
A Complete Anytime Algorithm for

Number Partitioning

Richard E. Korf

Computer Science Department

University of California, Los Angeles

Los Angeles, Ca. 90095

korf@cs.ucla.edu

June 27, 1997

Abstract

Given a set of numbers, the two-way partitioning problem is to
divide them into two subsets, so that the sum of the numbers in
each subset are as nearly equal as possible. The problem is NP-
complete, and is contained in many scheduling applications. Based on
a polynomial-time heuristic due to Karmarkar and Karp, we present
a new algorithm, called Complete Karmarkar Karp (CKK), that op-
timally solves the general number-partitioning problem, and signif-
icantly outperforms the best previously-known algorithm for large
problem instances. By restricting the numbers to twelve signi�cant
digits, CKK can optimally solve two-way partitioning problems of ar-
bitrary size in practice. For numbers with greater precision, CKK �rst
returns the Karmarkar-Karp solution, then continues to �nd better so-
lutions as time allows. Over seven orders of magnitude improvement
in solution quality is obtained in less than an hour of running time.
CKK is directly applicable to the subset sum problem, by reducing
it to number partitioning. Rather than building a single solution one
element at a time, or modifying a complete solution, CKK constructs
subsolutions, and combines them together in all possible ways. This
approach may be e�ective for other NP-hard problems as well.

1



1 Introduction and Overview

Most algorithms for combinatorial optimization problems can be divided into
two classes: Complete algorithms that are guaranteed to �nd an optimal
solution eventually, but that run in exponential time, and polynomial-time
algorithms that only �nd approximate solutions. Since most of the latter run
in low-order polynomial time, they often consume very little time on modern
computers, with no way of improving their solutions given more running
time. In between these two classes are the anytime algorithms[1], which
generally �nd better solutions the longer they are allowed to run. One of
the most common types of anytime algorithms are local search algorithms,
which make incremental modi�cations to existing solutions to try to �nd
better solutions. By maintaining the best solution found so far, the solutions
returned by these algorithms can only improve with additional running time.
On the other hand, there is no guarantee that additional running time will
result in a better solution. Furthermore, if there is no solution of a given
quality, these algorithms will never discover that.

In contrast, we present a case study of a di�erent approach to algorithm
design for such problems. We start with the best known polynomial-time
approximation algorithm for a problem. We then construct a complete al-
gorithm for the problem based on the heuristic approximation. The �rst
solution found by the complete algorithm is the polynomial-time approxima-
tion, and as it continues to run it �nds better solutions, until it eventually
�nds and veri�es the optimal solution. We refer to such an algorithm as a
complete anytime algorithm. Furthermore, our algorithm searches a di�er-
ent problem space than is normally searched by either constructive methods
or local search techniques, and this problem space is applicable to other
combinatorial problems as well. Our case study is the problem of number
partitioning, and applies directly to the subset sum problem as well. More
importantly, however, we believe that this algorithm design paradigm and/or
problem space will be useful on other NP-hard problems as well.

Consider the following very simple scheduling problem. Given two identi-
cal machines, a set of jobs, and the time required to process each job on either
machine, assign each job to one of the machines, in order to complete all the
jobs in the shortest elapsed time. In other words, divide the job processing
times into two subsets, so that the sum of the times in each subset are as
nearly equal as possible. This is the two-way number partitioning problem,

2



which is NP-complete[3]. The generalization to k-way partitioning with k
machines is straightforward, with the cost function being the di�erence be-
tween the largest and smallest subset sums. This basic problem is likely to
occur as a subproblem in many practical scheduling applications.

For example, consider the set of integers (4; 5; 6; 7; 8). If we divide it into
the two subsets (7; 8) and (4; 5; 6), the sum of each subset is 15, and the
di�erence between the subset sums is zero. In addition to being optimal,
this is also a perfect partition. If the sum of all the integers is odd, a perfect
partition will have a subset di�erence of one.

We �rst discuss the best existing algorithms for number partitioning, in-
cluding several that are limited by their memory requirements to problems of
less than 100 elements. We then present an elegant polynomial-time approx-
imation algorithm due to Karmarkar and Karp[10], called set di�erencing or
the KK heuristic, which dramatically outperforms the greedy heuristic. Our
main contribution is to extend the KK heuristic to a complete algorithm,
which we call Complete Karmarkar Karp (CKK), and which runs in linear
space. The �rst solution returned by CKK is the KK solution, and as the
algorithm continues to run it �nds better solutions, until it eventually �nds
and veri�es an optimal solution.

We present experimental results comparing CKK to the best previous
algorithms for �nding optimal solutions to large problem instances. For
problem instances with more than 100 numbers, CKK appears to be asymp-
totically faster than the best existing algorithms, and provides orders of
magnitude improvement when perfect partitions exist. Due to the existence
of perfect partitions, it is possible in practice to optimally partition arbitrar-
ily large sets of numbers, if the number of signi�cant digits in each number
is limited. This limit is currently about twelve decimal digits for two-way
partitions, assuming we are willing to wait about an hour for a solution. This
is not likely to be a limitation in practice, since no physical quantities are
known with higher precision. On the other hand, number partitioning prob-
lems that are created by transformations from other NP-Complete problems
may result in values with large numbers of digits.

We consider where the hardest problem instances are found, and show the
performance of our algorithm on these instances. Next we consider the gen-
eralization of CKK to partitioning into more than two subsets. We describe
a di�erent search order, called limited discrepancy search, and show that it
can improve the performance of CKK. We consider stochastic approaches to

3



number partitioning, which do not �nd optimal solutions, and then describe
the reduction of the subset sum problem to number partitioning.

CKK is the best existing algorithm for large number partitioning prob-
lems. Instead of incrementally building a single partition, CKK constructs
a large number of subpartitions, and combines them together in all possi-
ble ways. This new problem space may be e�ective for other combinatorial
optimization problems as well. Some of this work originally appeared in [12].

2 Previous Work

We begin with algorithms that �nd optimal solutions, but are limited in the
size of problems that they can solve, then consider polynomial-time approxi-
mation algorithms, and then optimal algorithms for large problem instances.

2.1 Brute-Force Search

The most obvious algorithm for �nding optimal solutions is to compute all
possible subset sums, and return the subset whose sum is closest to one-half
of the sum of all the elements. If there are n elements to be partitioned,
the time complexity of this algorithm is O(2n), since there are 2n subsets of
an n-element set. The space complexity is linear in the number of elements.
This approach is impractical for problems larger than 40 elements, however,
because of its time complexity.

2.2 Horowitz and Sahni

Horowitz and Sahni[6] showed how to dramatically reduce the running time
of this algorithm by trading space for time, as follows: Arbitrarily divide
the original set of n numbers into two subsets, each containing n=2 numbers.
For example, if we start with the set (4; 5; 6; 7; 8), we might divide it into the
subsets (4; 6; 8) and (5; 7). For each of the two subsets, compute and store
all the possible subset sums achievable using numbers from only that subset.
This would give us the subset sums (0; 4; 6; 8; 10; 12; 14; 18) and (0; 5; 7; 12).
Sort these lists of subset sums. Every subset sum from the original set can be
achieved by adding together a subset sum from one of these lists to a subset
sum from the other. If a subset sum comes entirely from numbers in one of

4



the lists, the value added from the other list is simply zero, for the subset
sum of the null set. Our target value is a subset sum closest to half the sum
of all the original numbers, which is 15 in this case.

We maintain a pointer into each of the sorted lists of subset sums. The
pointer into one of the lists starts at the smallest element, say 0 on the �rst
list, and only increases, while the pointer into the other list starts at the
largest element, 12 in this case, and only decreases. If the sum of the two
numbers currently pointed to, 0+12 = 12 in this case, is less than the target,
15 in this case, increase the pointer that is allowed to increase. This would
give us 4 + 12 = 16 in this case. If the sum of the two numbers pointed to
is greater than the target, as it is now, decrease the pointer that is allowed
to decrease, giving us 4 + 7 = 11 in this case. Since 11 is less than 15, we
increase the increasing pointer, giving us 6+7 = 13. Since 13 is still low, the
next step gives us 8+7 = 15, which is exactly the target, and terminates the
algorithm. In general, we remember the subset sum closest to the target, and
return that if we don't �nd a perfect partition. Of course, some additional
bookkeeping is required to return the actual subsets.

Since each of the two lists of numbers is of length n=2, generating all their
subset sums takes O(2n=2) time. They can be sorted in O(2n=2 log 2n=2) or
O(n2n=2) time. Finally, the two lists of subset sums are scanned in linear time,
for an overall time complexity of O(n2n=2) time. In fact, this algorithm can
be improved by generating the lists of subset sums in sorted order initially,
resulting in a running time of O(2n=2).

The main drawback of this algorithm is the space needed to store the lists
of subset sums. Each list is of size O(2n=2), so the overall space complexity
is O(2n=2). On current machines, this limits us to problems no larger than
about n = 50. However, for problems of this size or smaller, we have reduced
the time complexity from O(2n) to O(2n=2), a very signi�cant reduction.

2.3 Schroeppel and Shamir

Schroeppel and Shamir[16] improved on the algorithm of Horowitz and Sahni
by reducing its space complexity from O(2n=2) to O(2n=4), without increasing
its asymptotic time complexity. What the Horowitz and Sahni algorithm
requires is all possible subset sums, in sorted order, for each half of the
original numbers. It accomplishes this by explicitly creating and storing
them all. The Schroeppel and Shamir algorithm generates these numbers in

5



order on demand without storing them all.
It works as follows: Arbitrarily divide the original set of numbers into four

equal sized sets, called A, B, C, and D. We need to generate all possible
subset sums of numbers from A and B in sorted order, and similarly for C
and D. To do this, generate and store all possible subset sums from numbers
in A, and all possible subset sums from numbers in B, and sort both of these
lists. Every possible subset sum of numbers from A and B can be represented
as the sum of two numbers, one from the subset sums generated by A, and
the other from the subset sums generated by B. Represent such a value as
the ordered pair (a; b), where a and b are members of the subset sums from
A and B respectively. Note that a+ bi � a+ bj if and only if bi � bj.

Initially, create the ordered pairs (a; b) where a ranges over all possible
subset sums generated fromA, and b is the smallest subset sum from elements
in B, namely zero for the null set. Place these ordered pairs in a heap data
structure, ordered by their sum. Thus, the root element will be the smallest
such ordered pair. Whenever the next larger subset sum from A and B is
required, the root of the heap, containing the element (a; bi) is returned.
Then, this element is replaced in the heap by the pair (a; bj), where bj is the
next larger element after bi in the collection of subset sums from B. In this
way, all the subset sums from A and B can be generated in sorted order.
The same algorithm is applied to C and D but in decreasing order of size.

The asymptotic time complexity of this algorithm is O(2n=2) since poten-
tially all 2n=2 subset sums fromA and B, and also from C andD, may have to
be generated. While the asymptotic time complexity of the Schroeppel and
Shamir algorithm is the same as for the Horowitz and Sahni algorithm, the
constant factors are considerably greater, due to the heap operations. The
big advantage of the Schroeppel and Shamir algorithm, however, is that its
space complexity is only O(2n=4) because only the lists of subset sums gener-
ated by the numbers in A, B, C, and D must be stored. Since each of these
sets of numbers is of size n=4, the number of subset sums they each generate
is 2n=4. The heaps are also the same size, for an overall space complexity of
O(2n=4), compared to O(2n=2) for the Horowitz and Sahni algorithm. Thus,
in practice, this increases the size of problems that can be solved optimally to
from about 50 to 100 numbers. Most current machines don't have su�cient
memory to solve larger problems using this algorithm.

6



2.4 Dynamic Programming

There is also one other algorithm for �nding optimal solutions that is based on
dynamic programming[3]. It requires a bit array a[i] whose size is on the order
of the number of achievable subset sums. Assuming integer values, if a[i] is
equal to one, that means that the subset sum i is achievable. We describe
here a simpli�ed version of the algorithm, albeit not the most e�cient. Start
with the array initialized to all zeros, and set a[0] = 1. Then for each integer
x in the original set, scan the array, and for each element a[i] equal to one,
set a[i+ x] equal to one. Continue until all the numbers are exhausted.

The space complexity of this algorithm is proportional to the number of
achievable subset sums. Thus, it is only practical for partitioning problems
with a small number of values, or alternatively where the values have limited
precision. On most current machines this limit is about 7 decimal digits.

With the exception of the brute-force algorithm described �rst, all the
above algorithms are limited by their space complexities to problems of less
than about 100 numbers, or problems where the individual numbers have
limited precision. We now to turn to algorithms for solving large problem
instances, with numbers of arbitrarily high precision, which are the most
di�cult to solve. We begin with polynomial-time algorithms that return only
approximate solutions, then consider complete versions of these algorithms.

2.5 Greedy Heuristic

The obvious greedy heuristic for this problem is to �rst sort the numbers
in decreasing order, and arbitrarily place the largest number in one of two
subsets. Then, place each remaining number in the subset with the smaller
total sum thus far, until all the numbers are assigned.

For example, given the sorted integers (8; 7; 6; 5; 4), the greedy algo-
rithm would proceed through the following states, where the integers out-
side the parentheses are the current subset sums: 8; 0(7; 6; 5; 4), 8; 7(6; 5; 4),
8; 13(5; 4), 13; 13(4), 13; 17(), for a �nal subset di�erence of 4. Note that
the greedy algorithm does not �nd the optimal solution in this case. The
above notation maintains both subset sums, but to �nd the value of the �nal
di�erence, we only need to store the di�erence of the two subset sums. Thus
we can rewrite the above trace as: 8(7; 6; 5; 4), 1(6; 5; 4), 5(5; 4), 0(4), 4(). In
practice, we would keep track of the actual subsets as well.

7



This algorithm takes O(n log n) time to sort the numbers, and O(n) time
to assign them, for a time complexity of O(n log n). It requires O(n) space.

2.6 Set Di�erencing (Karmarkar-Karp Heuristic)

The set di�erencing method of Karmarkar and Karp[10], also called the KK
heuristic, is another polynomial-time approximation algorithm. It also be-
gins by sorting the numbers in decreasing order. At each step, the algorithm
commits to placing the two largest numbers in di�erent subsets, while defer-
ring the decision about which subset each will go in. In the above example,
if we place 8 in the left subset, and 7 in the right subset, this is equivalent
to placing their di�erence of 1 in the left subset, since we can subtract 7
from both subsets without a�ecting the �nal di�erence. Similarly, placing 8
in the right subset and 7 in the left subset is equivalent to placing 1 in the
right subset. The algorithm removes the two largest numbers, computes their
di�erence, and then treats the di�erence just like any other number to be
assigned, inserting it in sorted order in the remaining list of numbers. The
algorithm continues removing the two largest numbers, replacing them by
their di�erence in the sorted list, until there is only one number left, which
is the value of the �nal subset di�erence.

For example, given the sorted integers (8; 7; 6; 5; 4), the 8 and 7 are re-
placed by their di�erence of 1, which is inserted in the remaining list, resulting
in (6; 5; 4; 1). Next, the 6 and 5 are replaced by their di�erence of 1, yielding
(4; 1; 1). The 4 and 1 are replaced by their di�erence of 3, giving (3; 1), and
�nally the di�erence of these last two numbers is the �nal subset di�erence
of 2. The KK heuristic also fails to �nd the optimal partition in this case,
but does better than the greedy heuristic.

To compute the actual partition, the algorithm builds a tree, with one
node for each original number. Each di�erencing operation adds an edge
between two nodes, to signify that the corresponding numbers must go in
di�erent subsets. The resulting graph forms a spanning tree of the original
nodes, which is then two-colored to determine the actual subsets, with all
the numbers of one color going in one subset.

For example, Figure 1 shows the �nal tree for the example above. First,
replacing 8 and 7 by their di�erence creates an edge between their nodes. The
larger of the two, node 8, represents their di�erence of 1. Next, replacing
6 and 5 by their di�erence adds an edge between their nodes, with node 6

8



representing their di�erence of 1. We then take the di�erence of 4 and 1,
representing the di�erence between 7 and 8, and add an edge between node
4 and node 8, since node 8 represents the di�erence of 1. Since 4 is larger
than 1, node 4 represents their di�erence of 3. Finally, an edge is added
between node 4 and node 6, representing 3 and 1 respectively.

7 8 4 6 5

Figure 1: Tree from KK partitioning of (4,5,6,7,8)

In general, the resulting graph forms a spanning tree of the original nodes,
since all the numbers must eventually be combined, and n � 1 edges are
created, one for each di�erencing operation. We then color the nodes of the
tree with two colors, so that no two adjacent nodes receive the same color, to
get the �nal partition itself. To two-color a tree, color one node arbitrarily,
and then color any node adjacent to a colored node the opposite color. Two-
coloring the above tree results in the subsets (7; 4; 5), and (8; 6), whose subset
sums are 16 and 14, respectively, for a �nal partition di�erence of 2.

The running time of this algorithm is O(n log n) to sort the n numbers,
O(n log n) for the di�erencing, since each di�erence must be inserted into
the sorted order, using a heap for example, and �nally O(n) to two-color the
graph, for an overall time complexity of O(n log n).

The KK heuristic �nds much better solutions on average than the greedy
heuristic. Figure 2 compares the two algorithms, partitioning random inte-
gers uniformly distributed from 0 to 10 billion. The horizontal axis is the
number of values partitioned, and the vertical axis is the di�erence of the
�nal subset sums, on a logarithmic scale. Each data point in the top two
lines is an average of 1000 random problem instances, while those in the bot-
tom line are averages of 100 problems. As the number of values increases,
the �nal di�erence found by the KK heuristic becomes orders of magnitude
smaller than for the greedy heuristic. We also show the optimal solution
quality. With 40 or more 10-digit integers, a perfect partition di�erence of
zero or one was found in every case. By about 300 integers, the KK line
nearly joins the optimal line, �nding a perfect partition almost every time.
The greedy line, however, drops only slightly.

The explanation for the di�erence between the quality of the greedy and

9



greedy

KK

optimal

subset difference of final partition

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

integers
0 50 100 150 200 250 300

Figure 2: Greedy, KK, and optimal solution quality for 10-digit numbers

KK solutions is quite simple. The di�erence of the �nal partition is on
the order of the size of the last number to be assigned. For the greedy
heuristic, this is the size of the smallest original number. This explains the
small improvement with increasing problem size, since the more values we
start with, the smaller the smallest of them is likely to be. For n numbers
uniformly distributed between zero and one, the greedy method produces a
�nal di�erence of O(1=n). The sawtooth shape for large numbers of values
is due to the fact that successive data points represent alternating odd and
even numbers of values, and the even cases result in smaller �nal di�erences.

For the KK method, however, repeated di�erencing operations dramati-
cally reduce the size of the remaining numbers. The more numbers we start
with, the more di�erencing operations, and hence the smaller the size of the
last number. Yakir[17] recently con�rmed Karmarkar and Karp's conjecture

10



that the value of the �nal di�erence is O(1=n� logn), for some constant �[10].

2.7 Making the Greedy Heuristic Complete

Both these algorithms run in O(n log n) time and O(n) space, but only �nd
approximate solutions. To �nd optimal solutions, the obvious algorithm is to
search a binary tree, where at each node one branch assigns the next number
to one subset, and the other branch assigns it to the other subset. We return
the best �nal di�erence found during the search, and the actual subsets.

The running time of this algorithm is O(2n), since we are searching a
binary tree of depth n, and its space complexity is O(n), since we search it
depth-�rst. There are two ways to prune the tree, however. At any node
where the di�erence between the current subset sums is greater than or equal
to the sum of all the remaining unassigned numbers, the remaining numbers
are placed in the smaller subset. For example, in the state 15; 0(6; 5; 4), the
sum of 6, 5, and 4 is no greater than the current subset di�erence of 15, so
the best we can do is to put all the remaining numbers in the smaller subset.
This pruning doesn't depend on any solutions found so far, and thus the size
of the resulting tree is independent of the order in which it is searched.

Furthermore, if we reach a terminal node whose subset di�erence is zero
or one, representing a perfect partition, then we can terminate the entire
search. The above example illustrates this as well, since once we put the
remaining integers in the smaller subset, the resulting complete partition
has a di�erence of zero. If a perfect partition exists, then the search order
matters, since the sooner we �nd it, the sooner we can quit. The obvious way
to order the search is to always put the next number in the smaller subset
so far, before putting it in the larger subset. This algorithm produces the
greedy solution �rst, and continues to search for better solutions, until an
optimal solution is eventually found and veri�ed.

Several additional optimizations deserve mention. One is that the �rst
number should only be assigned to one subset, cutting the search space in
half. The second is that whenever the current subset sums are equal, the next
number should only be assigned to one subset, cutting the remaining subtree
in half. Finally, when only one unassigned number remains, it should be
assigned only to the smaller subset. Figure 3 shows the resulting binary tree
for the integers (4; 5; 6; 7; 8), where the number in front of the parentheses is
the di�erence between the current subset sums, and the numbers below the

11



leaf nodes are the corresponding �nal partition di�erences. We refer to this
algorithm as the complete greedy algorithm (CGA).

0(4) 10(4) 2(4) 12(4)

0

4 6 2 8

8(7,6,5,4)

1(6,5,4) 15(6,5,4)

5(5,4) 7(5,4)

Figure 3: Tree Generated by Complete Greedy Algorithm (CGA)

3 Complete Karmarkar-Karp (CKK)

Similar to the extension of the greedy heuristic to a complete algorithm, the
main contribution of this paper is to extend the KK heuristic to a complete al-
gorithm. While the idea is extremely simple, it doesn't appear in Karmarkar
and Karp's paper[10], nor in any subsequent papers on the problem[15, 8].

At each cycle, the KK heuristic commits to placing the two largest num-
bers in di�erent subsets, by replacing them with their di�erence. The only
other option is to place them in the same subset, replacing them by their sum.
The resulting algorithm, which we call Complete Karmarkar-Karp (CKK),
searches a binary tree depth-�rst from left to right, where each node replaces
the two largest remaining numbers. The left branch replaces them by their
di�erence, while the right branch replaces them by their sum. The di�er-
ence is inserted in sorted order in the remaining list, while the sum is simply
added to the head of the list, since it will be the largest element. Thus, the
�rst solution found by CKK is the KK solution, and as it continues to run
it �nds better solutions, until an optimal solution is found and veri�ed.

In our implementation, the list is maintained in a simple array, with a
linear scan for insertion of the di�erences. While this might seem to take
O(log n) time for each insertion, it amounts to only a constant factor, since

12



most of the nodes in the tree are near the bottom, where the lists are very
short. In fact, the average height of a node in a complete binary tree ap-
proaches one as the height of the tree goes to in�nity. Thus, the worst-case
running time of CKK is O(2n).

Similar pruning rules apply as in CGA, with the largest element playing
the role of the current subset di�erence. In other words, a branch is pruned
when the largest element is greater than or equal to the sum of the remaining
elements, since the best one can do at that point is to put all the remaining
elements is a separate subset from the largest element. Figure 4 shows the
resulting binary tree for the integers (4; 5; 6; 7; 8). Note that the tree in Figure
4 is smaller than that in Figure 3, even though both �nd optimal solutions.

CKK is more e�cient than CGA for two reasons. If there is no perfect
partition, then both algorithms must search the whole tree. Consider the
left subtrees in Figures 3 and 4, where both algorithms place the 8 and 7 in
di�erent subsets. This state is represented by 1(6; 5; 4) in Figure 3, where 1 is
the current subset di�erence, and by (6; 5; 4; 1) in Figure 4. The distinction
between these two nodes is that in the latter case, the di�erence of 1 is treated
like any other number, and inserted in the sorted order, instead of being the
current subset di�erence. Thus, at the next level of the tree, represented by
nodes (4; 1; 1) and (11; 4; 1) in Figure 4, the largest number is greater than
the sum of the remaining numbers, and these branches are pruned. In CGA,
however, the two children of the left subtree, 5(5; 4) and 7(5; 4) in Figure 3,
have to be expanded further. Thus, CKK prunes more of the tree than CGA.

(8,7,6,5,4)

(6,5,4,1) (15,6,5,4)

(4,1,1) (11,4,1)

0

2 6

Figure 4: Tree generated by CKK algorithm to partition (4,5,6,7,8)

The second reason that CKK is more e�cient occurs when a perfect
partition exists. In that case, since the KK heuristic produces better solutions
than the greedy heuristic, the CKK algorithm �nds better solutions sooner,

13



including the perfect solution. This allows it to terminate the search much
earlier than the complete greedy algorithm, on average.

4 Experimental Results: Optimal Solutions

We implemented CGA and CKK, both of which �nd optimal solutions. The
results for two-way partitioning are shown in Figure 5. We chose random
integers uniformly distributed from 0 to 10 billion, which have ten signi�cant
decimal digits of precision. Each data point is the average of 100 random
problem instances. The horizontal axis shows the number of integers parti-
tioned, with data points for sets of size 5 to 100, in increments of 5, and from
30 to 40 in increments of 1. The vertical axis shows the number of nodes
generated by the two algorithms. The descending line shows the average op-
timal partition di�erence on the vertical axis, fortuitously representable on
the same scale in this case.

To make the algorithmmore e�cient, CKK directly computes the optimal
partition when there are four numbers left, since the KK heuristic is optimal
in that case. CGA continues until there are only two unassigned numbers
left before directly computing the optimal partition. To some extent, the
choice of what constitutes a terminal node of these search trees is arbitrary
and implementation dependent. We set the terminal level of each tree at a
point where both algorithms generate roughly the same number of nodes per
second, so that a comparison of nodes generated is also a fair comparison
of running time. In particular, by our accounting, both algorithms generate
two nodes to partition �ve elements.

Both algorithms were coded in C, and generate about 150 million nodes
per minute on a SUN ULTRASPARC model 1 workstation. Thus, the entire
vertical axis represents less than seven minutes of computation time.

There are two di�erent regions of this graph, depending on how many
values are partitioned. With less than 30 integers, no perfect partitions
were found, while with 40 or more integers, a perfect partition was found
in every case. The optimal subset di�erence averages .5 beyond 40 integers,
since there are roughly equal numbers of di�erences of zero and one. CKK
dominates CGA over the entire range.

Without a perfect partition, the ratio of the number of nodes generated by
CGA to those generated by CKK grows linearly with the number of values.

14



CGA

CKK

solution

nodes generated and difference of optimal partition

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

1e+09

500 100 150 200

integers

Figure 5: Nodes generated to optimally partition 10-digit integers

This suggests that CKK is asymptotically more e�cient than CGA. Without
a perfect partition, the performance of both algorithms is independent of the
precision of the numbers, assuming that double-precision arithmetic is used
throughout. To optimally partition 40 48-bit double-precision integers with
CGA requires an average of 56 minutes, while CKK requires an average of
only 22 minutes on the same problems, a factor of 2.5 improvement.

The performance improvement is more dramatic when a perfect partition
exists. In that case, CKK �nds the perfect partition much sooner than CGA,
and hence terminates the search earlier. As the problem size increases, the
running time of CGA drops gradually, but the running time of CKK drops
precipitously, resulting in orders of magnitude improvement. We have run
CKK on 10-digit problems up to size 300, at which point the KK heuristic
solution is almost always optimal, and the number of nodes generated ap-

15



proaches the number of integers being partitioned. At that point, the running
time of CKK is dominated by the O(n log n) time to �nd the KK solution.

The intuition behind the observation that large problems are easier to
solve than those of intermediate size is quite simple. Given n integers, the
number of di�erent subsets of those integers is 2n. If the integers range from
0 to m, the number of di�erent possible subset sums is less than nm, since
nm is the maximum possible subset sum. If m is held constant while n
is increased, the number of di�erent subsets grows exponentially, while the
number of di�erent subset sums grows only linearly. Thus, there must be
many subsets with the same subset sum. In particular, the frequency of
perfect partitions increases with increasing n, making them easier to �nd.

The data in Figure 5 are for integers with ten decimal digits of precision,
to allow running many trials with di�erent numbers of values. Arbitrary-size
single problem instances with up to twelve digits of precision can be solved
by CKK in a matter of hours. For example, this represents an accuracy of
one second in over 30,000 years. Since no physical quantities are known with
higher precision, any two-way partitioning problems that arise in practice can
be optimally solved, regardless of problem size. While all our experiments
were run on uniformly distributed values, we believe that the same results
will apply to other naturally occurring distributions as well.

5 Where the Hardest Problems Are

Figure 5 shows that for integers of �xed precision, increasing the problem
size makes the problem more di�cult up to a point, and then easier beyond
that point. The reason for the decrease in problem di�culty with increasing
problem size is that perfect partitions become more common with increasing
problem size. Once a perfect partition is found, the search is terminated.

This phenomenon has been observed in a number of di�erent constraint-
satisfaction problems, such as graph coloring and boolean satis�ability, and
has been called a phase transition[7, 2, 14]. In a constraint-satisfaction prob-
lem, the di�culty increases with increasing problem size as long as no solution
exists, since the entire problem space must be searched. For some problems
however, as problem size increases further, solutions begin to appear more
frequently. In that case, the problem gets easier with increasing size, since
once any solution is found, the search can be terminated.

16



This complexity transition also appears in optimization problems[2, 18],
as long as there exist optimal solutions that can be recognized as such without
comparison to any other solutions. This is the case with number partitioning,
where a subset di�erence of zero or one is always an optimal solution. As
another example, when solving a minimization problem with non-negative
costs, a zero-cost solution is always optimal.

In most of these problems, the hardest problem instances occur where
the probability that an exact or perfect solution exists is one-half. In our
experiments, 38% of random sets of 35 10-digit integers had a perfect parti-
tion, and 63% of problem instances of size 36 could be partitioned perfectly,
suggesting that these should be the hardest problems. In fact, the problem
instances that generate the largest median number of nodes are those of size
36. If we look at mean node generations instead, the hardest problems are of
size 38, since the outliers have a larger e�ect on the mean than the median.
See [4] for more detail on this complexity transition in number partitioning.

We would like to predict where the hardest problems are, for a given
precision of values. To do this, we need to know the value of the optimal
subset di�erence for a given problem class. Karmarkar and Karp et al[11]
showed that for a set of independent trials of partitioning n real numbers from
zero to one, the median value of the minimum subset di�erence is �(

p
n=2n),

or c
p
n=2n for some constant c. We can use our data to estimate the value

of this constant. Since we used integers, we multiply this by the maximum
value m of an integer. For example, m = 1010 for the experiments in Figure
5. If a majority of a set of problem instances yield a perfect partition, then
the median value of the optimal subset di�erences will almost certainly be 1.
In our experiments, this occurred between n = 35 and n = 36. Solving for
c in the equation c

p
35 � 1010=235 = 1, gives c = 1:72. Using n = 36 yields

c = :873. Thus, we can estimate c as 1. Then, to �nd the hardest problems
for integers up to size m, we simply solve for n in the equation

p
nm=2n.

6 Finding Approximate Solutions

While this formula tells us where to �nd the hardest problems for a given
precision of values, the easiest way to generate hard problems is to increase
the precision. Most of the work on number partitioning has focussed on prob-
lems without perfect partitions. To generate large such problem instances,

17



integers with up to 36 decimal digits have been used[15].

CKK

second

minute

hour

solution improvement relative to initial KK solution

nodes

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+03 1e+05 1e+07 1e+09

Figure 6: Solution quality relative to KK solution for 50 48-bit integers

For large problems with very high precision values, we must settle for
approximate solutions. In that case, we can run CKK for as long as time
allows, and return the best solution found. The �rst solution found is the
KK solution, and as CKK continues to run, it �nds better solutions. This
technique is very e�ective, with much of the improvement in solution quality
occurring early in the run. Figure 6 shows the average improvement as a
function of running time for 100 trials of partitioning 50 48-bit integers. The
horizontal axis is the number of nodes generated, and the vertical axis is the
ratio of the initial KK solution to the best solution found in the given num-
ber of node generations, both on a logarithmic scale. The entire horizontal
scale represents about an hour of real time, and shows over seven orders of
magnitude improvement, relative to the initial KK solution. Four orders of

18



magnitude improvement is obtained in less than a second of running time.

7 Multi-Way Partitioning

So far, we have considered partitioning into two subsets. Here we discuss the
generalization of these techniques to partitioning into multiple subsets. The
task is to partition a set of numbers into k mutually exclusive and collectively
exhaustive subsets, so that the di�erence between the largest and smallest
subset sums is minimized. This also minimizes the largest subset sum.

7.1 Greedy Algorithm

The generalization of the greedy heuristic to k-way partitioning is straight-
forward. We sort the numbers in decreasing order, and always place the
next unassigned number in the subset with the smallest sum so far, until all
the numbers have been assigned. Since we can always subtract the smallest
subset sum from each of the others without a�ecting the �nal partition dif-
ference, we only have to maintain k � 1 values, the normalized di�erences
between each subset sum and the smallest one.

7.2 Complete Greedy Algorithm

The complete greedy algorithm also readily generalizes to k-way partitioning.
Again we sort the numbers in decreasing order, and each number in turn is
placed in each of k di�erent subsets, generating a k-ary tree. The left-most
branch places the next number in the subset with the smallest sum so far,
the next branch places it in the next larger subset, etc. Thus, the �rst
solution found is the greedy solution. By never placing a number in more
than one empty subset, we avoid generating duplicate partitions that di�er
only by a permutation of the subsets, and produce all O(kn=k!) distinct k-
way partitions of n elements. More generally, by never placing a number in
two di�erent subsets with the same subset sum, we avoid generating di�erent
partitions that have the same partition di�erence.

To prune the tree, we use branch-and-bound, and maintain the smallest
di�erence found so far for a complete partition. Given the largest current
subset sum, the best we can do is to bring each of the remaining subset

19



sums up to the value of the largest. To see if this is possible, we add all the
subset sums except the largest together, add to this the sum of the remaining
unassigned numbers, and divide the result by k � 1. If this quotient is less
than the largest subset sum, then the di�erence between them is the best
possible �nal di�erence we could achieve. There is no guarantee that we can
actually achieve this, since it represents a perfect solution to a k � 1-way
partitioning problem, but it is a lower bound. If the resulting di�erence is
greater than the best complete partition di�erence found so far, we can prune
this branch of the tree, since we can't improve on the existing partition.

Formally, let s1; s2; : : : ; sk be the current subset sums, let s1 be the largest
of these, and let r be the sum of the remaining unassigned numbers. If

s1 �
Pk

i=2 si + r

k � 1

is greater than or equal to zero, then this is the best possible completion
of this partial partition. If it is greater than or equal to the best complete
partition di�erence found so far, then the corresponding branch is pruned.

Finally, a perfect partition will have a di�erence of zero if the sum of the
original integers is divisible by k, and a di�erence of one otherwise. Once a
perfect partition is found, the algorithm is terminated.

7.3 Karmarkar-Karp Heuristic

Karmarkar and Karp also generalized their set di�erencing method to k-way
partitioning. A state is represented by a collection of subpartitions, each with
k subset sums. The initial numbers are each represented by a subpartition
with the number itself in one subset, and the remaining subsets empty. For
example, a three-way partitioning of the set (4; 5; 6; 7; 8) would initially be
represented by the subpartitions ((8; 0; 0); (7; 0; 0); (6; 0; 0); (5; 0; 0); (4; 0; 0)),
which are sorted in decreasing order. The two largest numbers are combined
into a single subpartition by putting them in di�erent subsets, resulting in
the list ((8; 7; 0); (6; 0; 0); (5; 0; 0); (4; 0; 0)). The new subpartition still has
the largest subset sum, and hence the next smaller subpartition, (6; 0; 0), is
combined with it by placing the 6 in the smallest subset, resulting in the
subpartition (8; 7; 6). Since we are only interested in the di�erence between
the largest and the smallest subset sums, we normalize by subtracting the
smallest sum, 6, from each of the subsets, yielding the subpartition (2; 1; 0).

20



This subpartition is then inserted into the remaining sorted list, in decreasing
order of largest subset sum, resulting in ((5; 0; 0)(4; 0; 0)(2; 1; 0)). Again, the
two largest subpartitions are combined, yielding ((5; 4; 0)(2; 1; 0)). Finally,
these last two subpartitions are combined by merging the largest subset sum
with the smallest (5 + 0), the smallest with the largest (0 + 2), and the
two medium subset sums together (4 + 1), yielding (5; 5; 2). Subtracting the
smallest from all three subset sums results in the �nal subpartition of (3; 3; 0),
which has a di�erence of 3, and happens to be optimal in this case. While
we have shown all three subset sums for clarity, our implementation only
maintains the two normalized non-zero subset sums for each subpartition.

The actual partition is reconstructed as follows. Each subset sum in each
subpartition represents a set of original numbers. Whenever we combine
two subset sums, we merge the corresponding sets. For example, in the state
((5; 4; 0)(2; 1; 0)) above, the 5 represents the original 5, the 4 represents the 4,
the 2 represents the 8, the 1 represents the 7, and the 0 in (2; 1; 0) represents
the 6, since we subtracted 6 from each of the subset sums in this subpartition.
At the last step, we combine the 5 with the 0, resulting in the set f5; 6g, the
4 with the 1, resulting in the set f4; 7g, and the 2 with the 0, resulting in the
singleton set f8g. Thus, the �nal partition is (f8gf7; 4gf6; 5g), with subset
sums of 8, 11, and 11, and a �nal di�erence of 3.

7.4 Complete Karmarkar-Karp Algorithm

The CKK algorithm also generalizes to multi-way partitioning. Instead of
combining subpartitions in only one way, to make the algorithm complete we
must combine them together in all possible ways. Again consider three-way
partitioning. A particular subpartition represents a commitment to keep the
elements in the di�erent subsets separate. There are three cases to consider
in combining a pair of subpartitions. In the �rst case, both subpartitions
have only a single non-zero subset sum, say (A; 0; 0) and (X; 0; 0). We can
combine these in only two di�erent ways, either putting the non-zero elements
together, (X +A; 0; 0), or keeping them apart, (X;A; 0). In the second case,
one subpartition has one non-zero subset sum and the other has two, say
(A; 0; 0) and (X;Y; 0). In this case we can combine them in three di�erent
ways, putting the single non-zero element in any of the three subsets of the
other subpartition, resulting in the subpartitions (X;Y;A), (X;Y + A; 0),
and (X +A;Y; 0). Finally, both subpartitions can have two non-zero subset

21



sums, say (A;B; 0) and (X;Y; 0). In this case, there are six di�erent ways to
combine them: (X;Y +B;A), (X;Y +A;B), (X +B;Y;A), (X +A;Y;B),
(X + B;Y + A; 0), and (X + A;Y + B; 0). At each step of the algorithm,
the two subpartitions with the largest normalized subset sums are combined
in each possible way, and the resulting subpartitions are normalized and
inserted in the sorted order of remaining subpartitions. The resulting child
nodes are then searched in increasing order of the largest normalized subset
sum. Thus, the �rst solution found is the KK solution.

Figure 7 shows the tree that is generated to optimally partition the inte-
gers (4; 5; 6; 7; 8) into three subsets. At the root, each original integer is in
its own subpartition. Each subpartition contains only two subset sums, since
the third is normalized to zero. At each node, the two subpartitions with the
largest subset sums are combined in all possible ways. The nodes at depth
n�1 are complete partitions, and their subset di�erence is the largest subset
sum, since the smallest is zero. Pruning is discussed below.

(8,0)(7,0)(6,0)(5,0)(4,0)

(8,7)(6,0)(5,0)(4,0) (15,0)(6,0)(5,0)(4,0)

(5,0)(4,0)(2,1) (13,8)(5,0)(4,0) (14,7)(5,0)(4,0)

(3,3) (4,2) (5,4) (6,5) (6,6) (7,5)

(3,4)(2,1) (9,0)(2,1)

Figure 7: Tree generated to partition 4,5,6,7,8 into three subsets

The resulting tree has depth n� 1, and for three-way partitioning, nodes
with branching factors two, three, and six, depending on whether the two
subpartitions being combined have two, three, or four non-zero subset sums,
respectively. The number of leaf nodes, however, is the same as in the com-
plete greedy tree, assuming no normalization or pruning. In other words, if
all k subset sums are maintained, and every branch proceeds to depth n� 1,
there is one leaf node for every distinct partition of the original numbers.

22



To see this, note that every node in the tree represents a complete col-
lection of subpartitions. A single subpartition is a division of some of the
original numbers into k di�erent subsets, and represents a commitment to
keep the numbers in di�erent subsets apart in every partition arising from
it. A subset sum of zero represents an empty set, since we don't normalize.
Each node takes the two subpartitions with the largest subset sums, and
combines them together in all possible ways. For example, the root node in
Figure 7 combines the two subpartitions containing just the 8 and the 7 into
a single subpartition in two di�erent ways. Either the 8 and 7 will go into
di�erent subsets, or in the same subset. Since all the original numbers must
eventually be combined into a single partition of k subsets, combining the
subpartitions pairwise in all possible ways guarantees that every partition
will eventually be generated at some leaf node of the tree.

To see that no partition is generated more than once, note that each node
combines only two subpartitions, the ones with the largest subset sums. The
new subpartitions that result are all di�erent, representing di�erent choices
about assigning the numbers in the combined subpartitions to the same or
di�erent subsets. For example, consider the root of the tree in Figure 7.
Its left child puts the 8 and 7 in di�erent subsets, and they will stay in
di�erent subsets in every partition generated below that node, since numbers
in di�erent subsets of the same subpartition are never combined. Conversely,
the right child of the root puts the 8 and 7 in the same subset, and they
will stay in the same subset in every partition below that node. Thus, the
partitions generated below the left and right children are completely disjoint.
This is true in general, and each distinct partition appears only once.

Normalization can reduce the size of the tree. For example, if the two
smallest subsets in a subpartition have the same sum, after normalization a
zero will occur in the combined subpartition, which does not represent an
empty subset. When another value is combined with this subpartition, it will
only be placed in one of the smallest subsets. Since the two subsets have the
same sum, which subset a new value is placed in has no a�ect on the �nal
partition di�erence, even though it may generate di�erent partitions. This
normalization savings also applies to the complete greedy algorithm as well.

Pruning the CKK tree is similar to pruning in the complete greedy algo-
rithm. We add up all the subset sums except for the largest one, and evenly
divide this total among k � 1 subsets. If the di�erence between the largest
subset sum and this quotient is greater than or equal to the best complete

23



partition di�erence found so far, we can prune this branch, since this is the
best we could possibly do below that node. For example, consider the sub-
partition (13; 8)(5; 0)(4; 0), near the middle of Figure 7. The largest subset
sum is 13, and the sum of the remaining values is 8+5+4 = 17. If we divide
17 among the two remaining subsets, the best we could do is to have 9 in
one of the subsets, and 8 in the other. The best possible partition di�erence
would then be 13 � 8 = 5. Since the leftmost leaf node has a partition dif-
ference of only 3, we can prune this node. Finally, a complete partition with
a di�erence of zero or one is perfect, and terminates the search.

7.5 Experimental Results

We implemented both CKK and CGA for three-way partitioning, using inte-
gers uniformly distributed from zero to 100; 000. Figure 8 shows the results,
in the same format as Figure 5. Each data point is an average of 100 random
trials. The horizontal axis is the number of integers being partitioned, and
the vertical axis for the CGA and CKK algorithms is the number of nodes
generated. We also show the value of the optimal subset di�erence on the
same scale, indicating that the hardest problems occur where the probability
of a perfect partition is about one-half. The results are very similar to those
for two-way partitioning. Namely, CKK appears asymptotically more e�-
cient than CGA when no perfect partition exists, and is orders of magnitude
more e�cient when there are perfect partitions.

While the constant factors for CKK and CGA are similar for two-way
partitioning, the three-way version of CKK is more complex. Our three-way
implementation of CKK runs about 33% slower per node generation than
CGA. While this reduces the absolute performance of CKK, it still appears
asymptotically more e�cient than CGA, and runs faster in practice.

In order to run large numbers of three-way partitioning problems of dif-
ferent sizes, we used integers with �ve signi�cant decimal digits. Single in-
stances of arbitrary size with six digits of precision can be solved in practice,
however. While two-way partitioning problems with up to twelve digits can
be optimally solved, three-way partitioning is computationally more di�cult,
since the number of k-way partitions is O(kn=k!).

24



CGA

CKK

solution

nodes, time and solution cost

1e+00

1e+01

1e+02

1e+03

1e+04

1e+05

1e+06

1e+07

1e+08

integers

20 40 60 80 100

Figure 8: Nodes generated to partition 5-digit integers into three subsets

8 Limited Discrepancy Search

So far, all the trees generated by CKK and CGA have been searched depth-
�rst, from left to right. The leftmost branch at each node is the branch
recommended by the heuristic, either the greedy heuristic of placing the
next number in the smallest subset so far, or the KK heuristic of separating
the two largest numbers in di�erent subsets. An alternative search strategy,
which has the same linear space requirement as depth-�rst search, is called
limited discrepancy search[5]. Limited discrepancy search (LDS) is based on
the idea that in a heuristically ordered search tree, a left branch is preferable
to a right branch. Instead of searching the tree left to right, LDS searches
the paths of the tree in increasing order of the number of right branches, or
discrepancies with the heuristic recommendation. The �rst path it generates

25



is the leftmost, as in depth-�rst search. Then, however, it searches all those
paths with one right branch in them, followed by those paths with two right
branches, etc. This results in a di�erent search order than depth-�rst search.
For example, the path that goes right from the root and then left at every
remaining branch is generated during the �rst iteration of LDS, rather than
after the entire left subtree has been searched as in depth-�rst search.

Searching the tree in this order involves some overhead relative to depth-
�rst search[13]. Thus, in the cases where no perfect partition exists, and
the entire tree must be searched, depth-�rst search is preferable. However,
in cases where there is a perfect partition, LDS often �nds it faster than
depth-�rst search, and hence is more e�cient. Furthermore, in those di�cult
problem instances where �nding an optimal solution is not practical, LDS
oftens �nds better solutions faster than depth-�rst search. See [13] for some
experimental results with this algorithm on number partitioning.

9 Stochastic Approaches

There have been at least three studies applying stochastic algorithms to
number partitioning, none of which can guarantee optimal solutions. Johnson
et al[8] applied simulated annealing to the problem, but found that it was not
competitive with even the Karmarkar-Karp heuristic solution. Ruml et al[15]
applied various stochastic algorithms to some novel encodings of the problem,
but their best results outperform the KK solution by only three orders of
magnitude, compared to the seven orders of magnitude CKK achieves in
less than an hour. Jones and Beltramo[9] applied genetic algorithms to the
problem, but don't mention the Karmarkar-Karp heuristic. Their technique
fails to �nd an optimal solution to the single problem instance they ran, while
the KK solution to this instance is optimal.

10 Subset Sum Problem

Given a set of integers, and a constant c, the subset sum problem is to �nd
a subset of the integers whose sum is exactly c. We can reduce this problem
to the two-way partition problem, and hence apply CKK to this problem as
well. Let s be the sum of all the integers. If c is less than s=2, use s� c for c.

26



Add a new integer d such that (s+d)=2 = c, or d = 2c�s. If this augmented
set can be perfectly partitioned with a di�erence of zero, then the subset
of the perfect partition that does not contain d is a subset of the original
numbers whose sum is exactly c, and hence a solution to the subset sum
problem. Conversely, if this augmented set cannot be perfectly partitioned,
then there is no subset of the original numbers that sum to exactly c, and
hence no solution to the subset sum problem.

11 Generalization: A New Problem Space
for Combinatorial Optimization

Most algorithms for combinatorial problems search one of two di�erent prob-
lem spaces. The �rst, searched by CGA for example, is a constructive space
where each node is a partial solution, and the operation is to make an assign-
ment to another element of the problem, in this case assign a new number to
one of the subsets. In the second space, typically searched by the stochastic
methods described above, each node is a complete solution, and the opera-
tors are to change one complete solution into the other. The space searched
by the CKK algorithm is neither of these, however, and represents a new
problem space which is applicable to other combinatorial problems as well.
While it appears to be a constructive space for number partitioning, the op-
erators are not to assign a number to a subset, but rather commit to either
separating two numbers, or combining them together into the same subset.

To see the generalization of this idea, note that a solution to a two-way
number partitioning problem can be represented as a bit string, with one bit
for each number, the value of which speci�es which subset it is assigned to.
While CGA successively assigns the values of these bits one at a time, CKK
decides at each point that two bits will either have the same value or di�erent
values, without making an explicit assignment. When n � 1 such decisions
have been made, for every pair of bits we know whether they have the same
or di�erent values, and only two possible complete solutions remain, which
are complements of each other, and equivalent in this case.

The solutions to many other combinatorial problems can be represented
as bit strings as well, and the same space could be searched. For example, the
graph bisection problem is to partition the nodes of a graph into two equal

27



size subsets, so that the number of edges that go from a node in one subset
to a node in the other is minimized. Clearly any solution can be represented
by a bit string, with one bit for each node, and the space searched by CKK
could be searched here as well. As another example, consider the problem
of boolean satis�ability. Any solution can be represented as a bit string,
with a bit for each variable. Again, we could search a space where at each
point we decide that two variables will have the same or di�erent values.
We leave for further research the question of whether searching such a space
is worthwhile in these other problems, and merely claim that this approach
suggests an entirely new problem space for a wide variety of combinatorial
optimization problems.

12 Summary and Conclusions

The main contribution of this paper is to extend an elegant and e�ective
polynomial-time approximation algorithm for number partitioning, due to
Karmarkar and Karp, to a complete algorithm, CKK. The �rst solution it
�nds is the KK heuristic solution, and as it continues to run it �nds bet-
ter solutions, until it eventually �nds and veri�es an optimal solution. For
problems with less than 100 numbers, or for problems where the numbers
have low precision, there exist more e�cient algorithms. However, for large
problem instances with high precision, which are the most di�cult to solve,
CKK is more e�cient than the complete greedy algorithm (CGA), the best
existing alternative. When a perfect partition exists, CKK outperforms CGA
by orders of magnitude. We showed results for both two-way and three-way
partitioning. In practice, two-way partitioning problems of arbitrary size can
be solved if the numbers are restricted to no more than twelve signi�cant dig-
its of precision, while arbitrary-sized three-way partitioning problems can be
optimally solved with six signi�cant digits. For large problems with higher
precision values, CKK can be run as long as time is available, returning the
best solution found when time runs out.

What contribution does this work make beyond the speci�c problem of
number partitioning? First, CKK is directly applicable to the subset sum
problem, and may apply to other related problems as well. Secondly, it
presents an example of an approach that may be e�ective on other combi-
natorial problems. Namely, we took a good polynomial-time approximation

28



algorithm, and made it complete, so that the �rst solution found is the ap-
proximation, and then better solutions are found as long as the algorithm
continues to run, eventually �nding and verifying an optimal solution. We
refer to such an algorithm as a complete anytime algorithm. Thirdly, it rep-
resents an example of a new problem space for combinatorial optimization
problems. Most existing algorithms either construct a solution to a problem
incrementally, adding one element at a time to a single partial solution, or
perturb a complete solution into another complete solution. The former is
the case for CGA, and the latter is the approach taken by most stochastic
algorithms. The CKK algorithm, on the other hand, constructs a large num-
ber of partial solutions, and combines them together in all possible ways. In
the case of number partitioning, this latter strategy is much more e�ective,
and may be for other problems as well.

13 Acknowledgements

Thanks to Wheeler Ruml for introducing me to number partitioning, and the
Karmarkar-Karp heuristic. Thanks to Wheeler, Ken Boese, Alex Fukunaga,
and Andrew Kahng for helpful discussions concerning this research, and to
Pierre Hasenfratz for comments on an earlier draft. This work was supported
by NSF Grant IRI-9119825, and a grant from Rockwell International.

References

[1] Boddy, M., and T. Dean, Solving time-dependent planning problems,
in Proceedings of the International Conference on Arti�cial Intelligence
(IJCAI-89), Detroit, Michigan, August, 1989, pp. 979-984.

[2] Cheeseman, P., B. Kanefsky, and W.M. Taylor, Where the really hard
problems are, Proceedings of the International Joint Conference on Ar-
ti�cial Intelligence (IJCAI-91), Sydney, Australia, Aug. 1991, pp. 331-
337.

[3] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.

29



[4] Gent, I.P., and T. Walsh, The number partition phase transition, Tech-
nical Report RR-95-185, Department of Computer Science, University
of Strathclyde, Glasgow G1 1XH, Scotland, May, 1995.

[5] Harvey, W.D., and M.L. Ginsberg, Limited discrepancy search, in Pro-
ceedings of the International Joint Conference on Arti�cial Intelligence
(IJCAI-95), Montreal, Canada, Aug. 1995, pp. 607-613.

[6] Horowitz, E., and S. Sahni, Computing Partitions with Applications to
the Knapsack Problem, Journal of the A.C.M., Vol. 21, No. 2, April
1974, pp. 277-292.

[7] Huberman, B., and T. Hogg, Phase transitions in arti�cial intelligence
systems, Arti�cial Intelligence, Vol. 33, No. 2, Oct. 1987, pp. 155-171.

[8] Johnson, D.S., C.R. Aragon, L.A. McGeoch, and C. Schevon, Optimiza-
tion by simulated annealing: An experimental evaluation; Part II, graph
coloring and number partitioning, Operations Research, Vol. 39, No. 3,
1991, pp. 378-406.

[9] Jones, D.R., and M.A. Beltramo, Solving partitioning problems with
genetic algorithms, in Belew, R.K., and L.B. Booker (Eds.), Proceedings
of the Fourth International Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, Ca., 1991, pp. 442-449.

[10] Karmarkar, N., and R.M. Karp, The di�erencing method of set parti-
tioning, Technical Report UCB/CSD 82/113, Computer Science Divi-
sion, University of California, Berkeley, Ca., 1982.

[11] Karmarkar, N., R.M. Karp, G.S. Lueker, and A.M. Odlyzko, Probabilis-
tic analysis of optimum partitions, Journal of Applied Probability, Vol.
23, 1986, pp. 626-645.

[12] Korf, R.E., From approximate to optimal solutions: A case study of
number partitioning, Proceedings of the International Joint Conference
on Arti�cial Intelligence (IJCAI-95), Montreal, Canada, Aug. 1995, pp.
266-272.

30



[13] Korf, R.E., Improved limited discrepancy search, Proceedings of the
Thirteenth National Conference on Arti�cial Intelligence (AAAI-96),
Portland, OR, Aug. 1996, pp. 286-291.

[14] Mitchell, D., B. Selman, and H. Levesque, Hard and easy distributions
of SAT problems, Proceedings of the Tenth National Conference on Ar-
ti�cial Intelligence (AAAI-94), San Jose, Ca., July 1992, pp. 459-465.

[15] Ruml, W., J.T. Ngo, J. Marks, S. Shieber, Easily searched encodings
for number partitioning, to appear, Journal of Optimization Theory and
Applications, vol 89, number 2, 1996.

[16] Schroeppel, R., and A. Shamir, A T = O(2n=2); S = O(2n=4) algorithm
for certain NP-Complete Problems, SIAM Journal of Computing, Vol.
10, No. 3, Aug. 1981, pp. 456-464.

[17] Yakir, B., The di�erencing algorithm LDM for partitioning: A proof of
a conjecture of Karmarkar and Karp, Mathematics of Operations Re-
search, Vol. 21, 1996, pp. 85-99.

[18] Zhang, W., and R.E. Korf, A study of complexity transitions on the
asymmetric traveling salesman problem, Arti�cial Intelligence, Vol. 81,
March 1996, pp. 223-239.

31


