
Component-Based Hardware/Software Co-Verification ∗

Fei Xie
Dept. of Computer Science
Portland State University
Portland, OR 97207, USA

xie@cs.pdx.edu

Guowu Yang
Dept. of Computer Science
Portland State University
Portland, OR 97207, USA

guowu@cs.pdx.edu

Xiaoyu Song
Dept. of ECE

Portland State University
Portland, OR 97207, USA

song@ece.pdx.edu

Abstract

We present a novel component-based approach to hard-
ware/software co-verification of embedded systems using
model checking. Due to their diverse applications and of-
ten strict physical constraints, embedded systems are in-
creasingly component-based and include only the neces-
sary components for their missions. In our approach, a
component model for embedded systems which unifies the
concepts of hardware IPs (i.e., hardware components) and
software components is defined. Hardware and software
components are verified as they are developed bottom-up.
Whole systems are co-verified as they are developed top-
down. Interactions of bottom-up and top-down verification
are exploited to reduce verification complexity by facilitat-
ing compositional reasoning and verification reuse. Case
studies on a suite of networked sensors have shown that our
approach facilitates major verification reuse and leads to
order-of-magnitude reduction on verification complexity.

1 Introduction

Embedded systems are often mission-critical, deployed in
large quantity, and difficult to access after deployment.
Thus, they must be extensively verified. Due to the strict de-
sign constraints of embedded systems, to achieve better per-
formance, hardware and software components must closely
interact and hardware/software trade-offs must be exploited.
This demands hardware/software co-design and, therefore,
hardware/software co-verification of embedded systems.

Model checking [7] is a formal verification method that
has great potential in hardware/software co-verification. It
provides exhaustive state space coverage for the systems
being verified. A stumbling block to scalable application
of model checking to co-verification is the intrinsic com-
plexity of model checking. The number of possible states
and execution paths in a real-world system can be extremely
large, which requires state space reduction. Co-verification

∗This research was supported by Semiconductor Research Corporation,
Contract RID 1356.001.

of an embedded system involves its hardware and software,
which makes state space reduction even more challenging.

Due to their diverse applications and often strict physical
constraints, embedded systems are increasingly component-
based and include only the necessary components for their
missions. Component-based development introduces com-
positional structures and standard component interfaces into
embedded systems and promotes component reuse.

Compositional reasoning [1, 2, 14, 4], as applied in
model checking, is a powerful state space reduction algo-
rithm and accomplishes verification of a property on a sys-
tem by decomposing the system into components, checking
the component properties locally, and deriving the system
property from the component properties. Compositional
structures of embedded systems may greatly simplify ap-
plication of compositional reasoning to co-verification.

We propose a novel component-based approach to hard-
ware/software co-verification for building trustworthy em-
bedded systems. Embedded systems are structured follow-
ing a component model that unifies the concepts of hard-
ware IPs [11] (i.e., hardware components) and software
components [17]. In this model, verified properties of hard-
ware and software components are associated with the com-
ponents. Selection of components for reuse is based on their
functionalities and also their verified properties. A spe-
cial type of component, bridge component, is introduced,
which inter-connects hardware and software components
and bridges the hardware/software semantic gaps.

Our approach to co-verification of embedded systems is
a synergistic integration of bottom-up component verifica-
tion and top-down system verification. Hardware and soft-
ware components are verified as they are developed bottom-
up. Properties of a primitive component are directly verified
while properties of a composite component are verified on
its abstractions constructed from verified properties of its
sub-components. A system is verified top-down as it is de-
veloped via recursive decompositions into its components.
The decompositions reuse components as possible. Veri-
fied properties of the reused components are reused in con-
structing the abstractions for verifying properties of the sys-



tem or higher-level components. Our approach is based on
translation-based co-verification [22] where software and
hardware modules of an embedded system are translated
into a formal model-checkable language, integrated under
the target semantics, and model-checked. Translation-based
co-verification provides a common formal semantic basis
for conducting compositional reasoning and the basic veri-
fication mechanisms for discharging proof obligations.

Our approach has great potential for building trustworthy
systems by enabling effective co-verification. Case stud-
ies have shown that it achieves major verification reuse and
order-of-magnitude reduction on verification complexity.

The rest of this paper is organized as follows. In Sec-
tion 2, we provide the background of this work. We de-
fine the component model unifying hardware IPs and soft-
ware components in Section 3. In Section 4, we present our
component-based approach to co-verification and illustrate
it with case studies on a suite of networked sensors. We dis-
cuss related work in Section 5 and conclude in Section 6.

2 Background

2.1 Component-based development

A common trend in both hardware and software industries
is to develop systems via assembly of components [11, 17].
(In the hardware industry, component-based development
is also known as Intellectual Property (IP) based develop-
ment.) A main advantage of component-based development
is reuse of design and development efforts. As verification
becomes increasingly important in system development, it
is also desired to reuse verification efforts.

2.2 Translation-based co-verification

In [22], we have developed a translation-based approach to
co-verification of embedded systems using model checking.
Hardware and software modules of an embedded system are
automatically translated into the input formal language of a
state-of-the-art model checker. The semantics of hardware
and software specification languages are simulated by the
semantics of the target formal language. We interface the
formal models of hardware and software modules by insert-
ing a bridge module that bridges the gap between the hard-
ware and software semantics. The bridge module interacts
with the hardware and software modules following the hard-
ware and software semantics, respectively. It propagates
events across the hardware/software interface, for instance,
generating software messages or invoking procedures upon
hardware interrupts and producing hardware signals upon
value changes in certain software variables. The bridge
module is specified in a bridge specification language and
translated into the formal language. This approach has been
implemented for co-verification of software in Executable

UML (xUML) [15], an executable dialect of UML, and
hardware in Verilog [18]. The implementation integrates
two translation-based model checkers: FormalCheck [13]
and ObjectCheck [21], both based on the COSPAN model
checker [9]. FormalCheck is a commercial tool for hard-
ware verification. ObjectCheck was developed in our pre-
vious work for verification of software designs in xUML.
xUML has an asynchronous interleaving message-passing
semantics: a system consists of object instances interacting
via asynchronous message-passing. In a system execution,
at any moment only one object instance can progress.

2.2.1 Bridge specification

For translation-based co-verification of an embedded sys-
tem, a specification of the bridge module is required, which
specifies how to interface the software and hardware mod-
ules: (1) what software procedure calls or messages are
triggered by hardware interrupts; (2) what hardware vari-
ables are updated when a procedure call returns or a mes-
sage is received; (3) what variables in the software modules
are mapped to hardware signals; (4) what are the schedul-
ing policies for the software modules, for instance, interrupt
priorities. Translation of the bridge specification depends
on the software and hardware modules since it refers to se-
mantic entities in both software and hardware modules.

2.2.2 Unified property specification

In co-verification, a unified property specification language
for both hardware and software is needed. We have devel-
oped such a language for co-verification of software mod-
ules in xUML and hardware modules in Verilog. This lan-
guage is presented in terms of a set of property templates
that have intuitive meanings and also rigorous mappings to
ω-automata templates written in S/R [9], the input formal
language of COSPAN. Our property specification language
is linear time, with the expressiveness of ω-automata [12].
(In S/R, both systems and properties are formulated as ω-
automata.). The templates define parameterized automata.
New templates are formulated as needed by defining their
mappings into S/R. A property in this language consists of
(1) declarations of propositional predicates over semantic
entities in software and hardware modules, and (2) decla-
rations of temporal assertions. A temporal assertion is de-
clared by instantiating a property template: each argument
of the template is realized by a propositional expression
composed from the declared propositional predicates. (See
Section 3 for example properties in this language.)

2.3 Bottom-up verification of software components

In [20], we have developed a bottom-up approach to verifi-
cation of software components and systems composed from



these components. For a primitive component (a component
that is built from scratch), its properties are directly model-
checked. The properties of a composite component (a sys-
tem is also a composite component), instead of being di-
rectly verified on the component, are verified on its abstrac-
tions. The abstraction for checking a property on a compos-
ite component is constructed from verified properties of the
sub-components. A sub-component property is included in
the abstraction if and only if (1) it is related to the prop-
erty to be checked on the composite component by cone-of-
influence analysis [12, 7], (2) its assumptions are enabled,
i.e., implied by the properties of other sub-components and
the environment assumptions of the composite component,
and (3) it is not involved in circular reasoning among the
sub-component properties.

How to verify a property on a primitive component or
on the abstraction of a composite component depends on
the executable representation and the property specification
for the components. For instance, for a primitive compo-
nent specified in xUML and properties specified in the uni-
fied property specification language, the component and its
properties can be translated into S/R with ObjectCheck and
the properties can then be verified on the component with
COSPAN. For a composite component, if the properties of
the component and its sub-components are all specified in
the unified property specification language, a property of
the composite component can be verified on its abstraction
by translating both the property and the abstraction into S/R.

3 Unified Component Model

To define a unified component model for embedded sys-
tems, we start by examining an abstract, but representa-
tive architecture of embedded systems as shown in Fig-
ure 1. The software components of an embedded system

Embedded OS
(Hardware Components)

ASICs

(Software Components)

Generic Processors

Figure 1. Abstract Architecture

execute on generic processors while the hardware compo-
nents are implemented as Application Specific Integrated
Circuits (ASICs) which connect to the processors via buses.
The software and hardware components interact through an
embedded OS that also schedules the software components.

From the abstract architecture, we can derive a unified
component model as shown in Figure 2. An embedded
system is composed of a set of components. There are
three types of primitive components: software components,
hardware components, and bridge components. Bridge
components bridge the hardware/software semantic gap by
propagating events across the hardware/software boundary.

Component

Software

Component
Software

Component

Component
Software

Component
Bridge

Component
Bridge

Hardware
Component

Hardware

Figure 2. Unified Component Model

Software schedulers are not explicitly represented in this
model. Instead, the scheduling constraints are integrated
into this model as assumptions of the components. The
bridge components and scheduling constraints together ab-
stract the processors, buses, and embedded OS. Three types
of composite components may be defined: software, hard-
ware, and hybrid. Sub-components of a composite soft-
ware (or hardware, respectively) component are all soft-
ware (or hardware) components. A hybrid component con-
tains both hardware and software components, and there-
fore, also bridge components. This model basically unifies
hardware and software component models.

3.1 Components

A component C is a triple (E, I, P ) where E is the exe-
cutable representation of C, I is the functional interface of
C, and P is a set of temporal properties of C that have been
verified on E. Hardware components, software compo-
nents, and bridge components differ in the representations
of E and I , but share the same representation of P . Each
entry of P is a pair (p,A(p)) where p is a temporal property
and A(p) is a set of assumptions (i.e., assumed properties)
on the environment of C for enabling the verification of p
on C. The environment of C is the set of components that
interact with C in a composition.

3.1.1 Software components

For a software component, E can be specified in the C pro-
gramming language or other software languages. To sup-
port high-level software design, we adopt the model-driven
development [15] and specify software components in an
executable design-level language, xUML. I of a software
component is a pair, (M,V ), where M is a set of input and
output messages and V is a set of variables in E that are ex-
ported. The component communicates with its environment
via asynchronous message-passing. The variables in V are
either variables to be mapped to hardware signals or vari-
ables to be utilized in scheduling the software component.
This interface semantics is determined by the asynchronous
interleaving message-passing semantics of xUML.

A software sensor component (denoted by S-SEN),
which controls a hardware sensor upon clock interrupts, is
shown in Figure 3. The dashed box denotes the component
boundary. The incoming arrows denote input message types
and the outgoing arrows denote output message types. S-



Object 

Clock

SO_Task

ADC

Photo STQ

Sensor−Output

Component Boundary

A_IntrC_Intr C_Ret

Done_Ack Done

A_Ret S_Schd S_Ret Message Communication

OP_Ack

Output

Figure 3. Software sensor component

SEN exports two variables: ADC.Pending and STQ.Empty.
A set of properties that have been verified on S-SEN are
shown in Figure 4. The properties assert that S-SEN repeat-

IfRepeatedly (C Intr) Repeatedly (Output);
After (Output) Never (Output) UnlessAfter (OP Ack);
Never (Output) UnlessAfter (S Schd);
After (Output) Never (Output) UnlessAfter (S Schd);
Never (S Ret) UnlessAfter (OP Ack);
After (S Ret) Never (S Ret) UnlessAfter (OP Ack);

After (C Intr) Eventually (C Ret);
Never (C Ret) UnlessAfter (C Intr);
After (C Ret) Never (C Ret) UnlessAfter (C Intr);

After (A Intr) Eventually (A Ret);
Never (A Ret) UnlessAfter (A Intr);
After (A Ret) Never (A Ret) UnlessAfter (A Intr);
After (ADC.Pending) Never (ADC.Pending) UnlessAfter (A Ret);

After (S Schd) Eventually (S Ret);
Never (S Ret) UnlessAfter (S Schd);
After (S Ret) Never (S Ret) UnlessAfter (S Schd);
After (STQ.Empty=False) Never (STQ.Empty=False) UnlessAfter (S Ret);

Assumptions:
After (Output) Eventually (OP Ack);
Never (OP Ack) UnlessAfter (Output);
After (OP Ack) Never (OP Ack) UnlessAfter (Output);

After (C Intr) Never (C Intr+A Intr+S Schd) UnlessAfter (C Ret);

After (ADC.Pending) Eventually (A Intr);
Never (A Intr) UnlessAfter (ADC.Pending);
After (A Intr) Never (C Intr+A Intr+S Schd) UnlessAfter (A Ret);
After (A Ret) Never (A Intr) UnlessAfter (ADC.Pending);

After (STQ.Empty=False) Eventually (S Schd);
Never (S Schd) UnlessAfter (STQ.Empty=False);
After (S Schd) Never (C Intr+A Intr+S Schd) UnlessAfter (S Ret);
After (S Ret) Never (S Schd) UnlessAfter (STQ.Empty=False);

Figure 4. Properties of software sensor

edly outputs and correctly handles the output handshakes.
The assumptions assert that the environment of S-SEN cor-
rectly responds to the output handshakes, correctly gener-
ates clock and sensor interrupts, and correctly schedules the
software tasks in S-SEN. The property specification is in-
tuitive, for instance, the first statement claims that S-SEN
outputs repeatedly if it receives clock interrupts repeatedly
and the second statement claims that after an output, S-SEN

R_Ret

Int_to_RFM

Generic_Comm

GC_Task RFM

Data_Ack

Data

Sent Sent_Ack

N_Ret

NTQ

N_Schd R_Intr

Figure 5. Software network component

Properties:
IfRepeatedly (Data) Repeatedly (RFM.Pending);
IfRepeatedly (Data) Repeatedly (RFM.Pending=False);

After (Data) Eventually (Data Ack);
Never (Data Ack) UnlessAfter (Data);
After (Data Ack) Never (Data Ack) UnlessAfter (Data);

After (N Schd) Eventually (N Ret);
Never (N Ret) UnlessAfter (N Schd);
After (N Ret) Never (N Ret) UnlessAfter (N Schd);
After (NTQ.Empty=False) Never (NTQ.Empty=False) UnlessAfter (N Ret);

After (R Intr) Eventually (R Ret);
Never (R Ret) UnlessAfter (R Intr);
After (R Ret) Never (R Ret) UnlessAfter (R Intr);
After (RFM.Pending) Never (RFM.Pending) UnlessAfter (R Ret);

Assumptions:
After (Data) Never (Data+N Schd+R Intr) UnlessAfter (Data Ack);

After (NTQ.Empty=False) Eventually (N Schd);
Never (N Schd) UnlessAfter (NTQ.Empty=False);
After (N Schd) Never (Data+N Schd+R Intr) UnlessAfter (N Ret);
After (N Ret) Never (N Schd) UnlessAfter (NTQ.Empty=False);

After (RFM.Pending) Eventually (R Intr);
Never (R Intr) UnlessAfter (RFM.Pending);
After (R Intr) Never (Data+N Schd+R Intr) UnlessAfter (R Ret);
After (R Ret) Never (R Intr) UnlessAfter (RFM.Pending);

Figure 6. Properties of software network

will not output unless after an acknowledgment is received.
A software network component (denoted by S-NET) is

shown in Figure 5. It exports two variables: TQN.Empty
and RFM.Pending. The properties that have been verified on
S-NET are shown in Figure 6. These properties assert that S-
NET repeatedly sets and clears the RFM.Pending variable if
it receives data messages repeatedly and it correctly handles
the input handshakes. The assumptions assert that the envi-
ronment of S-NET correctly conducts the input handshakes,
responds to the value changes of RFM.pending with inter-
rupts, and schedules the software tasks in S-NET.

3.1.2 Hardware components

For a hardware component, E can be specified in Verilog
or other hardware specification languages. In our study, we



assume that E is specified in Verilog. I consists of a set
of variables that the hardware component imports from or
exports to its environment. The hardware component com-
municates with its environment through the exported or im-
ported variables in I . This interface semantics is determined
by the synchronous clock-driven semantics of Verilog.

The interfaces of three hardware components, clock, sen-
sor, and network (denoted by H-CLK, H-SEN, and H-NET,
respectively) are shown in Figure 7. The incoming arrows

d_rdy

88

SENSOR NETWORK

reset

system

CLOCK

intr_n

clock

stop

dout

din

start

intr_c

start_s

intr_s

Figure 7. Basic hardware components
denote imported variables and the outgoing arrows denote
exported variables. A set of verified properties of the three
components are shown in Figure 8. The properties of H-

Properties of hardware clock component:
Repeatedly (intr c);

Properties of hardware sensor component:
After (start s) Eventually (intr s);
Never (intr s) UnlessAfter (start s);
After (intr s) Never (intr s) UnlessAfter (start s);

Properties of hardware network component:
After (d rdy) Eventually (intr n);
Never (intr n) UnlessAfter (d rdy);
After (intr n) Never (intr n) UnlessAfter (d rdy);
IfRepeatedly (d rdy) Repeatedly (flag);
IfRepeatedly (d rdy=False) Repeatedly (flag=False);

Figure 8. Properties of hardware components
CLK assert that H-CLK generates interrupts repeatedly. The
properties of H-SEN assert that after H-SEN is started, it will
generate an interrupt eventually and it will not generate the
interrupt unless after it is started. The properties of H-NET
assert that (1) after H-NET receives data, it will eventually
generate a transmission complete interrupt and it will not
generate the interrupt unless after it is started and (2) if H-
NET receives data repeatedly, it transmits repeatedly.

3.1.3 Bridge components

Bridge components inter-connect hardware and software
components. They extend the concept of bridge module
(defined in [22] and briefly introduced in Section 2.2.1) by
allowing multiple bridge components in a system. This en-
ables more flexible composition of hardware and software
components and creation of hybrid composite components
containing both hardware and software sub-components.
The interface of a bridge component is a pair (IH , IS).
IH is a synchronous shared-variable interface for interac-
tions with hardware components and IS is an asynchronous

message-passing interface for interactions with software
components. The interface of the bridge component is de-
termined by the hardware and software components that it
connects. E of a bridge component is specified in the bridge
specification language discussed in Section 2.2.1.

We illustrate the concept of bridge component by defin-
ing a bridge component that inter-connects S-SEN, H-CLK,
and H-SEN. The bridge component is shown in Figure 9.
The interface of the bridge component is derived from

Bridge interface:
IH = {input var = {H-CLK.intr c, H-SEN.intr s}

output var = {H-SEN.start}}

IS = {output msg = {S-SEN.C Intr, S-SEN.A Intr, S-SEN.S Schd}
input msg = {S-SEN.C Ret, S-SEN.A Ret, S-SEN.S Ret}
var = {S-SEN.ADC.On, S-SEN.STQ.Empty}}

Bridge executable representation:
/*Hardware interrupt to software message mapping*/
(H-CLK.intr c, S-SEN.C Intr)
(H-SEN.intr s, S-SEN.A Intr)

/*Software variable to hardware signal mapping*/
(S-SEN.ADC.On, H-SEN.start)

/*Interrupt priority*/
Priorities(H-CLK.intr c, H-SEN.intr s) = {0, 0}

/*Messages for initiating software tasks*/
SchdSet = {(S-SEN.STQ.S Schd | (S-SEN.STQ.Empty=False))}

Figure 9. A bridge component example
the interfaces of S-SEN, H-CLK, and H-SEN by includ-
ing the same messages and variables but reversing their in-
put/output directions. The executable specification of the
bridge component defines: (1) how hardware signals are
mapped to software messages, for instance, the hardware
clock interrupt, intr c, is mapped to the C Intr message of
the software clock; (2) how software variables are mapped
to hardware signals, for instance, the On variable of the
ADC object is mapped to the start signal of the hardware
sensor; (3) the interrupt priorities, for instance, both inter-
rupts are of the same priority; (4) messages that initiate soft-
ware tasks, for instance, the Schedule message of the STQ
object, and the conditions under which the tasks are ready
to be scheduled.

The bridge components abstract the hardware/software
interfaces and also abstract part of the embedded OS by
specifying the interrupt priorities, and the software tasks
that need to be scheduled to execute and their enabling con-
ditions. Software schedulers are not explicitly represented
in this component model. Instead, scheduling policies are
specified as assumptions of the software components. The
embedded OS determines the scheduling polices.

3.1.4 Hybrid components

Hybrid components package hardware and software com-
ponents into reusable units since hardware and software
components are often closely related and reused together,



e.g. a device and its driver. A hybrid component may have
only a software interface if its hardware can be completely
encapsulated or it may have a hybrid hardware/software in-
terface similar to the interface of a bridge component. (Ex-
amples of hybrid components are given in Section 4.

3.2 Composition

A composite component, C = (E, I, P ), is composed from
a set of simpler components, C0 = (E0, I0, P0), . . ., Cn−1

= (En−1, In−1, Pn−1), as follows. E is constructed from
E0, . . ., En−1 by connecting E0, . . ., En−1 through I0,
. . ., In−1. I may be a hardware interface, a software in-
terface, or a hybrid hardware/software interface depending
what types of components C0, . . ., Cn−1 are. Essentially,
I includes the semantic entities from I0, . . ., In−1 that are
needed for C to interact with its environment or for speci-
fication of scheduling constraints of C. We discuss how to
establish properties of a composite component from prop-
erties of its sub-components in Section 4.

4 Component-Based Co-Verification

In this section, we present our approach to component-
based co-verification of embedded systems and illustrate
this approach with its application to a family of networked
sensors. Our approach seamlessly integrates verification
into the component-based development lifecycle of embed-
ded systems and is a synergistic integration of bottom-up
component verification and top-down system verification.

The component-based development lifecycle for a fam-
ily of embedded systems consists of three major activities,
basic component development, system development, and
new component development. Basic component develop-
ment takes place when the family is created. As the family
evolves, system development and new component develop-
ment are repeated as needed and often interleave.

4.1 Bottom-up verification of basic components

When an embedded system family is created, its primitive
hardware and software components are identified by do-
main analysis and developed from scratch. These primitive
components can be further composed bottom-up to develop
basic composite components of the family.

For verification of basic components, we extend the
bottom-up approach developed in [20]. Properties of the
components are formulated according to domain analysis.
A primitive hardware (or software, respectively) component
is verified using FormalCheck (or ObjectCheck) through
translation of the component and its properties into S/R.
Properties of a composite component are verified by check-
ing the properties on abstractions of the composite compo-
nent. The verification is again through translation into S/R.

4.1.1 Verification of primitive components

A domain analysis on the family of networked sensors
based on UC Berkeley motes [10] identifies a set of primi-
tive components of the family. The set includes three hard-
ware components: H-CLK, H-SEN, and H-NET, and two
software components: S-SEN and S-NET, as defined in Sec-
tion 3. We have verified the properties of S-SEN in Figure 4
and the properties of S-NET in Figure 6 with ObjectCheck
and we have also verified the properties of H-CLK, H-SEN,
and H-NET in Figure 8 with FormalCheck. The time usages
and memory usages for these verification runs are shown in
Table 1. The properties of these components are verified

Components Time (Seconds) Memory (MBytes)
S-SEN 18.66 8.49
S-NET 18.06 9.11
H-CLK 0.21 3.38
H-SEN 0.22 3.39
H-NET 0.22 3.39

Table 1. Time and memory usages for verify-
ing the properties of primitive components

under their corresponding environment assumptions.

4.1.2 Verification of a basic sensor system

After the basic components are developed, the natural next
step is to develop a basic sensor system from these compo-
nents so that these components can be evaluated in a system
context. Note that a system is also a composite component.
Figure 10 shows how the basic components are composed
bottom-up into a basic system. H-CLK generates periodic

Bridge

H−CLK H−SEN H−NET

S−SEN S−NET

Bridge

Figure 10. A basic sensor system
interrupts to S-SEN. Upon a clock interrupt, S-SEN starts H-
SEN. When H-SEN finishes sensing, it interrupts S-SEN to
pass sensor readings to S-SEN. S-SEN sends sensor readings
to S-NET. If H-NET is free, S-NET delivers a data packet to
H-NET. After the packet is transmitted, H-NET interrupts S-
NET to report the transmission. The hardware and software
components are connected via two bridge components.

Formulating the properties of the bridge components and
their assumptions is straightforward. Properties (or assump-
tions, respectively) of the software and hardware compo-
nents that are formulated on the interactions with the bridge
components are essentially assumptions (or properties) of
the bridge components. For instance, the second group of
properties (or assumptions) of S-SEN in Figure 4, formu-
lated on the clock interrupts generated by the bridge compo-
nent between S-SEN and hardware and S-SEN’s responses



to these interrupts, are assumptions (or properties) of the
bridge component. Additional properties of the bridge com-
ponents are formulated on the mappings between hardware
and software events. The properties of the two bridge com-
ponents are verified using 3.76 seconds and 6.03 megabytes
and 0.66 seconds and 4.07 megabytes, respectively.

A system-level property P1 to be verified on the basic
sensor system is shown in Figure 11. P1 asserts that the

Repeated (H-NET.flag); Repeated (H-NET.flag=False);

Figure 11. Repeated transmission property
basic sensor system transmits on the network repeatedly.
Repeated setting and clearing of a flag in H NET indicates
repeated transmission. To verify P1, we construct an ab-
straction of the basic sensor system as follows:

1. A system in S/R is constructed to abstract the sensor
system. For each hardware or software component, a
S/R process (conceptually, an ω-automaton) is intro-
duced, which simulates the interface of the component.
Within the constraint of the interface, the S/R process
behaves non-deterministically. Essentially, we trans-
late the interface of the component into S/R. All these
S/R processes are composed together as how their cor-
responding components are composed in Figure 10.

2. Starting from P1, a cone-of-influence analysis is con-
ducted on the verified properties of the hardware and
software components based on the component inter-
faces and the component composition graph. All com-
ponent properties related to P1 by the analysis are in-
cluded in the abstraction. They are used to constrain
the S/R system: A property of a hardware or software
component is translated to a S/R process and com-
posed with the S/R process abstracting the component.

Note that to include a component property into the ab-
straction, two conditions must be validated: (1) the assump-
tions of the property are implied by the properties of other
components, which can be validated by a simple model
checking run; (2) the property is not involved in circular
reasoning among component properties. Circular reasoning
can be avoided using the following methods (but not lim-
ited to them): (1) avoid using an assumption that creates
a dependency cycle; (2) use temporal induction proposed
by McMillan [14]; (3) use the compositional reasoning rule
proposed by Amla, et al. [4].

The abstraction includes the properties of S-SEN in Fig-
ure 4, the properties of S-NET in Figure 6, the properties
of the hardware components in Figure 8, and the proper-
ties of the bridge components. S-SEN and S-NET satisfy
the handshake-related assumptions of each other. The other
assumptions of S-SEN and S-NET are satisfied by the prop-
erties of the hardware components via the event mappings

of the bridge components. The properties of the hardware,
software, and bridge components shown in Figure 12 imply
P1. (Note that S-SEN.Output is mapped to S-NET.Data.)

Repeatedly (H-CLK.intr c);
IfRepeatedly (H-CLK.intr c) Repeatedly (S-SEN.C Intr);
IfRepeatedly (S-SEN.C Intr) Repeatedly (S-SEN.Output);
IfRepeatedly (S-NET.Data) Repeatedly (S-NET.RFM.Pending);
IfRepeatedly (S-NET.Data) Repeatedly (S-NET.RFM.Pending=False);
IfRepeatedly (S-NET.RFM.Pending) Repeatedly (H-NET.d rdy);
IfRepeatedly (S-NET.RFM.Pending=False) Repeatedly(H-NET.d rdy=False);
IfRepeatedly (H-NET.d rdy) Repeatedly (H-NET.flag);
IfRepeatedly (H-NET.d rdy=False) Repeatedly (H-NET.flag=False);

Figure 12. Comp. properties that imply P1

The implication is established by model checking P1 on the
abstraction, which takes 0.1 seconds and 3.40 megabytes.

The abstraction is conservative. If the property holds on
the abstraction, it also holds on the system; otherwise, the
abstraction can be refined by verifying additional compo-
nent properties and including them in the abstraction. If the
property does not hold on the system, error trace analysis
and abstraction refinement are likely to uncover the cause.
(See below for an example of bug detection through abstrac-
tion refinement.) Verification of additional properties are
rarely needed for widely reused components.

This approach to abstraction construction extends the ap-
proach in [20] and constructs abstractions of embedded sys-
tems composed of hardware, software, and bridge compo-
nents. It is enabled by the unified component model and the
unified property specification. An abstraction of a compos-
ite component that is not a complete system is constructed
the same way except that an additional S/R process is added
to create a closed S/R system. This S/R process is con-
strained by the environment assumptions of the component.

The second property P2 to be verified on the basic sys-
tem is shown in Figure 13. P2 asserts that there are no con-

Never ((S-NET.RFM.Prev = 1) AND (S-NET.RFM.Buf = 1)
AND (S-NET.RFM.Status = Transmitting));

Figure 13. No consecutive 1’s property
secutive 1’s in the transmission sequence numbers. We con-
struct an abstraction for verifying P2. However, no compo-
nent properties are included since no component properties
related to P2 have been verified.

This abstraction needs to be refined. The component
properties needed for verifying P2 are introduced based on
domain knowledge. An abstraction is constructed from the
component properties assuming they hold. If P2 is success-
fully verified on the abstraction, the component properties
are then verified. The following properties are introduced
for S-SEN: there are no consecutive 1’s in the sequence
numbers of the outputs of S-SEN and S-SEN will not out-
put a new sensor reading unless after it receives transmis-
sion acknowledgment for the previous reading. (For con-
ciseness, the formal property specifications are not shown.)



Verification of the new property on S-SEN detects a bug in
S-SEN: S-SEN may output a new sensor reading to S-NET
although S-NET has not acknowledged the transmission of
the last sensor reading. The bug is fixed. The property is
successfully verified on the corrected S-SEN. (For concise-
ness, the properties of other components are not shown.)
After all new component properties are successfully veri-
fied, we can conclude that P2 holds on the basic system.

4.2 Top-down system verification

New systems in the embedded system family are developed
top-down. Given its functional requirements, a system is
decomposed into its hardware and software components.
The decomposition is guided by domain knowledge and
considers existing components. The interface of each com-
ponent is defined and its properties are specified. If there is
an existing component matching the interface and proper-
ties, the component can be reused. If there is no matching
component, the component is either developed from scratch
as a primitive component or further decomposed.

Verification is integrated in the top-down system devel-
opment. As a composite component is decomposed into its
sub-components, the sub-component properties are formu-
lated. The properties of the composite component are veri-
fied on its abstractions constructed from the sub-component
properties assuming the sub-component properties hold. If
the properties of the composite components are success-
fully verified on the abstraction, the top-down system de-
velopment proceeds; otherwise, the decomposition or the
sub-component properties are revised. For a reusable sub-
component, if the required properties have been verified on
the sub-component, nothing needs to be done; otherwise,
the properties are verified on the component top-down. For
a new primitive component, its properties are verified by
directly model checking its executable representation. For
a new composite component, its properties are verified as
it is further decomposed top-down. If the properties of a
component cannot be verified, the component design or the
previous decompositions are revised.

4.2.1 Verification of multi-sensor system

We illustrate top-down system verification by verifying a
multi-sensor system. The functional requirement of this
system is that it should properly control multiple hardware
sensors, e.g., temperature and humidity sensors. The system
can be decomposed into its hardware and software compo-
nents as shown in Figure 14. It can be observed that the
multi-sensor system reuses the existing components with a
new bridge component that connects S-SEN, H-CLK, and
the two hardware sensors. Upon a clock interrupt, S-SEN
starts both hardware sensors. Upon completion of sensing,
each sensor may interrupt and pass data to S-SEN.

S−NET

H−CLK H−SEN 1 H−SEN 2 H−NET

S−SEN

BridgeBridge

Figure 14. Multi-sensor system

We verify P1 on the multi-sensor system. (For simplic-
ity, hereafter, we only verify P1 on sensor systems.) All
components of the system, except the new bridge compo-
nent, are reusable and their properties have been verified.
Properties of the bridge component (not shown for concise-
ness) are formulated the same way as those of the bridge
components in the basic system. They are verified using
10.24 seconds and 6.05 megabytes. The abstraction of the
multi-sensor system for verifying P1 is constructed from the
component properties. P1 was successfully verified on the
abstraction using 0.1 seconds and 3.40 megabytes.

4.2.2 Verification of encryption-enabled sensor system

Development of new sensor systems may introduce new
components. For instance, to develop a security enhanced
sensor network, it is desired that some sensors in a sensor
network be able to encrypt the sensor readings before trans-
mitting the readings. Based on the requirement of such a
sensor system, the system can be decomposed into its com-
ponents as shown in Figure 15. A hardware encoder, H-

Bridge

H−NETH−SENH−CLK

S−NETS−SEN S−ENC

H−ENC

Bridge Bridge

Figure 15. Encryption-enabled sensor

ENC and its software controller, S-ENC are introduced. In
the system execution, S-SEN passes sensor readings to S-
ENC which invokes H-ENC to encrypt the sensor readings.

The interface of S-ENC is defined as follows: input mes-
sage types = {Raw, Encoded Ack, E Intr}, output message
types = {Raw Ack, Encoded, E Ret}, and externally visi-
ble variables = {ENC.Pending}. The properties of S-ENC
for verifying P1 on the whole system are shown in Fig-
ure 16. The properties assert that S-ENC outputs encoded
data repeatedly if it inputs raw data repeatedly and it prop-
erly handles the input and output handshakes. The assump-
tions assert that the environment correctly handles the hand-
shakes with S-ENC and generates interrupts to S-ENC in re-
sponse to its encoding requests. The interface of H-ENC
and the properties of H-ENC for verifying P1 are also for-
mulated (not shown for conciseness). The properties of S-
ENC are verified on its executable using 0.24 seconds and
3.57 megabytes while verification of H-ENC takes 0.22 sec-
onds and 3.39 megabytes. A new bridge component con-



IfRepeatedly (Raw) Repeatedly (Encoded);

After (Raw) Eventually (Raw Ack);
Never (Raw Ack) UnlessAfter (Raw);
After (Raw Ack) Never (Raw Ack) UnlessAfter (Raw);

After (Encoded) Never (Encoded) UnlessAfter (Encoded Ack);
Never (Encoded) UnlessAfter (E Int);
After (Encoded) Never (Encoded) UnlessAfter(E Intr);
Never (E Ret) UnlessAfter (Encoded Ack);
After (E Ret) Never (E Ret) UnlessAfter(Encoded Ack);

After (E Intr) Eventually (E Ret);
Never (E Ret) UnlessAfter (E Intr);
After (E Ret) Never (E Ret) UnlessAfter (E Intr);
After (ENC.Pending) Never (ENC.Pending) UnlessAfter (E Ret);

Assumptions:
After (Raw) Never (Raw+E Intr) UnlessAfter (Raw Ack);

After (Encoded) Eventually (Encoded Ack);
Never (Encoded Ack) UnlessAfter (Encoded);
After (Encoded Ack) Never (Encoded Ack) UnlessAfter (Encoded);

After (ENC.Pending) Eventually (E Intr);
Never (E Intr) UnlessAfter (ENC.Pending);
After (E Intr) Never (Raw+E Intr) UnlessAfter (E Ret);
After (E Ret) Never (E Intr) UnlessAfter (ENC.Pending);

Figure 16. Properties of software encoder

necting S-ENC and H-ENC is introduced. Its properties are
verified using 0.18 seconds and 3.56 megabytes. The ab-
straction for verifying P1 on the encryption-enabled sensor
system is constructed from the properties of its components.
P1 is successfully verified on the abstraction using 0.13 sec-
onds and 3.56 megabytes.

4.3 Integrated bottom-up and top-down verification of
new components

Verification of new components exploits the interaction of
bottom-up and top-down verification. New components
may be introduced and verified in top-down development
of new systems, such as S-ENC and H-ENC, and they may
also be introduced and verified through bottom-up compo-
nent development due to technology advances, such as new
sensing and communication modules.

The new components can be further composed with ex-
isting components or among themselves to construct larger
composite components bottom-up. For instance, S-ENC,
S-NET, H-ENC, and H-NET can be composed into an
encryption-enabled network component, E-NET, as shown
in Figure 17. S-NET and H-NET have been verified bottom-

Bridge

S−NETS−ENC

H−ENC H−NET

Bridge

Figure 17. Encryption-enabled network

up as the family was created. S-ENC and H-ENC has been

verified in top-down verification of the encryption-enabled
sensor system. Based on their properties, E-NET is veri-
fied bottom-up. The interface of E-NET includes the fol-
lowing messages: Raw and Raw Ack for interaction with
other components and E Intr, N Schd, R Intr, E Ret, N Ret,
and R Ret for specification of scheduling constraints. The
properties of E-NET are shown in Figure 18. The properties

Properties:
IfRepeatedly (Raw) Repeatedly (HNET.flag);
IfRepeatedly (Raw) Repeatedly (HNET.flag=False);

After (Raw) Eventually(Raw Ack);
Never (Raw Ack) UnlessAfter (Raw);
After (Raw Ack) Never(Raw Ack) UnlessAfter(Raw);

Assumptions:
After (Raw) Never (Raw+E Intr+N Schd+R Intr) UnlessAfter (Raw Ack);
After (E Intr) Never (Raw+E Intr+N Schd+R Intr) UnlessAfter (E Ret);
After (N Schd) Never (Raw+E Intr+N Schd+R Intr) UnlessAfter (N Ret);
After (R Intr) Never (Raw+E Intr+N Schd+R Intr) UnlessAfter (R Ret);

Figure 18. Properties of E-NET

assert that E-NET repeatedly transmits if there are inputs
repeatedly and that it properly handles input handshakes.
The assumptions assert that the environment correctly han-
dles the handshakes with E-NET and respects the schedul-
ing constraints of E-NET. The properties are successfully
verified on an abstraction of E-NET, constructed from the
verified properties of S-NET, S-ENC, H-NET, H-ENC, and
the two bridge components. The verification takes 0.13 sec-
onds and 3.55 megabyte. E-NET and its properties can then
be reused in building new sensor systems.

4.4 Evaluation

Our approach to component-based co-verification is evalu-
ated through comparing the time and memory usages for
verifying P1 on the three sensor systems: the basic sys-
tem, the multi-sensor system, and the encryption-enabled
sensor system using this approach with the time and mem-
ory usages for verifying these three systems using the ba-
sic translation-based approach in [22]. The comparison is
shown in Table 2. (“-” denotes running out of memory, CB

Usages Basic Multi Encrypting
TB Time (Sec) 31272.8 - -
TB Mem. (MB) 1660.62 - -
CB Time (Sec) 41.89 10.34 0.77
CB Mem. (MB) 9.11 6.05 3.57

Table 2. Time and memory usage comparison

denotes the component-based approach, and TB denotes the
translation-based approach.) All verification runs were con-
ducted on a SUN workstation with dual CPUs at 1 GHZ and
2 GB physical memory. The time (or memory, respectively)
usage for verifying a system using the component-based ap-
proach is the sum (or max) of the time (or memory) usages
for verifying the new components and the abstraction. It can



be observed that the component-based approach has order-
of-magnitude reduction on the verification time and mem-
ory usages for verifying the basic sensor system. The reduc-
tions on the multi-sensor system and the encryption-enabled
sensor system are more significant since the translation-
based approach runs out of memory on both systems while
the component-based approach achieves major reuse of ver-
ification efforts and only requires the verification of the new
hardware, software, and bridge components and the abstrac-
tions of the two systems. The component-based approach
requires the extra cost of abstraction construction and the
manual effort of formulating component properties which,
we believe, can be greatly reduced by domain knowledge
and are compensated by being able to verify systems that
cannot be verified, otherwise.

5 Related Work

Co-verification of embedded systems falls into two ma-
jor categories: co-simulation and formal co-verification.
Our approach belongs to the latter. Hardware/software co-
simulation of embedded systems is supported by indus-
trial tools such as Mentor Graphics Seamless [16] and aca-
demic projects such as Ptolemy [6]. Co-simulation does
not provide exhaustive state space coverage. Various for-
mal languages have been proposed for specifying embed-
ded systems, such as Hybrid Automata [3], LOTOS [19],
Co-design Finite State Machines (CFSMs) [5], and petri-
net based languages such as PRES [8]. Hybrid automata
and CFSMs have been directly model-checked while LO-
TOS and PRES have been verified via translation to directly
model-checkable languages. Our approach differs by sup-
porting specification of hardware or software components in
their native languages and exploiting compositional struc-
tures of embedded systems for co-verification.

There has been much research [1, 2, 14, 4] on composi-
tional reasoning of hardware and software systems. Our ap-
proach builds on the previous work and differs by applying
compositional reasoning across hardware/software bound-
aries. It is enabled by the component model which unifies
hardware IPs and software components and by translation-
based co-verification [22] which provides a common formal
semantic basis for conducting compositional reasoning.

6 Conclusions and Future Work

We have presented a component-based approach to hard-
ware/software co-verification of embedded systems using
model checking. This approach has great potential for
building trustworthy embedded systems. It achieves major
verification reuse and order-of-magnitude reduction on co-
verification complexity, therefore, enabling co-verification
of more complex embedded systems. As the next step, we

plan to further automate our approach in system decomposi-
tion and property formulation, by leveraging domain knowl-
edge such as composition patterns of embedded systems.

Acknowledgment

We gratefully acknowledge the contributions and help from
James C. Browne, Robert P. Kurshan, and Vladimir Levin.

References

[1] M. Abadi and L. Lamport. Conjoining specifications.
TOPLAS, 17(3), 1995.

[2] R. Alur and T. Henzinger. Reactive modules. FMSD, 15(1),
1999.

[3] R. Alur, T. A. Henzinger, and P. H. Ho. Automatic symbolic
verification of embedded systems. IEEE TSE 22(3), 1996.

[4] N. Amla, E. A. Emerson, K. S. Namjoshi, and R. Trefler.
Assume-guarantee based compositional reasoning for syn-
chronous timing diagrams. In Proc. of TACAS, 2001.

[5] F. Balarin, H. Hsieh, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli. Formal verification of embed-
ded systems based on cfsm networks. In Proc. of DAC, 1996.

[6] Berkeley. Ptolemy project. In
http://ptolemy.eecs.berkeley.edu/index.htm.

[7] E. M. Clarke, O. Grumberg, and D. Peled. Model checking.
MIT Press, 1999.

[8] L. A. Cortes, P. Eles, and Z. Peng. Formal coverification
of embedded systems using model checking. In Proc. of
EUROMICRO, 2000.

[9] R. H. Hardin, Z. Har’El, and R. P. Kurshan. COSPAN. In
Proc. of CAV, 1996.

[10] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and
K. S. J. Pister. System architecture directions for networked
sensors. In Proc. of ASPLOS, 2000.

[11] M. F. Jacome and H. P. Peixoto. A survey of digital design
reuse. IEEE Design and Test of Computers, 18(3), 2001.

[12] R. P. Kurshan. Computer-Aided Verification of Coordinating
Processes: The Automata-Theoretic Approach. Princeton
University Press, 1994.

[13] R. P. Kurshan. FormalCheck User Manual. Cadence, 1998.
[14] K. L. McMillan. A methodology for hardware verification

using compositional model checking. Cadence Design Sys-
tems Technical Reports, 1999.

[15] S. J. Mellor and M. J. Balcer. Executable UML: A Founda-
tion for Model Driven Architecture. Addison Wesley, 2002.

[16] Mentor Graphics. Seamless. In http://www.mentor.com.
[17] C. Szyperski and et al. Component Software - Beyond

Object-Oriented Programming. Addison Wesley, 2002.
[18] D. E. Thomas and P. R. Moorby. The VERILOG Hardware

Description Language. Kluwer Academic Publishers, 1991.
[19] P. H. J. van Eijk, C. A. Vissers, and M. Diaz, editors. The

formal description technique LOTOS. Elsevier, 1989.
[20] F. Xie and J. C. Browne. Verified systems by composition

from verified components. In Proc. of ESEC/FSE, 2003.
[21] F. Xie, V. Levin, and J. C. Browne. Objectcheck: A model

checking tool for executable object-oriented software sys-
tem designs. In Proc. of FASE, 2002.

[22] F. Xie, X. Song, H. Chung, and R. Nandi. Translation-based
co-verification. In Proc. of MEMOCODE, 2005.


