
ATCP: TCP for Mobile Ad Hoc Networks
�

Jian Liu

SUN Microsystems,

Palo Alto, CA 94303

Suresh Singh

Department of Computer Science

Portland State University

Portland, OR 97201

November 17, 2000

To Appear in IEEE J-SAC in 2001

Abstract

Transport connections set up in wireless ad hoc networks are plagued by problems such
as high bit error rates (BER), frequent route changes and partitions. If we run TCP over
such connections, the throughput of the connection is observed to be extremely poor because
TCP treats lost or delayed ACKs as congestion. In this paper we present an approach where
we implement a thin layer between IP and standard TCP that corrects these problems and
maintains high end-to-end TCP throughput. We have implemented our protocol in FreeBSD
and in this paper we present results from extensive experimentation done in an ad hoc network.
We show that our solution improves TCP's throughput by a factor of 2 { 3.

1 Introduction

Ad Hoc networks are multi-hop wireless networks consisting of a (large) number of radio-equipped
nodes that may be as simple as autonomous (mobile or stationary) sensors to laptops mounted on
vehicles or carried by people. These types of networks are useful in any situation where temporary
network connectivity is needed, such as in disaster relief or in the battle�eld. Recent work has
concentrated on developing MAC layer protocols and routing protocols for these types of networks
(see, for instance, [9, 10, 8, 11]). In this paper, we turn our attention to the transport layer and
implement a solution that enables TCP to function eÆciently in the lossy and partition prone ad
hoc networking environment. Before discussing the challenges involved in making TCP perform
well in ad hoc networks, however, let us consider some of the idiosyncrasies of this environment.

In addition to a high bit error rate in mobile ad hoc networks, node connectivity tends to
change over time. The rate at which the connectivity changes depends on the number of nodes,
their velocity, transmission range and obstacles in the environment that may create shadows. There
are two e�ects of this change in node connectivity:

�This work was supported by the NSF under grant number NCR-9706080. The work was done while the authors
were at Oregon State University.

1

s

d
a

b

s

d

a

b

route from
s to d

new route
from s to d

(a) Route change forced by mobility

Time = T Time = T + 5 sec

s

d

s

d

s

d

Time = T Time = T + 5 sec Time = T + 20 sec

(b) Partitions are formed and recombined by mobility

Figure 1: Problems caused due to node mobility.

� Nodes may need to recompute routes to some destinations. In Figure 1(a), node s needs to
recompute its route to d for an ongoing TCP connection because node a moved out of range
of node d.

� It is likely that the ad hoc network may be temporarily partitioned due to node mobility. In
Figure 1(b), s has an open TCP connection to d. The network gets partitioned at time T +5
causing s and d to lie in di�erent partitions. The network eventually reconnects 15 sec later
allowing s and d to continue communicating.

Unfortunately, this change in node connectivity has disastrous consequences for TCP's throughput
which can drop to very low levels. This is explained further in the following sections.

1.1 The Problem with TCP in Ad Hoc Networks

TCP is a connection-oriented transport layer protocol that provides reliable, in-order delivery of
data to the TCP receiver. If we use TCP without any modi�cation in mobile ad hoc networks, we
experience a serious drop in the throughput of the connection. There are several reasons for such
a drastic drop in TCP throughput and in this section we examine these reasons in some detail.

The E�ect of a High Bit Error Rate (BER)

Bit errors cause packets to get corrupted which result in lost TCP data segments or acknowl-
edgements. When acknowledgements do not arrive at the TCP sender within a short amount of
time(the retransmit timeout or RTO), the sender retransmits the segment, exponentially backs o�
its retransmit timer for the next retransmission, reduces its congestion control window threshold,
and closes its congestion window to one segment. Repeated errors will ensure that the congestion
window at the sender remains small resulting in low throughput (see [1, 3]). It is important to

2

note that error correction may be used to combat high BER, but it will waste valuable wireless
bandwidth when correction is not necessary.

The E�ect of Route Recomputations

When an old route is no longer available (as in Figure 1(a)), the network layer at the sender attempts
to �nd a new route to the destination (in DSR[8] this is done via route discovery messages while in
DSDV[11] table exchanges are triggered that eventually result in a new route being found). It is
possible that discovering a new route may take signi�cantly longer than the retransmission timeout
interval (RTO) at the sender. As a result, the TCP sender times out, retransmits a packet and
invokes congestion control. Thus, when a new route is discovered, the throughput will continue
to be small for some time because TCP at the sender grows its congestion window using the
slow start and congestion avoidance algorithm. This is clearly undesirable behavior because the
TCP connection will be very ineÆcient. If we imagine a network in which route computations are
done frequently (due to high node mobility), the TCP connection will never get an opportunity to
transmit at the maximum negotiated rate (i.e., the congestion window will always be signi�cantly
smaller than the advertised window size from the receiver).

The E�ect of Network Partitions

It is likely that the ad hoc network may periodically get partitioned for several seconds at a time. If
the sender and the receiver of a TCP connection lie in di�erent partitions, all the sender's packets
get dropped by the network resulting in the sender invoking congestion control. If the partition
lasts for a signi�cant amount of time (say several times longer than the RTO), the situation gets
even worse because of a phenomena called serial timeouts. A serial timeout is a condition wherein
multiple consecutive retransmissions of the same segment are transmitted to the receiver while it
is disconnected from the sender. All these retransmissions are thus lost. Since the retransmission
timer at the sender is doubled with each unsuccessful retransmission attempt (until it reaches 64
sec), several consecutive failures can lead to inactivity lasting one or two minutes even when the
sender and receiver get reconnected.

The E�ect of Multipath Routing

Some routing protocols (such as TORA [10]) maintain multiple routes between source destination
pairs, the purpose of which is to minimize the frequency of route recomputation. Unfortunately,
this sometimes results in a signi�cant number of out-of-sequence packets arriving at the receiver.
The e�ect of this is that the receiver generates duplicate ACKs which cause the sender (on receipt
of three duplicate ACKs) to invoke congestion control.

What does CWND really mean in ad hoc networks?

The congestion window in TCP imposes an acceptable data rate for a particular connection based
on congestion information that is derived from timeout events as well as from duplicate ACKs. In
an ad hoc network, since routes change during the lifetime of a connection, we lose the relationship
between the CWND size and the tolerable data rate for the route. In other words, the CWND as
computed for one route may be too large for a newer route, resulting in network congestion when
the sender transmits at the full rate allowed by the old CWND.

3

1.2 Our Approach

The approach we propose in this paper utilizes network layer feedback (from intermediate hops)
to put the TCP sender into either a persist state, congestion control state or retransmit state.
Thus, when the network is partitioned, the TCP sender is put into persist mode so that it does
not needlessly transmit and retransmit packets. On the other hand, when packets are lost due to
error (as opposed to congestion), the TCP sender retransmits packets without invoking congestion
control. Finally, when the network is truly congested, the TCP sender invokes congestion control
normally.

In our implementation, we did not modify standard TCP itself because we want to maintain
compatibility with the standard TCP/IP suite. Therefore, to implement our solution, we insert
a thin layer called ATCP (Ad hoc TCP) between IP and TCP that listens to the network state
information provided by ECN (Explicit Congestion Noti�cation) messages [5, 12, 6]1 and by ICMP
\Destination Unreachable" messages and then puts TCP at the sender into the appropriate state.
Thus, on receipt of a \Destination Unreachable" message, TCP state at the sender is frozen (the
sender enters the persist state) until a new route is found ensuring that the sender does not invoke
congestion control. Furthermore, the sender does not send packets into the network during the
period when no route exists between the source and destination.

We use ECN as a mechanism by which the sender is noti�ed of impending network congestion
along the route followed by the TCP connection. On receipt of an ECN, the sender invokes con-
gestion control without waiting for a timeout event (which may be caused, more often than not,
due to lost packets)2.

Thus, the bene�ts our solution are:

� Standard TCP/IP is unmodi�ed.

� ATCP is invisible to TCP and therefore nodes with and without ATCP can interoperate. The
only drawback is that nodes without ATCP will see all the performance problems associated
with running TCP over ad hoc networks.

� ATCP does not interfere with TCP's functioning in cases where the TCP connection is be-
tween a node in the wireline network and another in the wireless ad hoc network.

The remainder of this paper is organized as follows. In the next section we discuss the appli-
cability, to ad hoc wireless networks, of proposed solutions for improving TCP performance for
cellular networks. Section 3 presents our protocol design in detail and section 4 discusses some
implementation issues. We study its performance in section 5 and summarize our work in section
6.

2 Literature Review

Many papers (see [1, 2, 3, 13]) have been written proposing methods for improving TCP performance
in cellular networks where the last link is the only wireless link in the system. The typical solution

1As of this writing, ECN was actively debated on mailing lists, see: http://www-nrg.ee.lbl.gov/ecn-arch/
2Our decision to use ECN was prompted by the discussions within the Internet community surrounding the use

of ECN in the wired Internet. Most recently, [12] was proposed as a RFC 2481 (Request For Comment) to the IETF
(Internet Engineering Task Force). As of this writing, ECN is in the Experimental stage within IETF and it is beeing
submitted to advance as Proposed Standard.

4

used in these various approaches is to split the connection in two at the base station. The base
station then retransmits packets to the mobile node in order to prevent the TCP sender located in
the wireline network from invoking congestion control. This approach makes sense because the base
station typically knows the state of the wireless link and can make intelligent decisions regarding
the state of the TCP connection. In an ad hoc network, on the other hand, the TCP connection
traverses multiple wireless links. Thus, solutions based on using the base station to \�x things"
cannot work particularly well.

[7] investigates the impact of link breakage on TCP performance in ad hoc networks. They use
DSR (Dynamic Source Routing [8]) as the underlying routing protocol (simulated in NS2). DSR
is an on-demand routing protocol where a sender �nds a route to the destination by
ooding route
request packets. DSR's performance is optimized by allowing intermediate nodes to respond to
route request packets using cached routes. Unfortunately, if the cached information maintained
at a intermediate node is stale, the time it takes to �nd a new route can be very long (several
seconds). Thus, TCP running on top of DSR sees very poor throughput. The paper proposes
the use of Explicit Link Failure Noti�cation (ELFN) to improve TCP performance. Here, the
TCP sender is noti�ed that a link has failed and it disables its retransmission timer and enters a
stand-by mode. In stand-by mode, the TCP sender periodically sends a packet in its congestion
window to the destination. When an ACK is received, TCP leaves the stand-by mode, restores its
retransmission timers, and resumes transmission as normal.

Finally, [4] discusses a scheme similar to [7] for improving TCP performance in ad hoc networks
in the presence of failures. Here the router detecting a failed route generates a Route Failure
Noti�cation (RFN) packet towards the source. The TCP source that receives this packet enters a
snooze state which is very similar to TCP's persist state. When the route is re-established, a Route
Re-establishment Noti�cation (RRN) is sent to the source by any router on the previous route that
detected the new route. This packet removes the source from the snooze state. In this method the
source continues using the old congestion window size for the new route. This is a problem because
the congestion window size is route speci�c (since it seeks to approximate the available bandwidth).
[4] also does not consider the e�ects of congestion, out-of-order packets, and bit error.

Our approach di�ers signi�cantly from the above proposal in many ways. First, the above
approach does not deal with the high loss environment present in ad hoc networks. ATCP, on the
other hand, treats loss due to packet loss and loss due to congestion di�erently. Second, ATCP
ensures that the congestion window is recomputed after every new route recomputation. [7] and [4]
continue to use the old CWND which could lead to congestion. Finally, the above approach does
not take into account the possibility of a large number of out of order packets (if, for instance, the
underlying routing protocol was TORA [10] and not DSR [8]). Thus, we believe that our proposed
approach is far more comprehensive in that it accounts for all possible sources of ineÆciency in
TCP.

We summarize the di�erences between ATCP and the approaches used in [7, 4] in Table 1. As
we can see, ATCP provides a comprehensive solution to the problem of implementing TCP in ad
hoc networks.

3 Design of ATCP

Our goal in designing ATCP was to provide a complete solution to the problem of running TCP
over multihop wireless networks. Speci�cally, we wanted to design a protocol that has the following

5

Circumstance ATCP [7] [4]

Packet Loss due ATCP Retransmits, TCP does not Not Handled Not Handled
to high BER invoke congestion control (CC)

Route Changes ICMP \Destination Unreachable" puts ELFN freezes RRN freezes
sender in persist until new route found sender state sender state

Network Partition As above As above As above

Packet Reordering ATCP reorders packets so TCP
does not generate duplicates Not handled Not handled

Congestion ECN used to quickly notify sender
of congestion. Sender invokes CC. Not Handled Not Handled

CWND Reset for each new route Old CWND used Old CWND used

Table 1: Summary of Di�erences.

characteristics:

1. Improve TCP performance for connections set up in ad hoc wireless networks. As we discussed
in section 1.1, TCP performance is a�ected by the problems of high BER and disconnections
due to route recomputation or partition. In each of these cases, the TCP sender mistakenly
invokes congestion control. The appropriate behavior in these cases ought to be:

� High BER: Simply retransmit lost packets without shrinking the congestion window.

� Delays due to route recomputation: Sender should stop transmitting and resume when
a new route has been found.

� Transient partition: As above, the sender should stop transmitting (because we do not
want to
ood the network with packets that cannot be delivered anyway) until it is
reconnected to the receiver.

� Multipath Routing In this case, when TCP at the sender receives duplicate ACKs, it
should not invoke congestion control because multipath routing shu�es the order in
which packets are received.

2. Maintain TCP's congestion control behavior. This is an important goal because if losses are
caused due to network congestion, we do not want the TCP sender to assume that these losses
were due to high BER and continue transmitting. In this case, we want TCP to shrink its
congestion window in response to losses and invoke slow start.

3. Appropriate CWND behavior When there is a change in the route (e.g., a reconnection after
a brief partition), the congestion window should be recomputed.

4. Maintain end-to-end TCP semantics. We believe that it is critical to maintain end-to-end
TCP semantics in order to ensure that applications do not crash.

5. Be compatible with standard TCP. This is necessary because we cannot assume that all ma-
chines deployed in an ad hoc network will have ATCP installed. Thus, machines with or
without ATCP should be able to set up normal TCP connections with machines that may or
may not have ATCP. Furthermore, applications running at machines with ATCP should not
be aware of ATCP's presence.

6

Sometimes, it is likely that an ad hoc network may be connected to wireline networks through
access points. In such situations, the sender or receiver of a TCP connection may lie in the wireline
network with the other end-point in the ad hoc network. It is important to ensure that TCP
connections work normally in these cases as well. Our approach to the problem of improving
TCP's performance while maintaining compatibility is to introduce a thin layer between TCP and
IP called ATCP(see Figure 3). The ATCP layer at the sender monitors TCP state and spoofs TCP
in a way to ensure that the behavior discussed above is achieved. We discuss this in more detail in
the next section.

3.1 Functioning of the ATCP layer

The ATCP layer is only active at the TCP sender (in a duplex communication, the ATCP layer
at both participating nodes will be active). This layer monitors TCP state and the state of the
network (based on ECN and ICMP messages) and takes appropriate action. To understand ATCP's
behavior, consider Figure 2 which illustrates ATCP's four possible states { normal, congested, loss
and disconnected. When the TCP connection is initially established, ATCP at the sender is in the
normal state. In this state, ATCP does nothing and is invisible. Let us now examine ATCP's
behavior under four circumstances:

� Lossy Channel: When the connection from the sender to the receiver is lossy, it is likely that
some segments will not arrive at the receiver or may arrive out-of-order. Thus, the receiver
may generate duplicate acknowledgements(ACKs) in response to out of sequence segments.
When TCP receives three consecutive duplicate ACKs, it retransmits the o�ending segment
and shrinks the congestion window. It is also possible that due to lost ACKs, the TCP
sender's RTO may expire causing it to retransmit one segment and invoke congestion control.

ATCP in its normal state counts the number of duplicate ACKs received for any segment.
When it sees that three duplicate ACKs have been received, it does not forward the third
duplicate ACK but puts TCP in persist mode. Similarly, when ATCP sees that TCP's RTO
is about to expire, it again puts TCP in persist mode (implementation details are discussed in
section 4). By doing this, we ensure that the TCP sender does not invoke congestion control
because that is the wrong thing to do under these circumstances. After ATCP puts TCP in
persist mode, ATCP enters the loss state.

In the loss state, ATCP transmits the unacknowledged segments from TCP's send bu�er.
It maintains its own separate timers to retransmit these segments in the event that ACKs
are not forthcoming. Eventually, when a new ACK arrives (i.e., an ACK for a previously
unacknowledged segment), ATCP forwards that ACK to TCP which also removes TCP from
persist mode. ATCP then returns to its normal state.

� Congested: We assume that when the network detects congestion, the ECN
ag is set in
ACK and data packets. Let us assume that ATCP receives this message when in its normal
state. ATCP moves into its congested state and does nothing. It ignores any duplicate ACKs
that arrive and it also ignores imminent RTO expiration events. In other words, ATCP does
not interfere with TCP's normal congestion behavior. After TCP transmits a new segment,
ATCP returns to its normal state.

7

� Disconnected: Node mobility in ad hoc networks causes route recomputation or even tempo-
rary network partition. When this happens, we assume that the network generates an ICMP
Destination Unreachable message in response to a packet transmission. When ATCP receives
this message, it puts the TCP sender into persist mode and itself enters the disconnected
state. TCP periodically generates probe packets while in persist mode. When, eventually, the
receiver is connected to the sender, it responds to these probe packets with a duplicate ACK
(or a data packet). This removes TCP from persist mode and moves ATCP back into normal
state.

In order to ensure that TCP does not continue using the old CWND value, ATCP sets TCP's
CWND to one segment at the time it puts TCP in persist state. The reason for doing this is
to force TCP to probe the correct value of CWND to use for the new route.

� Other Transitions: Finally, when ATCP is in the loss state, reception of an ECN or an ICMP
Source Quench message will move ATCP into congested state and ATCP removes TCP from
its persist state. Similarly, reception of an ICMP Destination Unreachable message moves
ATCP from either the loss state or the congested state into the disconnected state and ATCP
moves TCP into persist mode (if it was not already in that state).

� E�ect of Lost Messages: Note that due to the lossy environment, it is possible that an ECN
may not arrive at the sender or, similarly, a \Destination Unreachable" message may be lost.
If an ECN message is lost, the TCP sender will continue transmitting packets. However, every
subsequent ACK will contain the ECN thus ensuring that the sender will eventually receive
the ECN causing it to enter the congestion control state as it is supposed to. Likewise, if
there is no route to the destination, the sender will eventually receive a retransmission of the
\Destination Unreachable" message causing TCP to be put into the persist state by ATCP.
Thus, in all cases of lost messages, ATCP performs correctly.

Let us examine how ATCP changes TCP's behavior under the conditions discussed in section
1.1. Under lossy conditions (due to high BER), ATCP retransmits unacknowledged segments while
TCP is put into persist state. Thus, TCP does not invoke congestion control. In the event that
the source and the destination get disconnected (either for short periods of time while a new route
is computed or for longer periods due to partition), TCP is again put into persist mode for the
duration of the disconnection and no segments are transmitted by ATCP. When the network is
reconnected, TCP automatically comes out of persist mode because the receiver responds to the
sender's probe packets. However, the congestion window used in this case is one segment initially.
Finally, TCP's congestion behavior is unchanged ensuring that TCP appropriately throttles back
its transmission rate when the network is congested.

Finally, we need to make a comment regarding ATCP's behavior when the connection traverses
the �xed internet. There are two cases to consider:

� If the �xed internet does implement ECN, ATCP will operate correctly. If, however, the �xed
internet does not implement ECN, then we need to split the connection at the node that
connects the wireless network with the wired internet. Thus, there will be two conjugated
TCP connections (this is similar to I-TCP [1] for cellular networks).

8

Congested

Normal

Loss

Disconnected

RTO about
to expire OR
3 dup ACKs

ATCP
Retransmits
segments in
TCP’s buffer

New
ACK

Receive
ECN

TCP Transmits
a packet

Receive
"Destination
Unreachable"
ICMP

TCP sender put
in persist state

Receive dup ACK
or packet from receiver

1CWND

Figure 2: State transition diagram for ATCP at the sender.

3.2 Bene�ts of our Approach

How does the ATCP meet our design goals outlined earlier in this section? It is clear that the
performance of ATCP will be better than TCP as we discuss in section 5. Similarly, end-to-end
TCP semantics are maintained because ATCP does not generate ACKs on its own. The only time
when ATCP inserts itself in the data path is when it is in the loss state. Here, ATCP retransmits
unacknowledged segments from TCP's bu�er. However, even in this case, ATCP forwards the �rst
new ACK to TCP (thus removing TCP from persist mode) and returns itself to the normal state.
This behavior does not a�ect end-to-end semantics of the connection.

3.3 Discussion of some Design Decisions

In our design of the ATCP protocol, we rely on explicit noti�cation regarding congestion and dis-
connections to make our protocol work. This choice, we feel, is justi�ed because of the unique
nature of the ad hoc networking environment. In the internet, TCP relies on timeouts or duplicate
ACKs to inform it of network congestion. Unfortunately, in the hostile ad hoc networking environ-
ment, packet losses are frequently a result of high bit error rates (caused by fading, interference
or jamming) or network partition. The correct behavior in the presence of loss due to bit error
is to retransmit the lost packets without reducing the transmission rate. In the case of network
partition, the correct behavior is to stop all transmission until the network is reconnected (i.e.,
stop the
ow on the periphery of the network). As is clear from our discussion above, ATCP relies
on ECN messages to enable it to determine when the network is congested and on \Destination
Unreachable" messages to inform it when the network is partitioned or no route exists. Finally, we
chose not to use SACKs because the delay*bandwidth product in ad hoc networks is small (i.e., the
transmit window sizes are small) and thus SACKs would contribute little in terms of performance
while requiring additional processing at the sender and receiver (we have not considered energy
consumption in this paper but minimizing the processing involved is important to increase the life
of the battery).

9

4 Implementation of ATCP

We implemented ATCP as a layer between TCP and IP, see Figure 3. Function atcp input()
intercepts every packet IP passes up to TCP. It examines the TCP and IP headers of the packet
and �nds out to which TCP connection this packet is sent by locating the TCP control block
according to the packet's source and destination addresses and port numbers(see Figure 5).

Let us look at ATCP's behavior in the normal state. In this state, atcp input() �rst checks if
the ECN has been set(also see Figure 5). If the ECN bit is set to one(1), atcp input() sets ATCP
state to congested and then passes the segment to function tcp input(). Upon receiving the ECN,
TCP will start congestion control algorithms because a network traÆc congestion has been detected
by a router somewhere between the sender and the receiver. Function atcp output() takes ATCP
back to normal state from congested state when TCP sends out a packet.

If the ECN
ag is not set, atcp input() counts the number of duplicate ACKs received and puts
TCP into persist mode if it has received tcprexmtthresh number of duplicate ACKs (the default
value of tcprexmtthresh is 3). ATCP itself enters the loss state and processes the segment. Another
case in which ATCP enters the loss state (and puts TCP in persist) occurs when TCP's RTO is
about to expire.

TCP_input()

ATCP_input()

ipintr()

TCP_output()

ATCP_output()

ip_output()

data

data

Figure 3: Data
ow through the TCP/ATCP/IP stack

ATCP checks TCP/ATCP timers by calling atcp slowtimo() every 500 milliseconds. Function
atcp slowtimo() is registered in the inetsw struct which also holds atcp input(), atcp fasttimo(),
etc. In the normal state, if atcp slowtimo() �nds out that a timeout is about to happen, it will call
function atcp timers() for processing. atcp timers() will adjust the retransmission timeout value,
stop the RTT timer, call tcp output() to resend the timed out packet, put TCP into persist mode,
and then change ATCP state to loss (see Figure 4).

In the loss state, ATCP performs packet retransmission on behalf of TCP (see Figure 6). In
order to do this correctly, ATCP copies member variable snd cwnd in TCP's TCP control block
into member variable asnd cwnd in the control block. atcp output() will use asnd cwnd instead
of snd cwnd when retransmitting segments. In addition to asnd cwnd of type u long, we added
at status of type int and at timer[TCPT NTIMERS] of type int in TCP control block. as status
is used to hold ATCP state { normal, loss, congested, and disconnected. at timer is used for ATCP
timers (including the retransmit timer used by ATCP when retransmitting packets from TCP's
bu�er). One other noteworthy feature of the loss state is that atcp output() discards TCP's persist
probe packets (unlike the case when ATCP is in the disconnected state) in order to maintain the
eÆciency of the connection.

When receiving a packet from IP, atcp input() examines if it contains either a new ACK or new
data from the other end of the connection. In either case, atcp input() will take TCP out of persist

10

ATCP state=normal?

adjust RTO, RTT

send timed out
packet

put TCP to persist mode
set ATCP state to loss

Yes

ATCP state =
conj. or disc

call tcp_timers()

No

Yes

No

Figure 4: Flowchart for function atcp timer()

mode and change ATCP state to normal from loss state. If, after taking TCP out of persist mode,
ATCP's congestion window size is greater than TCP's congestion window size, TCP's congestion
window size is set to ATCP's congestion window size.

Function atcp notify() is called when an ICMP UNREACH NET icmp message is received.
This causes ATCP to change its state to disconnected from either of normal, loss or congested.
atcp notify() stops TCP's retransmission timer, sets TCP's receiver advertised window size to
zero(0), starts TCP's persist timer , sets the congestion window to one(1) segment, and puts TCP
into persist mode. In disconnected state, atcp output() simply passes TCP persist probes to IP and
atcp input() passes packets from IP to TCP until atcp output() catches a nonprobing packet from
TCP(see Figure 6). Function atcp output() will put ATCP back into normal state upon receiving
such a packet from TCP. The fact that TCP sent a non-probe packet implies that TCP came out
of persist in response to a packet forwarded by ATCP { thus ATCP does not have to explicitly
remove TCP from persist mode.

When TCP comes out of persist mode, it will have a congestion window of just one segment.
There are a few reasons for doing this. When route failure occurs due to a network partition or if
the old route is no longer valid, the network layer will try to �nd a new route (a process that may
take several seconds3). If we continue using the previous congestion window for the new route, it
may result in congestion at some intermediate hop. It is also possible that the new found route may

3When a route is no longer valid, the network layer attempts to �nd new routes. However, it is possible that some
nodes may respond to the request for a new route with stale cached routes. This causes additional delay in some
routing protocols such as DSR [8].

11

new segment

locate TCP PCB
for segment

ATCP state = normal?

ECN bit = 1?

Yes

#dup ACKs = 3?

No

put TCP into persist mode
set ATCP state to loss

process data
send ACK, if needed
send data, if needed

pass segment
to tcp_input()

Yes

No

set ATCP state
to congested

Yes

ATCP state = lossNo

ECN bit = 1?

Yes

segment has new
 ACK?

No

set ATCP state
to normal

Yes

No

No

Yes

Figure 5: Flowchart for function atcp input()

go through a almost congested region because not every proposed routing protocol takes traÆc into
account. Based on these considerations, ATCP sets TCP congestion window to one segment upon
Destination Unreachable ICMP messages so that when TCP resumes transmission, it will invoke
slow start algorithm.

We note that the overhead of implementing ATCP consists of the following:

� ATCP timers including timers for fast timeout and retransmission timers.

� Data structures including CWND size, status control blocks, and one additional control block
to maintain the current ATCP state information.

� Functions including atcp input(), atcp output(), atcp slowtimo(), atcp timers(), atcp fasttimo,
and atcp notify().

In all, ATCP code is approximately 2000 lines long with the bulk of the contribution coming from
atcp input() and atcp output().

5 Performance Study

We implemented ATCP in the FreeBSD kernel and in this section we discuss the performance
of our implementation. Our goal in running the various experiments was to examine ATCP's
performance in the presence of bit error, network partition and congestion. Speci�c questions we
looked at included:

1. What is the e�ect of high bit error on ATCP performance? How does ATCP perform when
the wireless bandwidth is low? How does ATCP performance scale with varying RTT values?

12

ATCP state=loss?

ATCP state=disconn?

No

segment is probe?

Yes

set ATCP state
to normal

No

pass segment to
ip_output()

calculte len of data
and window sizes

make TCP header
set options

Yes

Yes

ATCP state
=congested?

new segment?

No

No

Yes

Yes

No

TCP persist
 probe?

discard probe
return

Yes

No

outgoing
packet

Figure 6: Flowchart for function atcp output()

2. How does multipath routing a�ect ATCP's performance in relation to TCP?

3. Does ATCP perform correct congestion control when network congestion occurs?

4. How does ATCP perform, in relation to plain TCP, in ad hoc networks where there are
frequent short disconnections? How does ATCP deal with cases where network partitions
occur during �le transfer?

In order to evaluate the performance of our protocol, we used an experimental testbed consisting of
�ve pentium PCs each of which had two ethernet cards. This gives us a four hop network where the
traÆc in each hop is isolated from the other hops. To model the lossy and low-bandwidth nature of
the wireless links, we emulated, in IP, a 32Kbps channel over each hop4. We modi�ed the IP code
as follows. All calls to ip output() are intercepted and then, based on the link speed and packet
size (including TCP and IP headers), a timer is set to go o� each time a packet can be sent on the
wireless link. At each timeout one packet is removed from a link queue and ip output() is called
normally. In addition to the link bandwidth, the modi�ed IP code also allowed us to introduce bit
errors in the packets during transmission. We used a bit error rate of 10�5 for all experiments.
We also introduced hop-by-hop delays by the simple mechanism of delaying ip input() by some
amount of time at each hop. For instance, to have a 20ms average delay on a link, we generate a
uniform random number between 10ms and 30ms. That number is then converted into an integer
that speci�es a timeout value. Thus, ip input() is called when this timer expires. Network partition
occurs at an intermediate hop in our setup. This host periodically thinks that its next hop is no
longer valid (this is again implemented by using a timer in IP) thus causing ICMP to generate the
appropriate host unreachable message. Network congestion is made to occur at some intermediate

4Emulating the wireless link in this manner gives us precise control over the available wireless bandwidth, discon-
nection events, etc.

13

TCP=NOFREEZE
ATCP=NORMAL

TCP=FROZEN
ATCP=LOSS
copy TCP timers and
cwnd variables to
ATCP’s variables

#dup ack=tcprexmtthreshnew data/ack

TCP retransission
timeout

retransmit packets
from TCP’s buffer

NO

YES

receive ack

forward data/ack
to TCP

receive data/ack

NO

YES

discard TCP probe packets

Figure 7: Flowchart for ATCP transition between normal and loss states.

host as well by
ooding that host with spurious packets (generated by a process running on that
host). This results in the generation of an explicit congestion noti�cation (ECN).

For each data point in our graphs, we use twenty (20) measurements and compute 90% con�-
dence intervals (that are also plotted).

5 10 15 20 25 30 35 40 45 50 55
200

400

600

800

1000

1200

1400

1600

1800

2000

2200

hop to hop delay(ms)

tr
an

sf
er

 ti
m

e(
se

co
nd

)

ATCP vs TCP(file size = 1 MB)

ATCP
TCP

Figure 8: ATCP and TCP performance in the presence of bit error only.

5.1 Loss Case

The �rst experiments we ran did not include partition or congestion events. The connection was
only subjected to bit error that occurred at a BER of 10�5 at each hop. We measured the time

14

taken to transfer a 1MByte �le when using plain TCP and when using ATCP. In Figure 8 we plot
the transfer time (in seconds) on the y-axis and the mean hop-by-hop delay on the x-axis. It is
interesting to note that the time taken by TCP to transfer the �le increases almost linearly from
900s to 1900s with increasing hop-by-hop delays. On the other hand, the time taken by ATCP
is almost constant at approximately 425s. It is instructive to perform a rough computation to
explain the �425s transfer time for ATCP. At a BER of 10�5, we have a end-to-end probability of
packet loss of approximately 3.2% (100 byte packets). Since the raw bandwidth of the connection
is 32Kbps, we get an upperbound of 31Kbps for the actual bandwidth. This bandwidth is shared
by the data packets as well as by ACK traÆc (data is only transferred in one direction). Thus,
the bandwidth available for data is 22.1 Kbps (data size is 100 bytes and ACKs are 40 bytes long).
Thus, in the absence of any timer or other protocol overhead, it should take approximately 361
seconds to transfer the 1MByte �le. It is interesting to note that ATCP is fairly close to this limit.

16 16.5 17 17.5 18 18.5 19 19.5 20 20.5 21
3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

3.55

3.6
x 10

4

se
qu

en
ce

 n
um

be
r

time(second)

TCP sequence numbers in 5 seconds

Figure 9: TCP trace in the presence of bit error only.

The di�erence in behavior between TCP and ATCP is illustrated in the sequence number versus
time plots shown in Figure 9 and Figure 10. In the case of TCP, lost packets or ACKs result in
TCP timeout (the long almost horizontal lines between 17.5s to 18.5s and between 19s and 20s)
and retransmission. In addition, three duplicate ACKs result in retransmission as well (times 16.5s
and again at time 17.25s where the curve drops sharply). In all of these cases, TCP shrinks its
congestion window thus resulting in low throughput (see Figure 11). In the case of ATCP, on the
other hand, we never see a TCP timeout. This is because ATCP puts TCP into persist mode and
retransmits the unacknowledged packet. Likewise, we observe that ATCP retransmits packets upon
seeing three duplicate ACKs (see times 19.45s and 19.6s where the curve drops sharply).

This dramatic di�erence in performance between TCP and ATCP can be explained by the fact
that TCP invokes congestion control frequently during the experiment because of lost packets or
duplicate ACKs. TCP uses slow start to increase its transmit window. ATCP, on the other hand,
puts the TCP sender in persist mode and retransmits the packet whose retransmit timer was about
to expire. Figures 12 and 11 illustrate the typical behavior of the congestion window for TCP and
ATCP (these graphs are snapshots of a random time period and are not related to Figures 9 and 10
directly). In these graphs we plot the congestion window size for consecutive packet transmissions.

15

19 19.2 19.4 19.6 19.8 20 20.2 20.4 20.6 20.8 21
1.358

1.3581

1.3582

1.3583

1.3584

1.3585

1.3586
x 10

7

time(second)

se
qu

en
ce

 n
um

be
r

ATCP sequence number in 2 seconds

Figure 10: ATCP trace in the presence of bit error only.

TCP's congestion window never really has an opportunity to grow in size because losses due to bit
error result in congestion control5. ATCP's congestion window, on the other hand, never shrinks.
This accounts for the dramatic di�erence in TCP and ATCP performance illustrated in Figure 8.
Finally, the linear increase in transfer time for plain TCP with increasing RTT is explained by the
fact that TCP's congestion window remains small making TCP behave almost like a stop-and-wait
protocol. Thus, as the RTT increases, so does the transfer time.

0 20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

co
ng

es
tio

n
w

in
do

w
 s

iz
e

index

TCP congestion window size

Figure 11: TCP congestion windows in the presence of bit error only.

5It is noteworthy that in Figures 11 and 12, we see the e�ect of timeouts (where the congestion window shrinks
to 100 bytes) as well as the e�ects of duplicate ACKs (where the window is cut in half and grows linearly from that
point on) on TCP's congestion window.

16

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

6

7

8
x 10

4

co
ng

es
tio

n
w

in
do

w
 s

iz
e

index

ATCP congestion window size

Figure 12: ATCP congestion windows in the presence of bit error only.

5.2 Congestion Case

In the next set of experiments, we introduced periodic congestion in the network every 5 seconds. In
order to congest the intermediate node, a local source dumps packets into ip output() for a period
of 200ms. In Figure 13 we plot the transfer time for a 1MByte �le as a function of mean hop-by-hop
delay (the bit error rate is 10�5). We notice that the �le transfer time for TCP increases from about
1200s to almost 3000s while ATCP's �le transfer time increases from approximately 460s to about
500s. Again, we can perform some rough calculations to determine the minimum time it takes to
transfer the �le in the presence of congestion. As before, it takes a minimum of 361s to transfer
the �le in the absence of congestion. Since congestion occurs every 5s for a period of 200ms, we
will have approximately 80 congestion events during the �le transfer each lasting 200ms. Thus, the
additional �le transfer time (assuming no data can be transferred during congestion) is 16s for a
total time of 377s. As before, it is interesting to note that ATCP's �le transfer time is quite close
to this minimum.

There are a couple of reasons for the di�erence in performance between ATCP and TCP. First,
the number of timeout events in TCP is high because of the high bit error as well as because of
loss due to congestion. Thus, TCP does not get much of an opportunity to grow its congestion
window. ATCP, on the other hand, defers to TCP's congestion control only when it receives an
ECN message. In other cases, it enters the loss state and retransmits the lost packets from TCP's
bu�er. The slight increase in transfer time for ATCP as a function of hop-by-hop delay is caused
because the round trip time a�ects the rate at which the congestion window can be grown. The
e�ect of this is more pronounced in the case of TCP because TCP invokes congestion control very
often.

5.3 Partition Case

In this section, we consider the case when the network su�ers periodic partitions. For our ex-
periments, a network partition occurs every �ve(5) minutes (at an intermediate node), and the

17

5 10 15 20 25 30 35 40 45 50 55
0

500

1000

1500

2000

2500

3000

3500

hop to hop delay(ms)

tr
an

sf
er

 ti
m

e(
se

co
nd

)

ATCP vs TCP with congestion(file size = 1 MB, ECN)

ATCP
TCP

Figure 13: ATCP and TCP performance in the presence of bit error and congestion.

partition lasts for 1 minute. Figure 14 plots the �le transfer time for a 1MByte �le as a function
of hop-by-hop delay. The transfer time for ATCP is almost constant at a little over 500s while
TCP's �le transfer time increases with hop-by-hop delay. It is easy to explain ATCP's time if we
refer back to Figure 8. The transfer time for ATCP in the presence of loss only is about 425s. If
the network gets partitioned every 5 minutes (i.e., every 300 sec) for one minute, we expect the
transfer time to increase by at least the length of the partition, which is 60s. Note that ATCP
puts TCP into persist mode upon receiving the ICMP destination unreachable message. In persist
mode, TCP generates probe packets at exponentially increasing intervals (starting at 2s) up to a
maximum interval of 60s. The e�ect of this behavior is that the sender does not realize that the
network is connected until it sends out the next probe packet. In the worst case, this may happen
anywhere from 32s to 60s after reconnection! This brings the total transfer time for ATCP to 425s
+ 60s (partition time) + 32s (time to realize the network is no longer partitioned) = 517s. TCP's
poor behavior is caused because of the high error (see Figure 8) as well as serial timeout behavior
when the network is partitioned.

We also plot the delays for ATCP and TCP for transferring a 200 KByte �le when network
partitions happen every 10 minutes and last for �ve(5) minutes(see Figure 15). Our purpose here is
to investigate TCP and ATCP performance when the network experiences long network partitions.
As in the short network partition case, delays for ATCP almost remain a constant while delays for
ATCP grow linearly as the hop-to-hop delay increases.

5.4 Packet Reordering

Packet reordering may happen when there are multiple routes available from the source to the desti-
nation or when route recomputing occurs. When a router has more than one outgoing interface that
leads to the same destination, it can distribute incoming packets among those di�erent interfaces
provided that the packets are going to that same destination. These packets may, therefore, arrive
at the destination out of order because they have taken di�erent routes. Another reason for packet
reordering is route recomputation. This happens when a router fails to locating an outgoing route

18

5 10 15 20 25 30 35 40 45 50 55
0

500

1000

1500

2000

2500

3000

hop to hop delay(ms)

tr
an

sf
er

 ti
m

e(
se

co
nd

)

ATCP vs TCP with partition(file size = 1 MB, SlowStart)

ATCP
TCP

Figure 14: ATCP and TCP performance in the presence of bit error and partition.

5 10 15 20 25 30 35 40 45 50 55
350

400

450

500

550

600

650

700

750

hop to hop delay(ms)

tr
an

sf
er

 ti
m

e(
se

co
nd

)

ATCP vs TCP(file size = 200 KByte, SlowStart)

ATCP
TCP

Figure 15: ATCP and TCP performance in the presence of bit error and larger partition.

19

to forward a packet. In ad hoc wireless networks, route failure occurs frequently. Packets in the
previous route and those that take the new route may reach their destination in a di�erent order,
see Figure 166.

S
H1 H2

H5

D

H6

p0p1

S

H1

H2

H5

D

H6

p0
p1

p2

t = T t = T + 2sec

Figure 16: Route recomputation causes packet reordering.

In our experiment, we simulate packet reordering as follows. We set a timer to expire every
25 seconds on one of the intermediate hosts. The next four(4) packets are then inserted into the
front of the packet queue when the timer expires. Figure 17 plots the transfer time needed by
TCP and ATCP for a 1-MByte �le. TCP needs much more time to transfer the same amount of
data than ATCP does. The amount of time needed for ATCP remains almost a constant around
425 seconds while the transfer time for TCP increases (approximately) linearly from around 940s
to 2010s as the hop-to-hop delay increases from 10ms to 50 ms. The reason for this di�erence is
that ATCP puts the TCP sender into persist mode when it receives three consecutive duplicate
acknowledgements. On the other hand, TCP will start congestion control algorithms resulting in
a substantially smaller congestion window and slow congestion window growth.

5.5 Putting the pieces together

Finally, we wanted to compare the performance of ATCP and TCP in a network which experienced
all of the e�ects of network partition, multipath routing, congestion and bit error, together. We
continue to use 10�5 for the bit error rate. Network partition occurs, as before, every 5 minutes
and lasts for 1 minute. Interfering traÆc is generated at a rate of 8 packets/sec in one experiment
and 16 packets/sec in another (100 byte packets) by each intermediate hop with the exception of
the sender and receiver.

After recovering from a network partition in a real network, we expect the round trip time (rtt)
as well as the bandwidth to change. To simulate the change in bandwidth, we modify the bandwidth
at one intermediate hop each time a partition ends. The bandwidth at that hop can be either 16
kbps, 24 kbps or 32 kbps. If the bandwidth before partition was 32 kbps, after reconnection, either
of 16 or 24 kbps is selected randomly, and so on. To simulate the change in rtt values, we do the
same thing as for the bandwidth. Say the hop delay of the chosen hop was in the range [10-30] ms
before partition. After partition, the delay for that hop is randomly set to lie in either a [60-80]

6Current routing protocols for ad hoc networks take a substantial amount of time to �nd new routes. Consequently
the packets that have been sent before the rerouting may have ample time to reach their destination before a new
route is found. So we believe that packet retransmission because of packet loss due to link error is the major reason
for packet reordering, not route recomputation.

20

5 10 15 20 25 30 35 40 45 50 55

400

600

800

1000

1200

1400

1600

1800

2000

2200

hop to hop delay(ms)

tr
an

sf
er

 ti
m

e(
se

co
nd

)

ATCP vs TCP(file size = 1 MByte)

TCP
ATCP

Figure 17: ATCP and TCP performance in the presence of bit error and packet reordering.

ms range or in a [100-120] ms range. Thus, the bandwidth as well as the rtt changes after each
partition.

Figure 18 illustrates the performance of TCP and ATCP for transferring a 1MB �le for two
values of interfering traÆc. We see a 1/3rd reduction in transfer time for ATCP as compared
with TCP in both cases. The reasons for this have been discussed earlier but it highlights the
e�ectiveness of our solution.

0 1 2 3 4 5 6
0

500

1000

1500

2000

Time to transfer 1 Mbytes(lambda=8, 16)

T
im

e(
se

co
nd

)

TCP

ATCP

TCP

ATCP

Figure 18: TCP and ATCP transfer time for 1 MB data in the general case.

6 Conclusions

In this paper we presented a solution to the problem of running TCP in ad hoc wireless networks.
Our solution is to implement a thin layer between IP and TCP (called ATCP) that ensures correct

21

TCP behavior while maintaining high throughput. This is done by putting TCP into persist mode
when the network is disconnected or when there are losses due to high bit error. The highlights of
ATCP are:

1. End-to-end TCP semantics are maintained.

2. ATCP is transparent which means that nodes with and without ATCP can set up TCP
connections normally.

3. ATCP's performance is almost ideal as measured by the time to transfer large �les.

4. ATCP does not interfere with TCP's congestion control behavior when there is network
congestion.

We believe that our solution is almost ideal for ad hoc networks as demonstrated by the performance
results shown above.

References

[1] A. Bakre and B. R. Badrinath,\I-TCP: Indirect TCP for Mobile Hosts", Proceedings of the
15th International Conference on Distributed Computing Systems, Vancouver, Canada, June
1995, pp. 136{143.

[2] H. Balakrishnan, S. Seshan, and Randy Katz, \Improving Reliable Transport and Hando�
Performance in Cellular Wireless Networks", Wireless Networks, Vol. 1, No. 4, December
(1995).

[3] K. Brown and S. Singh, \M-TCP: TCP for Mobile Cellular Networks", ACM Computer Com-
munication Review , Vol. 27(5), 1997, pp. 19-43.

[4] K. Chandran, S. Raghunathan, S. Venkatesan and R. Prakash, \A Feedback-based Scheme
for Improving TCP Performance in Ad Hoc Wireless Networks", Proceedings 18th Intl. Conf.
on Distributed Computing Systems (ICDCS'98), Amsterdam, The Netherlands, May 26 { 29,
1998.

[5] S. Floyd, \TCP and Explicit Congestion Noti�cation", ACM Computer Communications Re-
view, Vol. 24(5), October 1994, pp. 10 { 23.

[6] Jamal Hadi Salim and Uvaiz Ahmed, \Performance Evaluation of Explicit Congestion Noti�-
cation (ECN) in IP Networks", RFC 2884, July 2000.

[7] G. Holland and N. Vaidya, \Analysis of TCP Performance over Mobile Ad Hoc Networks",
Proceedings ACM Mobile Communications Conference (Mobicom'99), Seattle, WA, August 15
{ 20, 1999.

[8] David B. Johnson and David A. Maltz. \Dynamic source routing in ad hoc wireless networks",
In Tomasz Imielinski and Henry F. Korth, editors, Mobile Computing, pages 153{181. Kluwer
Academic Publishing, 1996.

22

[9] P. Karn,\MACA { a New Channel Access Method for Packet Radio", in ARRL/CRRL Ama-
teur Radio 9th Computer Networking Conference, pp. 134-140, 1990.

[10] V. D. Park and M. S. Corson,\A Highly Adaptive Distributed Routing Algorithm for Mobile
Wireless Networks", Proc. IEEE INFOCOM'97, Kobe, Japan, (1997).

[11] Charles E. Perkins and Pravin Bhagwat, \Routing over multi-hop wireless network of mobile
computers", In Tomasz Imielinski and Henry F. Korth, editors, Mobile Computing, pages
183{205. Kluwer Academic Publishing, 1996.

[12] K. K. Ramakrishnan and S. Floyd, \A Proposal to add Explicit Congestion Noti�cation (ECN)
to IP". RFC 2481, January 1999 (Status: Experimental).

[13] R. Yavatkar and N. Bhagawat,\Improving End-to-End Performance of TCP over Mobile In-
ternetworks", IEEE 1994 Workshop on Mobile Computing Systems and Applications, Santa
Cruz, CA, (1994).

23

