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Abstract—Direct Memory Access (DMA) interfaces are a com-
mon and important component of Hardware/Software (HW/SW)
interfaces between peripheral devices and their device drivers.
We present a HW/SW co-validation framework to validate DMA
interface implementations of a device and its driver. This frame-
work employs a virtual prototype of the device as a reference
model and performs co-validation in two stages: (1) conformance
checking which checks the DMA interface conformance between
the device and its virtual prototype; (2) property checking which
checks device/driver interactions across the DMA interface. In
conformance checking, the virtual prototype infers the device
state transitions by taking the same driver request sequence to
the device. Property checking verifies system properties over the
device state transitions exposed through the virtual prototype.
This framework assists HW/SW integration validation by detect-
ing DMA interface bugs in both devices and drivers. Furthermore,
we have developed three key techniques: capture-on-write policy,
partial capture, and environmental input prediction, to address
two major challenges in scaling the framework: DMA capture
overhead and imprecise environmental input simulation. We have
applied this approach to four Ethernet adapters, discovering
12 serious DMA interface bugs from the devices, their virtual
prototypes and their drivers. The results demonstrate that our ap-
proach has major potential in facilitating HW/SW co-validation.

I. INTRODUCTION

Post-silicon validation is a critical stage in the development
cycle of computing systems. In this stage, not only hardware
silicon validation is conducted, but also hardware/software
(HW/SW) integration validation. A recent study [2] indicates
that the cost of HW/SW integration validation has increased
significantly. As the complexities of systems grow, there are
several key challenges in the post-silicon integration validation:

1) Lack of HW/SW interface observation. HW/SW
integration validation often relies on testing the en-
tire system with high-level application test scenarios.
However, HW/SW interfaces are often not sufficiently
observed and certain interface bugs escape detection.

2) Difficulty in attributing HW/SW interface bugs.
When a bug is discovered in HW/SW integration
validation, it is often unclear if it is a hardware bug
or a software bug due to the close involvement and
interaction of both hardware and software.

3) Difficulty in debugging HW/SW interfaces. Hard-
ware interacts with its control software frequently,
producing a huge number of I/O events. To trou-
bleshoot, the engineers usually have to sift through
thousands of I/O events and analyze them manually.

Given the ubiquity and seriousness of these challenges, it
is highly desired to develop systematic methods to validate

HW/SW interfaces and automatically detect and analyze inter-
face bugs. For most peripheral devices, I/O interfaces based
on Direct Memory Access (DMA) are a critical part of their
HW/SW interfaces. For example, in Intel EERPO100 Ethernet
adapter specification [11], 25% of all pages describe the
DMA interface implementations. Therefore, DMA interface
validation is a critical task in HW/SW co-validation.

Recently, virtual prototyping has emerged as a promising
technique to enable early software development. A virtual
prototype is a system-level, executable software model of a
hardware device with full observability. The device interface
modeled by the virtual prototype is required to be functionally
equivalent to that of the silicon device. Thus, virtual prototypes
have major potential in facilitating HW/SW co-validation.

In this paper, we present a HW/SW co-validation frame-
work for validating the DMA interface of a device and its
driver. We utilize the virtual prototype of the device as a refer-
ence model in validating the DMA interface. The framework
conducts co-validation in two stages: conformance checking
and property checking. Conformance checking checks the
DMA interface conformance between the device and its vir-
tual prototype, thereby validating the DMA interface imple-
mentations of both. The general work flow of conformance
checking has three steps: (1) recording the driver requests to
the device and the device interface state before each request;
(2) executing the virtual prototype with the recorded driver
request sequence; (3) checking if there are any inconsistencies
in interface states between the device and the virtual prototype.
Through conformance checking, the virtual prototype shadows
the device execution. Property checking leverages the virtual
prototype to expose the device state transitions and verifies
the properties related to the device/driver interactions across
the DMA interface. By checking the properties, invalid driver
inputs to the DMA interface are detected.

In general, a device interface includes interface regis-
ters and the DMA interface. Previous work [15] present
an approach to conformance checking over device interface
registers. In our framework, we extend this approach to
conformance checking over both interface registers and the
DMA interface. Our extended approach detects not only DMA
interface bugs but also new bugs in interface registers whose
values have dependencies on DMA interface state. However,
the straightforwardly extended conformance checking is not
scalable to complicated device designs due to two limitations:

1) Large overheads of recording DMA interface
states. A DMA interface is essentially a shared
memory between the device and its driver. The size of



the DMA interface can be fairly large. For example,
the Intel e1000 Ethernet adapter has 8 MB DMA
memory. Therefore, recording the DMA interface
state, i.e., DMA memory state, under each driver
request may heavily degrade system performance.

2) Missed bugs due to imprecise environmental input
simulation. A large part of DMA-based I/O involves
handling the environmental inputs, e.g., receiving
data in an Ethernet adapter. As conformance checking
does not record environmental inputs, it cannot simu-
late the DMA operations under environmental inputs
precisely on the virtual prototype. As a result, some
DMA interface bugs are often missed (cf. Section IV).

We present three key techniques, addressing the challenges
above: (1) record-on-write policy which records the DMA
interface state only when it is updated; (2) partial record
which records part of a FIFO ring-based DMA memory instead
of the complete ring; (3) environmental input prediction
which predicts when the device receives inputs from its ex-
ternal environment, thereby facilitating precise simulation of
the device behaviors on the virtual prototype. The first two
techniques reduce recording overheads. The last helps discover
DMA interface bugs related to environmental inputs.

We have applied our framework to four Ethernet adapters
and their drivers using their virtual prototypes from QEMU [4].
Our approach has discovered 12 bugs in DMA interface
implementations of the devices, their virtual prototypes, and
their drivers. Moreover, the techniques for reducing recording
overheads make our framework applicable to two devices with
complicated designs.

In summary, this paper makes following key contributions:

1) The paper presents a HW/SW co-validation frame-
work for DMA interface implementations of devices
and their drivers using their virtual prototypes.

2) Besides validating the DMA interface implementa-
tions, our extended conformance checking further
validates interface registers related to the DMA in-
terface (see details in Section III-C).

3) The three key optimizing techniques make our frame-
work scalable and effective on real industry designs.

Outline. The balance of this paper is organized as follows. Sec-
tion II introduces the relevant background concepts. Section III
and Section IV present our approach and three optimizations.
Section V reports our experiment results. Section VI discusses
related work. Section VII concludes and discusses future work.

II. BACKGROUND

A. QEMU Virtual Devices

A virtual prototype is the software implementation of a
hardware peripheral device and is usually integrated into a
virtual platform, e.g., QEMU virtual machine [4]. In this paper,
we use QEMU virtual devices as virtual prototype examples;
nonetheless, other virtual prototypes have similar structures.

A QEMU virtual device is composed of the device state
and device module functions. The device state models the in-
terface and internal registers of the device. The device module
functions simulate the device functionalities. Figure 1 shows

excerpts from the QEMU virtual device of Intel eepro100
Ethernet adapter. Function eepro100 write1 and function
nic receive are module functions, modeling how the device
responds to the driver request and receives packets respectively.

typedef struct EEPRO100State_st {
PCIDevice dev;
uint8_t mem[PCI_MEM_SIZE];
......

} EEPRO100State;

static void
eepro100_write1(EEPRO100State * s,

uint64_t addr, uint8_t val)
{

s->mem[addr] = val;
eepro100_write_command(s, val);
......

}

static ssize_t
nic_receive(VLANClientState *nc,

const uint8_t *buf, size_t size)
{

... ...
}

Fig. 1: Excerpts from QEMU eepro100 virtual device

Categories of Device Modules. The modules in a virtual
prototype fall into two categories: (1) the modules responding
to driver requests; (2) the modules handling external environ-
ment inputs. We refer to them as Command Module (CM)
and Environment Module (EM) respectively, e.g., function
eepro100 write4 is a CM and function nic receive an EM.

B. Conformance Checking over Interface Registers

This section reviews a previous approach [15] to con-
formance checking over device interface registers between a
device and its virtual prototype. Our new framework follows a
similar work flow and extends it to checking DMA interfaces.

1) Symbolic execution: Conformance checking utilizes
symbolic execution [13] to simulate the virtual prototype. It
leverages symbolic execution to overcome the limited observ-
ability of hardware silicon. In HW/SW integration validation,
the device internal registers are usually not observable. Con-
formance checking models them using variables with symbolic
values when replaying the recorded driver request sequence on
the virtual prototype. In this way, symbolic execution covers
all the possible values of internal registers.

2) Conformance definitions: The device interface state is
defined as a set of interface registers with their values and the
device internal state is defined as a set of internal registers with
their values. A virtual prototype state V is modeled as a pair
〈VI , VN 〉, where VI is the interface state and VN is the internal
state. A device state S has a same structure: 〈SI , SN 〉, where
SI and SN are the device interface and internal states. The
registers in SN and VN are assigned as symbolic values since
their values are unknown. The values in SI are all concrete
while the values in VI can be either symbolic or concrete.

Definition 1 (Interface state conformance): a device inter-
face state SI and a virtual prototype interface state VI conform
to each other if SI ∈ VI where SI is concrete while VI

symbolic and is considered as a set of concrete states.



3) Conformance checking framework: As illustrated in
Figure 2, the conformance checking framework has two stages,
runtime recording and offline checking. In the runtime record-
ing stage, the trace recorder records a device trace: a driver
request sequence to the device and the device interface state
before each driver request is issued. In the offline checking
stage, the conformance checker symbolically executes the
virtual prototype by taking the recorded device trace, checks
the interface register conformance after processing each driver
request, and reports the interface register inconsistencies.

OS

Fig. 2: Conformance checking framework

While processing a driver request D with symbolic ex-
ecution, the conformance checker produces a set of virtual
prototype states. We extract their interface states and denote
the set of interface states as G = {gi | 0 ≤ i ≤ n}.
Conformance checking checks the conformance between G
and the corresponding device interface state SI produced under
D. Definition 2 defines their conformance. After checking
the conformance, the conformance checker assigns the device
register values to the corresponding registers in the virtual
prototype, then moves to the next driver request.

Definition 2 (Device Conformance): Given G = {gi | 0 ≤
i ≤ n} and S, the virtual prototype and the device conform to
each other at D if ∃gi ∈ G where 0 ≤ i ≤ n, SI ∈ gi.

4) Non-deterministic scheduling: When the driver sends a
sequence of requests to the device, there might be environ-
mental inputs arriving at the device between two consecutive
driver requests. Therefore, while replaying the device trace, the
conformance checker must explore the device behavior under
the environmental inputs on the virtual prototype to avoid
reporting false alarms. To achieve this goal, the conformance
checker makes a non-deterministic choice which has two
branches: invoking EM and not invoking EM. Symbolically
executing the virtual prototype captures both possibilities:
environmental inputs arrive and no environmental input arrives.
Non-deterministic scheduling eliminates false alarms but might
miss DMA interface bugs. We present environmental input
prediction which addresses this shortcoming in Section IV.

III. OVERVIEW

A. Preliminaries

We first briefly review the work flow of DMA-based I/O.
A DMA interface is a piece of shared memory between the
device and its driver and can be accessed by both. The device
and the driver exchange data and commands through the shared
memory. A data structure called descriptor is typically used in
the DMA work flow. The work flow of a device interacting
with its driver through the DMA interface is as follows.

1) The driver builds a descriptor d which contains a
command c. The driver puts d into the DMA interface
and updates a special interface register Reg of the
device to notify the device that there is a command
in the DMA interface.

2) Once Reg is updated, the device reads the descriptor
d from the DMA interface and executes the task
specified by c.

3) When the device completes the task, it updates the
status of d and writes d back to the DMA interface.
It may also update some relevant interface registers.

From this work flow, it can be observed that two aspects of the
DMA interface are validated: (1) the device implementation of
the DMA interface that handles the DMA inputs; (2) the driver
implementation that produces DMA inputs.

B. DMA Interface Validation Framework

As Figure 3 shows, our HW/SW co-validation framework
is built on the conformance checking work flow. It takes the
virtual prototype and a trace file generated from the trace
recorder, and outputs an inconsistency report and a property
failure report. It consists of two major components as follows.

S2
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Fig. 3: HW/SW co-validation framework for DMA interfaces

• Conformance checker. Conformance checking over
interface registers in II-B are extended to checking
the conformance of both interface registers and DMA
interface states between the device and its virtual
prototype. The conformance checker detects errors not
only in interface registers but also in DMA interfaces.
As the conformance checker simulates the device
behaviors over the virtual prototype and checks their
conformance under each driver request, the virtual
prototype essentially shadows the device execution
trace and keeps track of the device state transitions.
The device state transitions exposed by the virtual pro-
totype provides the foundation for property checking.

• Property checker. Property checker verifies the prop-
erties related to device/driver interactions across the
DMA interface. It observes the device state transitions
through the virtual prototype and detects if any prop-
erty violation is possible over the state transitions. A
property failure often indicates that there is an invalid
DMA driver input (see more details in Section III-D).



C. Conformance Checking over DMA Interfaces

This section presents how we extend conformance check-
ing to support the DMA interface validation. The previous
approach to conformance checking (cf. Section II-B) cannot
validate DMA interface implementations.

1) Limitations of previous approach: The aim of validating
DMA interface implementations is to detect two types of bugs:
those exactly in the DMA interface, which we refer to as DMA
interface bugs; and those in the interface registers whose
values have dependencies on the DMA interface state, which
we refer to as DMA register bugs. The previous approach
does not record the DMA interface state at runtime. So it
clearly misses DMA interface bugs. When executing the virtual
prototype, this approach models the DMA interface state with
symbolic values. So it also misses DMA register bugs.

We use an example to illustrate how such a bug escapes.
Figure 4 shows how eepro100 processes a DMA driver com-
mand. Function pci dma read fetches a descriptor which
is stored in s → cu desc. As labels P1 and P2 indicate,
depending on different commands, the device updates the CU
state with different values and fires interrupts.

... ...
pci_dma_read(cb_address, &s->cu_desc, size);
... ...

P1: if (s->cu_desc & COMMAND_EL) {
// CU becomes idle, fire interrupt
set_cu_state(s, cu_idle);
eepro100_cna_interrupt(s);

}

P2: else if (s->cu_desc & COMMAND_S){
// CU becomes suspended, fire interrupt
set_cu_state(s, cu_suspend);
eepro100_cna_interrupt(s);

}
... ...

Fig. 4: DMA interface implementations of eepro100 VD

The variable s → cu desc is assigned symbolic values
during symbolic execution of the eepro100 virtual device
(VD). As a result, symbolic execution of eepro100 virtual
device covers all the three paths in Figure 4. We denote the
three paths as p1, p2, and p3. The path p1 follows the code
where the branch condition at P1 is true. The path p2 follows
the code where the branch condition at P1 is false and branch
conditon at P2 is true. The path p3 follows the code where
both of the two branch conditions are false.

Assume that there is a DMA register bug, when the
device follows p2, it fails to update the cu state with
cu suspend. When executing the virtual prototype, the confor-
mance checker also explores p3 where the cu state is consistent
with the cu state in the device. According to Definition 2, the
conformance checker does not discover this update failure.
Instead, the extended approach uses concrete DMA inputs,
therefore, only p2 is explored and the cu state is updated to
cu suspend, which is inconsistent with the device cu state.
The bug is discovered. The evaluation results show that our
extended approach detected several bugs both in the DMA
interface and DMA registers (cf. Section V).

2) Our approach: Our approach follows a similar work
flow as the previous approach, but makes three key extensions:

1) Record concrete DMA interface states. In addition
to the interface registers, the trace recorder also
records the DMA interface state at runtime.

2) Extend Device State Representation. We define
a DMA interface state as a set of DMA interface
variables with their values. Given V = 〈VI , VN 〉 and
S = 〈SI , SN 〉 defined in Section II-B2, we extend
the virtual prototype state as VE = 〈VEI , VN 〉, where
VEI = 〈VI , VM 〉, VM represents the virtual prototype
DMA interface state. Similar as VI , the values of VM

can be either symbolic or concrete. We define the
extended silicon device state as SE = 〈SEI , SN 〉,
SEI = 〈SI , SM 〉, where SM represents the device
DMA interface state. The values of SM are concrete.

3) Report inconsistent DMA interface. The confor-
mance checker checks the conformance between VEI

and SEI in the same manner as Definition 1 and
Definition 2. If the virtual prototype and the device
do not conform, the conformance checker outputs
inconsistency reports which contains inconsistencies
of both interface registers and the DMA interface.

Remarks. The previous approach is sound theoretically. How-
ever in practice, it might have false positives, i.e., false alarms.
The virtual prototype might have unbounded loops which
make symbolic execution non-terminating. A loop bounding
algorithm is used to set constant bounds for these loops
dynamically. This algorithm may reduce possible behaviors
of the virtual prototype; therefore, producing false positives.
Our approach faces the same challenge. However, the chance
of false positives is lower than the previous approach in both
DMA interface and interface register conformance checking
results. In the previous approach, most of false positives are
caused by bounding two kinds of loops: (1) ones whose loop
conditions depend on the environmental inputs; (2) the others
whose loop conditions depend on the DMA interface values.
Our approach does not record environmental inputs; therefore,
we may still get false positives on the first kind of loops.
However, as we record concrete DMA interface values, our
approach eliminates false positives caused by the second kind.

D. Property Checking

Through conformance checking, the virtual prototype shad-
ows the device execution and exposes the device state transi-
tions to the property checker. The property checker verifies
properties over the device state transitions. By verifying such
properties, the property checker detects the invalid DMA inputs
from the driver. According to device specifications, there are
two types of properties related to DMA driver inputs: (1)
stateless properties, the properties without involving device
states; (2) stateful properties, the properties related to the
device state. As examples, we present two properties specified
in the eepro100 specification [11] as follows.

Property 1: When the driver issues a DMA descriptor, it
should always clear the completion C bit of the descriptor.

Property 2: When the Receive Unit (RU) is in the status
of no resources, the driver should always set the S bit of the
DMA descriptor to 1, starting to discard incoming packets.



Property 1 is a stateless property and Property 2 is a stateful
property. We use them as examples to present the design and
implementation of the property checking infrastructure.

1) Virtual prototype instrumentations: As we leverage the
virtual prototype to infer the device state transitions, the virtual
prototype can be directly used as a validation vehicle. For
property checking, we instrument the virtual prototype with
assertions generated from specified properties. While the con-
formance checker simulates the device behaviors on the virtual
prototype, the property checker detects if any assertion fails
during the simulation. Currently we instrument the assertions
manually. In future, we will develop a method that allows the
users to specify assertions in a certain format and automatically
instruments the assertions. Figure 5 shows the two assertions
corresponding to Properties 1 and 2 respectively. A special API
function dcc assert is used to specify these assertions.

... ...
pci_dma_read(address, &s->ru_desc, size);

// Assertion to enforce property 1
dcc_assert (!s->ru_desc & STATUS_C);

// Assertion to enforce property 2
if (s->ru_state == ru_no_resource)

dcc_assert(s->ru_desc & COMMAND_S);
... ...

Fig. 5: Assertions instrumented in eepro100 virtual device

2) Detecting assertion failures: The property checker eval-
uates the assertions when the conformance checker executes
the virtual prototype. Symbolic execution of the virtual pro-
totype usually explores multiple program paths. By exploring
each path, a virtual prototype interface state is generated. If
a path leading to a virtual prototype interface state which
conforms to the device state, we denote such a path as a
conforming path. Definition 3 defines the condition when the
property checker detects a property violation.

Definition 3 (Property violations): Given a property ψ, a
set of conforming paths P = {pi | 0 ≤ i ≤ n} explored under
a driver request D, ψ is violated under D if ∀pi ∈ P , the
assertion failure of ψ is reachable on pi.

The set P represents all the possible device behaviors under
the driver request D. Only if all of these possible behaviors
lead to the violation of the property ψ, the property checker can
ensure there is an invalid DMA input triggering the violation.

Contributions. Our property checking has a major advantage
in verifying stateful properties. In the state of the art driver
implementations, to runtime verify a property related to the
device states, the driver has to be instrumented to keep a partial
device state machine where only property-related states and
corresponding state transitions are modeled. This approach has
three limitations: (1) modeling a state machine for every prop-
erty incurs redundant human efforts; (2) ad-hoc state machine
instrumentation is intrusive to the driver implementation; (3)
the state transitions inferred by the driver are sometimes out
of sync with the real device state transitions, as the driver
merely checks the real device states. Our approach leverages
the virtual prototype to systematically model and maintain the
complete device state machine while the normal work flow
of the device/driver interface is not intervened. Furthermore,

through conformance checking, the virtual prototype is largely
guaranteed to be synchronous with the device.

Remarks. Our current implementation of property checking
has one limitation. When dealing with the stateful properties,
we only allow specifying the properties related to the device
interface state. Since the conformance checker only checks the
interface state conformance between the device and its virtual
prototype, there might be divergences in their internal states.
As a result, without ensuring the internal state conformance,
the driver violation related to the device internal state cannot
be deemed as a true violation. In future work, we will develop
algorithms to eliminate the internal divergence, so we can
check the properties related to the internal state.

IV. TECHNIQUES FOR CHECKING DMA INTERFACES

Our straightforwardly extended conformance checking over
DMA interfaces has two major challenges in scaling to real
industry designs. First, capturing DMA interfaces incurs a
large runtime overhead. For example, when we evaluate our
approach on Intel e1000 Ethernet adapter, the computer system
hangs and cannot function normally when the trace recorder
captures the DMA interface state. In Section IV-A and Sec-
tion IV-B, we present two techniques to address this problem.
Second, the conformance checker may still miss DMA bugs
related to handling environmental inputs as it cannot predict
when environmental inputs were handled. We give an example
and present our solution in Section IV-C.

A. Record-on-write Policy

The trace recorder records the DMA interface state before
each driver request is issued. However, in the device, the DMA
interface is not updated at every driver request, instead, the
DMA interface state remains the same over a significant num-
ber of consecutive driver requests. Therefore, it is unnecessary
to record the DMA interface state before each driver request.
We develop a technique, the record-on-write policy, to record
the DMA interface only when it is updated.

1) Identifying DMA interface updates: The DMA interface
is only updated by the device and its driver. There are three
scenarios where the updates occur: (1) the driver issues a
command via the DMA interface; (2) the device outputs to
the external environment; (3) the device receives environmental
inputs. In fact, the trace recorder only needs to record the DMA
interface under these scenarios. We show how to identify these
scenarios respectively.

• The first and second scenarios are all triggered by issu-
ing driver requests. Since the trace recorder intercepts
all driver requests, by analyzing these driver requests,
it can identify the first two scenarios.

• For the third scenarios, we use the technique presented
later in Section IV-C to identify when the device
receives environmental inputs.

2) Associating DMA interface states with driver requests:
Record-on-write leads to a potential problem: for some driver
requests, there is no DMA interface state associated. However,
when we replay the device trace on the virtual prototype, the
virtual prototype may still read DMA memory even it does



not update it. Therefore, for these driver requests without
the associated DMA interface state, we need to provide a
valid DMA memory to the virtual prototype. To address
this problem, we implement a “copy-on-write” policy while
replaying the device trace. The DMA interface state associated
with the current driver request will be automatically inherited
by the next driver request, if there is no “write” on the DMA
interface occurs between these two consecutive driver requests.
When there is a write operation on the DMA interface, the next
driver request uses its own associated DMA interface state.

B. Partial recording of DMA interface

A DMA interface of a device is not a flatten memory.
Instead, it is typically implemented as a ”ring buffer” data
structure. As Figure 6 illustrates, the device and the driver keep
two indices called “head” and “tail”. When the driver allocates
a unit of memory to the device, it increments “tail”. Similarly,
when the device consumes a unit of memory, it increments
“head”. The memory between “head” and “tail” is considered
as valid memory. The device fetches DMA descriptors only
from the memory units between “head” and “tail”.

DMA memory
as a ring buffer

Head (extract)

Tail (insert)

4
un

its
in

FI
FO

Fig. 6: Ring buffer structure of DMA memory

Since the device only touches the valid memory defined
by “head” and “tail”, when the trace recorder records a DMA
memory, it does not need to record the entire memory. Instead,
it only records the valid memory. This way, we further reduce
the overhead incurred by DMA interface state recording.

C. Environmental input prediction

1) Motivation: As illustrated in Section II-B4, upon
each driver request, the conformance checker uses a non-
deterministic choice to decide invoking EM or not. In this way,
the virtual prototype can capture the device behaviors under
two possible scenarios: (1) environmental inputs arrive; (2)
no environmental input. However, there is a potential to miss
DMA interface bugs. We present such a concrete example.
When Intel eepro100 receives a packet from its external
network, according to its specification, after processing the
packet, the device will set its status bit to value 1 in the DMA
interface, indicating the completeness of packet reception.
Assume that the status update fails for some reason, as a
result, the status bit remains 0 in the DMA interface (see
Figure 7-(a)). However, this status bit has the same value as
no external input arrivals. In the virtual prototype, as Figure 7-
(b) shows, there are two paths including both reception (EM)
and non-reception (Not EM), the conformance checker covers
both paths by symbolically executing the virtual prototype.
Therefore, although the DMA interface update fails, it is still
considered valid. This update failure will not be discovered.

DMA failure! 

Status = 0 

Status = 0 

EM 

(a) Device Trace

Status = 0

Status = 0 Status = 1

EMNot EM

(b) Virtual Prototype Traces

Fig. 7: DMA bugs missed w/o environment input prediction

2) Solution: If the conformance checker knows when the
device receives environmental inputs while replaying the de-
vice trace, it can just invoke EM instead of trying both
branches. The bugs will not be missed. To realize this feature,
we develop a technique, environmental input prediction. Given
a device trace T generated from the device, environmental
input prediction determines when the device receives envi-
ronmental inputs. We first summarize the typical work flow
how a device receives inputs from the external environment.
When environmental inputs arrives, the device processes these
inputs. After the device finishes processing, it updates the
corresponding status of a descriptor in the DMA interface.
Moreover, it fires an interrupt to notify the driver by updating
the interrupt register Rintr with a specific value V alintr.

In a device trace T , given two consecutive driver requests
Di and Di+1 (0 ≤ i), there are two device interface states SIi
and SIi+1 which are recorded before Di and Di+1 respectively.
If the value of Rintr in SIi is not V alintr and the value of
Rintr in SIi+1

is V alintr, the device receives environmental
inputs between Di and Di+1. We denote such a pattern of
Rintr value change as P . When the conformance checker
replays T on the virtual prototype, if P is detected in Di

and Di+1, the conformance checker only invokes EM when it
processes Di; otherwise, it does not invoke EM. In this way,
environmental input prediction helps avoid missing certain
bugs in the DMA interface.

V. EVALUATION

A. Experiment Setup

We have performed our experiments on a workstation with
a dual-core Intel Pentium D Processor with 4GB of RAM and
Ubuntu Linux OS with 64-bit kernel version 2.6.38. We applied
our framework to four Ethernet adapters and their virtual
prototypes, QEMU virtual devices. Information about these
devices and their virtual devices are summarized in Table II.
The virtual device size is measured in Lines of Code (LoC).

B. Bug Detection

Our framework has detected 12 new bugs summarized in
Table I. There are 2 device bugs, 8 virtual prototype bugs, and
2 driver bugs. Since we conducted our experiments over the



TABLE I: Summary of Device, Virtual Prototype, and Driver Bugs

No. Bug Description Num. Bug Source Bug Types Distribution
1 Update reserved bits of the DMA interface 2 Driver Stateless Property Violation eepro100, e1000

2 Update reserved bits in the DMA interface 2 Device DMA interface bug e1000, bcm5751

3 Fail to fire required interrupt when DMA operations have errors 1 Virtual prototype DMA register bug eepro100

4 Fail to fire required interrupt when the DMA descriptor number is low 1 Virtual prototype DMA register bug e1000

5 Fail to check if DMA data is out-sync as specification requires 1 Virtual prototype DMA register bug bcm5751

6 Incorrectly update the DMA interface 2 Virtual prototype DMA interface bug bcm5751

7 Fail to simulate the concurrency of processing DMA data 3 Virtual prototype DMA interface bug eepro100, e1000, bcm5751

TABLE II: Summary of Devices for Case Studies

Devices Virtual Device
Size (LoC) Basic Description

RealTek rtl8139 3544 RealTek 10/100M Ethernet Adapter

Intel eepro100 2178 Intel 10/100M Ethernet Adapter

Intel e1000 2099 Intel Gigabit Ethernet Adapter

Broadcom bcm5751 4519 Broadcom Gigabit Ethernet Adapter

stable products which have been released for many years, there
are only a few device bugs. However, the virtual prototype bugs
that we discovered are all common hardware design flaws.
Therefore, our approach has major potential in discovering
bugs in silicon prototypes including FPGAs and test devices.
All the driver bugs are discovered by our property checking.
Property checking verified 26 properties in total, of which there
are 9 stateless properties and 17 stateful properties.

Most of these bugs can cause serious problems. Two of
the interface register bugs are related to missing interrupts,
which often break down the normal driver work flow and even
cause driver and system crashes. DMA interface bugs cause
corrupted DMA memory, which can lead to driver misbehavior
as the driver may read incorrect status. A driver input with
invalid descriptors is potential to incur device misbehavior.

The results demonstrate that our framework is promising
in handling the three key challenges of HW/SW integration
validation presented in Section I. First, our framework is
effective to detect the design flaws in HW/SW interfaces. For
example, the discovered bug of updating the reserved bits in
the DMA interface, can be easily missed without observing
HW/SW interface. Second, our framework can easily identify
a HW/SW interface bug as a hardware bug or a software
bug. For example, an invalid driver input often appears like a
device bug as the device usually hangs under the invalid input.
By detecting the invalid input through property checking, the
framework clearly identifies this bug as a driver bug. Last
but not the least, detecting DMA register bugs shows that
our approach improves the effectiveness in validating device
interface registers.

C. Efficiency

In this section, we evaluate the efficiency of our recording
method with record-on-write policy and partial recording, in
terms of time and memory usages in the runtime recording
stage of the conformance checking work flow. The test cases
used in evaluation are described in Table III. All these test
cases heavily involve DMA I/O operations.

The test cases are issued under three configurations: (1)
No Recording (NR) mode: there is no recording conducted;
(2) Recording Everything (RE) mode: the recording method

TABLE III: Summary of Test Cases

Test Cases Description
Ping Ping another network interface

Small transfer Transfer a small file with size 2.4 MB

Large transfer Transfer a large file with size 3.2 GB

without the two proposed techniques, which records everything
in the DMA interface; (3) Record-on-write and Partial record-
ing (RP) mode: the method with record-on-write and partial
recording techniques. We set the NR mode as the baseline
and the performance of the NR mode is normalized to 1.
Figure 8 shows the ratios of the RE and RP modes comparing
to the NR mode. In Figure 8, no data is provided for the RE
mode in terms of e1000 and bcm5751 since the RE mode
incurs a large overhead and the system hangs. By applying
record-on-write and partial recording techniques in the RP
mode, recording DMA interface states can be successfully and
efficiently achieved.
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Fig. 8: Time and memory usages of test cases under Recording
Everything (RE) and Record-on-write and Partial recording
(RP) modes. The usages with no recording (NR) are normal-
ized to 1. Figure shows ratios of RE and RP comparing to
NR

The results demonstrate that our two optimizing techniques
make recording DMA interface states scalable to the devices
with complicated designs such as e1000 and bcm5751, both
Gigabit Ethernet adapters; for the devices such as eepro100
and rtl8139, both 10/100M Ethernet adapters, record-on-write
and partial recording also noticeably reduce the recording
overheads.



VI. RELATED WORK

Our work is related to post-silicon validation, HW/SW
interface assurance, and DMA validation. Post-silicon vali-
dation is performed on silicon prototypes and test devices.
A significant amount of research has focused on detecting
and localizing bugs in silicon chips. Several approaches [1],
[18], [20] have built hardware on-chip monitors to collect
hardware execution traces with internal signals. Assertion-
based verification [5], [10] and formal method [6] have been
used to analyze and debug the execution traces from on-
chip monitors. Our approach also works on detecting and
troubleshooting post-silicon bugs. Instead of validating internal
implementations of silicon hardware, we focus on validating
HW/SW interfaces.

There has been a lot of work on HW/SW interface
assurance at pre-silicon stage. HW/SW co-verification and
HW/SW co-simulation are two main streams of techniques. In
HW/SW co-verification, model checking [14], [16], [25], [17]
is widely used. It verifies properties by analyzing the interface
implementation statically; however, it often encounters the
state explosion problem. Our co-validation framework con-
ducts verification over the execution trace generated at runtime
which largely avoids the state explosion problem. Research on
co-simulation [3], [7], [8], [9], [19], [21], [23] typically utilizes
design models of the hardware and does not directly work with
the implementation of the hardware/software implementation.

We are not aware of work closely related to DMA interface
validation on the device side. Nevertheless, some research on
driver testing/verification [12], [22] validates DMA interfaces
from the driver side. A previous work [24] detects malwares
residing in DMA interface by verifying specific DMA oper-
ation properties. All these methods validate DMA interfaces
without considering device behaviors. Our approach is the first
attempt to validate the DMA interface implementations of both
hardware and software.

VII. CONCLUSIONS AND FUTURE WORK

We have presented a HW/SW co-validation framework to
validating the DMA interface implementations. Our two-staged
checking infrastructure helps detect errors in DMA interface
implementations of both a device and its device driver. We
discovered many bugs from devices, their virtual prototypes,
and their driver. Our validation framework has major potential
in addressing the key challenges of HW/SW integration vali-
dation. First, the framework records and validates the DMA
interface state; thus the errors in the DMA interface are
detected effectively. Second, the framework identifies both the
device and driver errors over the DMA interface thereby it can
easily attribute device/driver interface bugs as device or driver
bugs. Finally, our framework only requires minimum manual
efforts, which significantly saves validation human efforts.

Our future work will explore the following directions: (1)
extending property checking to validate both DMA driver
inputs and driver requests updating interface registers; (2)
adapting our framework to be an on-line monitoring approach,
instead of the offline checking approach that we have so far.
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