 1997, (DEC-PERLE-1),
(Lousanne'98, ICCD'98, Sendai'99).

 Temporal Constraints Machine - new ideas presented here
for the rst time (reduce to Satisfiability, Tautology, Decision
Functions, and Boolean/Multi-Valued Logic Equations.

LOGIC ALGORITHMS IN
HARDWARE

Logic algorithms draw upon human knowledge.
Logic algorithms are optimal and mathematically sophisticated.

Logic algorithms lead to high quality learning results:
— knowledge generalization,

— discovery,

— no overfitting,

— small learning errors (Ross, Abu Mostafa, DFC, COLT).

Their software realizations use very complex data structures and
controls.

It 1S difficult to realize them in hardware.

LEARNING HARDWARE

_earning understood very broadly, as any mechanism that
leads to the improvement of operation.

Evolution-based learning is thus included in it.

Combinational or sequential network is constructed that
stores the knowledge acquired in the learning phase.

The learned network 1s next run on old or new data.

The responses may be correct or erroneous. The network's
behavior is then evaluated by some fitness (cost) functions
and the learning and running phases are alternating.

WHY TO USE HARDWARE
INSTEAD OF SOFTWARE?

Supervised inductive learning algorithms require fast operations on
complex logic expressions and solving some NP-complete problems.

Satisfiability, Tautology, Solving Boolean Equations, Graph
Coloring, Set Covering, Maximum Cligues.

These algorithms should be realized in hardware to obtain the
necessary speed-ups.

Fast prototyping tool, DEC-PERLE-1 board is based on an array of
Xilinx FPGA:s.

We are developing virtual processors that accelerate the design and
optimization of decomposed networks of arbitrary logic blocks.

EVOLVING IN HARDWARE VERSUS
LEARNING IN HARDWARE

« Soft Computing: Artificial Neural Nets (ANNSs), Cellular
Neural Nets (CNN), Fuzzy Logic, Rough Sets, Genetic
Algorithms (GA), Genetic and Evolutionary Programming,
Artificial Life, Solving Problems by Analogy to Nature,
decision making, knowledge acquisition, new approaches to
Intelligent robotics (Brooks).

e Learning, adapting, modifying, evolving or emerging.

 Mixed approaches combine elements of these areas with
the goal of solving very complex and poorly defined
problems that could not be tackled by previous, analytic
models.

EVOLVING IN HARDWARE VERSUS
LEARNING IN
HARDWARE (cont)

What i1s common to all these approaches is that they
propose a way of automatic learning by the system.

The computer Is taught on examples rather
completely programmed (instructed) what to do.

Machine Learning (ML) becomes then now a new
and most general system design paradigm unifying
many previously disconnected research areas.

ML starts to become a new hardware construction
paradigm as well.

EVOLVABLE HARDWARE
VERSUS LOGIC METHODS.

Evolvable Hardware (EHW) (De Garis, Higuchi) is a realization of
genetic algorithm (GA) in reconfigurable hardware.

Our approach of Universal Logic Machine (ICCAD '85, Sendai '92,
Jozwiak'98), proposes to build a learning machine based on logic
principles .

Constructive Induction (Michalski) and Rough Set Theory (Pawlak).

Genetic Algorithm is a very simple and practically blind mechanism
of Nature, it can be easily realizable in hardware.

We do not believe that this mechanism alone cannot produce good
results.

EVOLVABLE HARDWARE
VERSUS LOGIC METHODS.

TRADE-OFFS

The logic algorithms that use previous human knowledge are optimal
and mathematically sophisticated. They lead to high quality learning
results.

Their software realizations use so complex data structures and
controls that it is very difficult to realize them in hardware.

Software/hardware realizations may suffer from the consequences of
the Amdahl's Law.

Interesting software-hardware design trade-offs must be resolved to
realize optimally the learning algorithms based on logic.

LEARNING HARDWARE

"Learning Hardware" is any mechanism that leads to the improvement
of operation, evolution-based learning is thus included.

The process of learning some kind of network. It stores the
knowledge acquired in the learning phase (the network can become
equivalent to a state machine or fuzzy automaton by adding some
discrete or continuous memory elements).

The learned network is next run (executed, evaluated, etc.) for old or
new data given to it, thus producing its responses - expected
behaviors(decisions, controls) in unfamiliar situations (new data sets).

The responses may be correct or erroneous, the network's behavior is
then evaluated by some fitness (cost) functions and the learning and
running phases are interspersed.

TWO PHASES OF LEARNING IN
HARDWARE

The phase of learning , which is, constructing and tuning the
network.

The phase of acting . Using knowledge, running the network for
data sets.

The first stage could be compared to the entire process of
conceptualizing, designing, and optimizing a computer, and the
second stage to using this computer to perform calculations.

You cannot redesign standard computer hardware, however, when it
cannot solve the problem correctly.

The Learning Hardware will redesign itself automatically using
new learning examples given to Iit.

Logic rather than evolutionary
methods for learning

Michie makes distinction between black-box and knowledge-oriented
concept learning systems by introducing concepts of weak and strong
criteria.

The system satisfies a weak criterium if it uses sample data to
generate an updated basis for improved performance on subsequent
data.

A strong criterion Is satisfied if the system communicates concepts
learned in symbolic form.

ANNs satisfy only the weak criterium while our approach satisfies
the strong criterium. Our approach operates on higher and more
natural symbolic representation levels.

Logic rather than
evolutionary methods for
learning. I

* The built-in mathematical optimization technigues
(such as graph coloring or satisfiability) support the
Occam's Razor Principle.

« Solutions are provably good in the sense of
Computational Learning Theory (COLT).

Importance of Functional
Decomposition

Functional Decomposition Is used in many applications:
FPGA mapping, custom VLSI design, regular arrays,
Machine Learning, Data Mining and Knowledge Discovery
In Data Bases (KDD).

Exact decomposition programs are slow.
Approximate programs may give inferior quality solutions.

How to create a decomposer that will be both effective and
efficient ?.

ANSWER: Software/Hardware Co-Design.

Learning in real time!

Al

e |In

We do not like Genetic
gorithms. Any Discussions?

our experience, especially poor results on

logic approaches are obtained using the

ge
e T

netic algorithms.
ne same was true based on literature.

o |Ir

our approach we want to make use of this

accumulated human experience, rather than to
"reinvent” algorithms using GA.

The Input Language to
Represent the Learning Data

r1 w2 [Y1 e
al02 1 2
b01 0 02 1
c| 2 0112 O
d| 1 1 |12 2

e Table 1. Multi-Valued multi-output (combinational)
relation in tabular form.

DATA MINING BY
CONSTRUCTIVE INDUCTION
MACHINES

"Learning Hardware" approach involves creating a computational network based on
feedback from the environment and realizing this network in an array of Field
Programmable Gate Arrays (FPGAS).

Feedback, Is for instance by positive and negative examples from the trainer.
Environment can be the trainer.

Computational networks can be built based on incremental supervised learning
(Neural Net training) or global construction (Decision Tree design).

Here we advocate the approach to Learning Hardware based on Constructive
Induction methods of Machine Learning (ML) using multi-valued functions.

This is contrasted with the Evolvable Hardware (EHW) approach in which
learning/evolution is based on the genetic algorithm only .

Project “Logic Machine”

Cube Calculus Machine

Decomposition Machine
Satisfiability-ESOP minimization Machine
Rough Set Machine

All these projects require logic design
Systolic or pipelined or cellular machines
FPGA realization (Xilinx, Altera,Cypress)
VHDL or high-level tools (Summit or Renoir)

Project 1:
Universal Logic Machine

=>» Combinational problems reduced to simple combinational
problems such as graph coloring, set covering, binate
covering, clique partitioning, satisfiability or multi-valued
relation/function manipulation

=» Cube Calculus Machine (CCM) operates on multiple-
valued cubes (terms of MV literals).

=>» First variant uses two FPGA 3090 chips and second the
DEC-PERLE-1 board with 23 chips

=» General Special-Purpose computer for Cube Calculus

Universal Logic Machine

=» Synthesis and Decision problems reduced to NP-hard
combinational problems

=>» Combinational problems reduced to simple combinational
problems such as graph coloring, set covering, binate
covering, clique partitioning, satisfiability or multi-valued
relation/function manipulation

=» Cube Calculus Machine (CCM) operates on multiple-
valued cubes (terms of MV literals).

=>» First variant uses two FPGA 3090 chips and second the
DEC-PERLE-1 board with 23 chips
=» General Special-Purpose computer for Cube Calculus

Universal Logic Machine

=» Phase of learning (construction, synthesis)

= Phase of acting (function evaluation, state machine
operation)

=>» You cannot redesign standard computer hardware when it
cannot solve the problem correctly.

=>» The Learning Hardware redesigns itself using new learning
examples given to it

=» Michie makes distinction between black-box and
knowledge-oriented learning systems

=» Concepts of “weak” and *“strong” criteria

=>» “The system satisfies a weak criterium if it uses data to
generate an updated basis for improved performance on
subsequent data” (Neural, Genetic)

Universal Logic Machine

=> A strong criterium is satisfied if the system communicates in
symbolic form concepts that it learned

=>» Constructive Induction (Michalski), Rough Set Theory (Pawlak),
Decision Trees (Quinlan), Decision Diagrams, Disjunctive Normal
Forms.

=» Occam’s Razor Principle

=» Learning on symbolic level is the first main point of our approach,
learning on the level of logic gates is the second

=» Our approach is based on decomposition of relations and functions
and on synthesis of non-deterministic machines from declarative
specifications

=> “Do-not-knows” become “don’t-cares” for logic synthesis

= The high quality of decompositional techniques In
Machine Learning, Data Mining and Knowledge
Discovery areas was demonstrated by several authors;
ROsS (Wright Labs),Bohanec, Bratko/Zupan,
Perkowski/Grygiel,Perkowski/Luba/Sadowska, Jozwiak,
Luba, Goldman, Axtel.

=>» Small learning errors. Natural problem representation

= We compared the same problems using several methods:
decomposition, decision trees, neural nets, and genetic
algorithms

=>» Decomposition is clearly the winner but it is slow because
the NP-complete problem of graph creation and coloring is
repeated very many times.

PLAN OF EVOLVABLE AND
LEARNING HARDWARE LECTURES

e Our hardware ;: the DEC-PERLE-1 board.

— Programming/designing environment for DEC-PERLE/XILINX.

— Two different concepts of designing Learning Hardware using the
DEC-PERLE-1 board.

» Compare logic versus ANN and GA approaches to learning.
* Introduce the concept of Learning Hardware

 Methods of knowledge representation in the Universal Logic
Machine (ULM):
We are — variants of Cube Calculus.
here » A general-purpose computer with instructions specialized to operate
m— 0N logic data: Cube Calculus Machine.
— Variants of cube calculus - arithmetics for combinatorial problems
— Our approach to Cube Calculus Machine

» A processor for only one application: Curtis Decomposition
Machine.

CUBE

CALCULUS and

other
representations

STANDARD BINARY CUBE
CALCULUS

Represents product terms as cubes where the state of each input
variable is specified by a symbol:

— positive (1),

— negative (0),

— non-existing (a don't care) (X),

— or contradictory (epsilon).

Each of these symbols is encoded in positional notation with two
bits as follows: 1 =01, 0 = 10, X = 11, epsilon = 00.
Positional notation for cube 0X1 is 10-11-01.

Each position represents a state of the variable by the presence of
"one" In it: left bit - value 0, right bit - value 1.

This encoding presents simple reduction to set-theoretical
representations

STANDARD BINARY CUBE
CALCULUS

A cube can represent :
— aproduct, a sum,
— aset of symmetry coefficients of a symmetric function,
— aspectrum of the function,

— or another piece of data on which some symbol-manipulation (usually set-theoretical)
operations are executed.

Usually the cube corresponds to a product term of literals.

For instance, assume the following order of binary variables: age, sex and
color_of hair. Assume also that the discretization of variable age is:age = 0 for
person's age < 18 and age = 1 otherwise

Men are encoded by value O of attribute sex and women by value 1.
color_of hair is O for black and 1 for blond.

A blond woman of age 19 is denoted by 110 and a black-hair seven-years old
person of unknown sex is described by cube 0X1.

Cube XXX is the set of all possible people for the selected set of attribute variables
and their discretized values.

STANDARD BINARY CUBE
CALCULUS (3)

« Two-dimensional representation is just a set of cubes where the
connecting operator is implicitly understood as:
— OR for SOP;
— EXOR for ESOP;
— concatenation for a spectrum,
— or other.

 For instance, assuming each cube corresponding to AND operator and
the OR being the connecting operator;
— the list {0X1,110} is the SOP which represents the above mentioned two
people (or a set of all people with these properties).
e Multi-valued and integer data can be encoded with binary strings in
this representation,

— so that next all operations are executed in binary (we use this model in the
decomposition machine)

STANDARD BINARY CUBE
CALCULUS (4)

 For instance, If there were three age categories, young,
medium and old, they can be encoded as values 0, 1 and 2

of the ternary variable age, respectively.

« Variable age could be next represented in hardware as pair
of variables age 1 and age_2, where

0=00,1=01, 2=10,
e thus encoding:
young = NOT{age 1} NOT{age 2},
medium =NOT{age 1} {age 2},
old =age 1 NOT{age 2}.

MULTI-VALUED CUBE
CALCULUS (MVCC)

A superset of CC.

It represents product terms as cubes where each input
variable can have a subset of a finite set of all possible
values that this variable can take.

Each element of the set is represented by a single bit, which
makes this representation not efficient for large sets of
values.

In the above example we could have for instance a 5-valued

variable age for five age categories, and a quaternary
variable color_of hair

Each position of a variable corresponds to its possible value.

MULTI-VALUED CUBE CALCULUS (MVCC)

For instance, 10000-10-0100 describes a 7-year old boy with black
hair

This is an example of a minterm cube, 1.e. with single values in each
variable.

01100-11-1100 describes group G_1 of people, men and women, that
are either in second or in third age category and have either blond or
black hair.

This iIs an example of a cube that is not a minterm.

100000-00-1000 describes a first-category-of-age person with blond
hair who has some conflicting information in sex attribute, for
Instance a missing value (this is also how contradictions are signalized
during cube calculus calculations).

The hardware operations in MVVCC are done directly on such MV
variable cubes so that the separate encoding to binary variables is not
necessary.

GENERALIZED MV CUBE
CALCULUS

o A superset of MVCC.
— Each output variable can be also a subset of values.

— Such cubes can be directly used to represent MV
relations, as in Table 2

* |ts operations are more general than MVVCC,
because more interpretations can be given to cubes

« This calculus has more descriptive power, but the
respective hardware processors are much more

complicated.

SIMPLIFIED BINARY CUBE
CALCULUS

A subset of CC. It operates only on minterms .

It has application in decomposition of functions.
Minterms can be of different dimensions.

The hardware Is much simplified: operations are
only set-theoretical.

This i1s the simpliest virtual machine realized by
us, so larger data can be processed by It because
more of a machine can be fit to the limited FPGA
Array resources of DEC-PERLE-1.

SIMPLIFIED MV CUBE
CALCULUS

Cubes where for every input variable either

— only asingle value of its possible values is selected (which is denoted by a binary
code (such as a byte) of a symbol corresponding to this value),

— the variable is missing (which is denoted by a selected symbol, X),
— or the variable is contradictory (another symbol, emptyset).

Used for Rough Sets (Pawlak) and variable-valued logic (Michalski).

For instance, assuming 10 age categories,
— 0=0-10years,
— 1=10-19 years,
— 2 =20 - 29 years, etc,
— and 3 hair categories: 0 = blond, 1 = black, 2 = red,
— the 7-year old boy with black hair is described as 0-0-1,
— the 18-year old girl with black hair is described as 1-1-1,
— the 28-year old woman with red hair is described as 2-1-2, and
— aset of all people with red hair is X-X-2

SIMPLIFIED MV CUBE
CALCULUS

e There Is no way now to describe In one cube people
below 19 with red or black hair, which was possible in
MVCC or GMVCC.

 This simplification of the language brings however big
speedup of algorithms and storage reduction when
applied for data with many values of attributes.

* The control of algorithms becomes more complicated,
while the data path Is simplified.

SPECTRAL
REPRESENTATIONS

Examples: Reed-Muller FPRM and GRM spectra, Walsh spectrum,
various orthogonal spectra.

These representations represent function as a sequence of spectral
coefficients or selected coefficient values with their numbers.

Some spectral representations are useful to represent data for genetic
algorithms: the sequence of spectral coefficients is a chromosome.

For instance, in the Fixed-Polarity Reed-Muller (FPRM) canonical
AND/EXOR forms for n variables, every variable can have two
polarities, 0 and 1.

Thus there are 2" different polarities for a function and the GA
algorithm has to search for the polarity that has the minimum number
of ones in the chromosome.

SPECTRAL
REPRESENTATIONS

This way, every solution is correct, and the fitness function is used
only to evaluate the cost of the design (100% correctness of the circuit
IS in general very difficult to achieve in GA.

Therefore our approaches to logic synthesis based on GA are to have
a representation that provides you with 1009 correctness and
have the GA search only for net minimization.

This approach involves however a more difficult fitness function to be
calculated in hardware than the pure GA or Genetic Programming
approaches.

Similarly, the other AND/EXOR canonical form called the
Generalized Reed-Muller form (GRM) has n 2i"1} binary
coefficients, so there are 2{" 2™{"-1} various GRM forms.

SPECTRAL
REPRESENTATIONS

Because there are more GRM forms, it Is more
probable to find a shorter form among them than
among the FPRM forms.

But the chromosomes are much longer and the
evaluation is more difficult.

This kind of trade-offs Is quite common In spectral
representations.

Spectral methods allow for high degree of
parallelism.

ROUGH PARTITIONS AND
LABELED ROUGH PARTITIONS

Rough Partitions (RP) represented as Bit Sets (Luba).

This representation stores the two-dimensional table column-wise,
and not row-wise as MVCC does.

In r-partition every variable (a column of a table) induces a partition
of the set of rows (cubes) to blocks, one block for each value the
variable can take (there are two blocks for a binary variable, and k
blocks for a k-valued variable).

Rough Partitions are a good idea but they don't really form a
representation of a function.

Since the values of a variable are not stored together with partition
blocks, the essential information on the function is lost and the
original data can not be recovered from it.

This i1s kind of an abstraction of a function, useful for instance in
various decomposition algorithms.

LABELED ROUGH
PARTITIONS

A generalization of RS which has very interesting properties
and allows to find different kind of patterns in data.

It i1s useful for decomposition of MV relations and it
preserves all information about the relation or function.
— It can be also made canonical, when created for special cubes.

Most of its operations are reduced to set-theoretical
operations, so hardware realization is relatively easy.

Relations happen in tables created from real data-base and
features from images,for instance, MV relations are
benchmarks hayes, flarel, flare2 from Irvine

LABELED ROUGH
PARTITIONS (2)

« An example of application of relation in logic synthesis area
IS @ modulo-3 counter (a non-deterministic state machine is
a special case of multiple-valued, multi-output, relation)
that counts in sequence sO ->sl1 ->s2-> sO and if the
state s3 happens to be the initial state of the counter, counter
should transit to any of the states s0,s1,s2, but not to the
state s3 itself.

» (Generalized values for input variables are already known
from cube calculus but generalized values for output
variables are a new concept which allows for representation
and manipulation of relations in LRP.

Cube
Calculus
Machines

CUBE CALCULUS
MACHINE

In our design, the Cube Calculus Machine is a coprocessor to the host computer
and is realized as a virtual processor in DEC-PERLE-1.

the CCM communicates with the host computer through the input and the output
FIFO.

The Iterative Logic Unit (ILU) is realized using a one-dimensional iterative
network of combinational modules and cellular automata.

ILU is composed from ITs, each of them processes a single binary variable or two
values of a multi-valued variable.

Any even number of variables can be processed, and only size of the board as well
as bus limitations are the limits (it is the total of 32 values now, which is at most 16
binary variables, 8 quaternary variables, or 4 8-valued variables, or any mixture
of even-valued variables).

The ILU can take the input from register file
and memory, and can write output to the
register file, the memory, and the output
FIFO.

The ILU executes the cube operation under
the control of Operation Control Unit (OCU).

The Global Control Unit (GCU) controls all
parts of the CCM and let them work
together.

*The machine realizes the set of operations from Table 3.

* The Table shows also their programming information. Each
row of Table describes one cube operation.
» Each operation is specified in terms of:
o rel - the elementary relation type between input values,
e and/or - the global relation type, and the internal state
of the elementary cellular automaton - before,active and
after .
 The operation name, notation, the output value of rel
(partial relation) function in every IT, and\ or (relation
type), the output values of before , active and after
functions are listed from left to right.

Partial relation rel is an elementary relation on
elementary piece of data (pair of bits).

*These set theoretical relations such as inclusion,
equality, etc.

*The value of and\ or equals to 1 means that the
relation type is of AND type; otherwise, the relation
type is of OR type.

 This relation is created by composing elementary
relations from ITs and variables.

horizontal data-path microprogramming
\

The Output Values of Bitwise Functions Used in Cube Operations

Operation Notation Relation Qutput Function
rel | and/or | before | active | after
crosslink Aw B 1110 1 0011 0111 0101
sharp A #pasic B | 0010 0 0011 0010 [0011
disjoint sharp | A #dpesic B | 0010 0 0011 0010 [0001
consensus A Fpgsic B | 1111 1 0001 0111 0001
Intersection An KB - - 0001 - -
super cube AU DB — - 0lll - -
prime A" B 0001 0 0011 0111 —
cofactor A loasic B 1011 1 0001 1111 -

horizontal data-path microprogramming

*The machine is microprogrammable both in its OCU control unit
part (by use of CCM Assembly Language) and in Data Path, as
achieved by ILU operations programmability.

For instance, each operation is described by the binary pattern
corresponding to it in the respective row of Table 3.

By creating other binary patterns in the fields of Table 3, new
operations can be programmed to be executed by ILU.

As the reader can appreciate, there are very many such
combinations, and thus CCM micro-operations.

horizontal data-path microprogramming

*\We call this horizontal data-path microprogramming .

Higher order CCM operations are created by sequencing
low-level operations.

This is called vertical control microprogramming and is
executed by OCU (within ILU) and GCU (for operations
with memories and 1/O).

Thus, the user has many ways to (micro) program
sequences of elementary instructions.

This is done in CCM Assembly language.

simpliied ide of the Gune Caleulus Machine

From host compiiter To host computer
V - {h
Input Reglster Output
QED — Elgui (— w =) |=||-Pn

| L
Mem OCU
P

Global Control Unit (GCU)

CCM as a SIMD machine

Intiate terminate
CU

-

l Instruction

i i i

— IT[1] —=|IT[2] =~ —{I T[]

CCM as a Programmable

Cellular Automaton

Control Unit |,

ne[1

clear requasi

L
T 1
FT] 2% Feupy =E = o
IT[1] IT[2] T[]

nexi[m1

Details of the single cell of
Iterative Logic Unit of CCM

ALl B ra[i-1] w(i rafi
il
ral — F 1 . rrr
and_or—=. ,
- y *I Y ¥
o=r ny[i] = IDENTIFY cour[i]
oo [i-1] 5 CoOUNTER|:
eni[] =2 ikl t |74b5 :
clear :
r-EIqL_rEEI
prima T ' J'.
nexifl] — STATE
bal —% i
acl i
= A R
OPERATION EMPTY
amply_carry[i] P
"""""""""" B 'S R ‘IR
e | subraady(i] subamply(i]

oar ny [1]
coni|i]

cm[i+1]

naxifi+1]

Propagation of information in

Cellular structure

naxl do i T ; naxi T o naxi T . naxi T 4 nExi_jo_cu
i} waragbla i} waragbla i} waragbla i} waragbla i}
—_—— e = S E L LT E e = S E L LT E e = S E L LT E e =
=l=la: bal =l=la: bal =l=la: bal =l=la: bal
(4} warable: 0] 0 warabla: 1] 0 warabla: O] 0 warabla: 1] 0
B | PP o T o T o T o
=l=la: bal =l=la: bal =l=la: bal =l=la: bal
0= 1| wvarzb|: 0|0~ 1| wvarabla: 1| 0O warabla: O] 0 warabla: 1] 0
B N N N .
=l=la: bal =l=la: bal =l=la: bal =l=la: bal
1 waraba: 0| 1 warable: 1|10— 1| varabla: 00— 1| warakla: 1| 4
B N N N e
=igla: ali =igla: acl =igla: bal =igla: bal
1—=0| varagbla: 0 |1—= 04| wvarabla: 1| 1 warabla: O 1 warabla: 1] 0
e e N N e
=igla; ati =igla: acl =i=gla: bal =i=gla: bal
(4} warable: 0] 0 warabla: 1|1~ 0| wvarablea: 0|1~ 0| warzbla: 1 [0~ 1
R N e e e
=i=la; ali =i=la; ali =i=la; ali =i=la: acl

General Architecture of CCM, new
version

Host Com puber

Input FHo Output FHo
Hers 22, S lobal Conmtral Unh fFrasha ¢ P
—
GCU) 2l
. ABus 12 -
EralfFrfoA
Addm | S Eraoocka | Add B élk—E-Lﬂl.ddrE Addri
12 3
12 o 4|
== Ia oI | EO
MEM A MEM B SrmaSne |
Ot [= T] '?!.gjéi;jl
AfarrAaAA - ASTT
ErnFos AEa%rl\ S I_—Y'S %
h—L LAl e 55 S
- A el =2
| —— ASrc
ase—2 1] I.:|' = Accu r o
-Eﬁ A
| S [pemten v =8 L
"2 | et 1L
15 Right
=
In=st [] s N |
=% PR

Evaluation of
some pPrevious
Cube Calculus
Machines

Evaluation.

e For comparing the performance of the CCM and that of the
software approach, a program to execute the disjoint sharp
operation on two arrays of cubes was created using C
language.

e Then this program and the CCM are used to solve the
following problems:
— (1) Three variables problem: $1 \#$ (all minterm with 3 binary
variables).

— (2) Four variables problem: $1 \#$ (all minterm with 4 binary
variables).

— (3) Five variables problem: $1 \#$ (all minterm with 5 binary
variables).

e The C program is compiled by GNU C compiler version 2.7.2, and is
run on Sun Ultra5 workstation with 64MB real memory.

Evaluation.

 The CCM is simulated using QuickHDL software from
Mentor Graphics.

 We simulated the VHDL model of CCM, got the number
of clocks used to solve the problem, then calculated the time
used by CCM using formula: clock *$ clock-period.

* A clock of 1.33 MHz (clock period: 750 ns) is used as the
clock of the CCM.

Compare CCM (1.33 MHz) with software approach I

Problem | 3 variables 4 variables 5 variables
Ultrab 111 usec 268 usec 812 usec
CCM 546 x 0.75 | 1285 x 0.75 3405 < 0.75

= 409 usec | = 963.75 usec | = 2553.75 usec

speedup 0.27 0.28 0.32

Evaluation.

* |t can be seen from Table that our CCM is about 4
times slower than the software approach.

e But, the clock of the CPU of Sun Ultra5 workstation
IS 270 MHz, which i1s 206 times faster than the clock
of the CCM.

» Therefore, we still can say that the design of the
CCM is very efficient for cube calculus operations.

Evaluation.

e |t also can be seen from Table that the more
variables the input cubes have, the more efficient the
CCM 1s.

e This Is due to the software approach need to iterate
through one loop for each variable that Is presented
In the Input cubes.

Evaluation.

However, the clock period of 750ns Is too slow.

From the state diagram of the GCU, it can be found that the
delays of empty carry path and counter carry path
only occur in a few states.

Thus, If we can just give more time to these states, then we
can speedup the clock of the whole CCM.

This Is very easy to achieve: for example, the state P2 of
GCU needs more time for the delay of counter carry path,
so add two more states In series between states P2 and P3.

Evaluation.

* These two extra states do nothing but give the CCM
two more clock periods to evaluate the signal
prel_res, which means that the CCM has 3 clock
periods to evaluate signal prel _res in state P2 after
adding two more delay" states.

« After making similar modifications to all these kind
of states, the CCM can run against a clock of 4 Mhz
(clock period of 250 ns).

COMPARE CCM (4MHZ) WITH SOFTWARE APPROACH I

Problem 3 variables 4 variables 5 variables
Ultrab 111 usec 268 usec 812 usec
CCM 611 x 0.25 1486 < 0.25 | 4078 x 0.25

= 152.75 usec | = 371.5 usec | = 1019.5 usec

speedup 0.72 0.72 0.80

Evaluation.

e |t IS very hard to increase the clock
frequency again with this mapping
because some other paths like

memory path have delays greater
than 150 ns.

Lvnarimantal Dacnve
e e/ E MV

Speedup on 3 variables i1s 0.72, 4 variables - 0.72, 5
variables - 0.8

Frequency of FPGA 3090 was 4MHz
Frequency of Sun Ultra was 270MHz

If we map the entire CCM into one chip delay would be
reduced

New chips are faster and denser.

The delay of CLB of 3090 is 4.5 nS, the delay for CLB of
4085XL 1s 1.2 nS.

4085 has array 56 * 56 and 448 user 1/O pins.

Avnorimantal Bacahe
e e/ E MV

We can map entire CCM Into one 4085

Clock of 4085 is 20 MHz

Clock of CCM is five times slower than Sun

CCM will run 4 times faster than software
approach

RESULTS OF COMPARISON

A design like CCM with a complex control unit and complex data
path is not good for the architecture of the DEC-PERLE-1 board.

It can be seen from our CCM mapping that since a lot of signals must
go through multiple FPGA chips, this leads to greater signal delays.

For instance, if we can connect the memory banks and the registers
directly, then the memory path has a delay of only 35 ns. But our
current memory path has a delay of 160 ns.

Another issue is that XC3090 FPGA is kind of “old" now (8 years old
technology).

The latest FPGAs from Xilinx or other vendors have more powerful
CLBs and more routing resource, and they are made using deep sub-
micron process technology.

POSSIBLE
IMPROVEMENTS

Mapping the entire CCM inside one FPGA chip would speedup the
CCM:

If we map entire CCM into one FPGA chip, the signals do not need to
go through multiple chips again, which means the routing delay is
reduced.

Since the new FPGA chip has more powerful CLBs and routing
resource, we can map the CCM denser. This also reduces the routing
delays.

Since new FPGA chips are made using deep sub-micron technology,
the delay of CLB and routing wires are both reduced.

For example, the delay of the CLB of XC3090A is 4.5 ns while the
delay of CLB of XC4085XL (0.35 micron technology) is only 1.2 ns.
This means that it is very easy to achieve 3 times faster mapping.

NEW FPGA CHIPS FOR NEW
VERSION

XC4085XL FPGA from Xilinx has a CLB matrix of
56 * 56 and up to 448 user 1/O pins.

The CCM should be able to map into one
XC4085XL FPGA.

It should not be difficult to run the CCM against a
clock of 20 MHz (clock period: 50 ns).

This means that our CCM will be about 4 times
faster than the software approach while the system
clock of the CCM is still 5 times slower than that of
the workstation.

CONCLUSIONS

Principles of Learning Hardware as a competing approach
to Evolvable Hardware, and also as its generalization.

Data Mining machines.
Universal Logic Machine with several virtual processors.

DEC-PERLE-1 is a good medium to prototype such
machines, 1ts XC3090A chip is now obsolete.

This can be much improved by using XC4085XL FPGA
and redesigning the board.

Massively parallel architectures such as CBM based on
Xilinx series 6000 chips will allow even higher speedups.

