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Abstract. We introduce FErasure Pure Type Systems, an extension to
Pure Type Systems with an erasure semantics centered around a type
constructor V indicating parametric polymorphism. The erasure phase
is guided by lightweight program annotations. The typing rules guaran-
tee that well-typed programs obey a phase distinction between erasable
(compile-time) and non-erasable (run-time) terms.

The erasability of an expression depends only on how its value is
used in the rest of the program. Despite this simple observation, most
languages treat erasability as an intrinsic property of expressions, leading
to code duplication problems. Our approach overcomes this deficiency by
treating erasability extrinsically.

Because the execution model of EPTS generalizes the familiar notions
of type erasure and parametric polymorphism, we believe functional pro-
grammers will find it quite natural to program in such a setting.

1 Background and Motivation

Statically typed programming languages have evolved ever more expressive type
systems. The drive towards increased expressiveness inevitably leads to depen-
dent types, a proven technology for verifying strong correctness properties of
real programs [THJ9IBI8]. For this reason, researchers have long sought practical
ways to include dependent types in programming languages.

Heavy use of the expressive power of dependent types involves the embedding
of proofs of program properties into the program text itself. Often, such proofs
play no essential part in the execution of the program. They are necessary only
as evidence used by the type-checker. Because these proofs can be quite large,
an erasure semantics is critical for practical implementation of a dependently
typed programming language.

However, proofs are not the only erasable parts of a program. Any time a
program exhibits parametric polymorphism (whether it be polymorphism over
proofs, types, numbers, or any other type of value) there are portions of the
program that should be erased. One thesis of this paper is that parametric
polymorphism can be understood entirely in terms of erasability.
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1.1 Erasability Is Extrinsic Rather than Intrinsic

Which parts of a prograrrﬂ may be erased in an erasure-semantics? Our inves-
tigation of erasure semantics is grounded in a simple observation: Erasability
of a program expression is not a property of the expression itself but rather a
property of the context in which we find it. Erasability of a program expression
is determined not by what it is, but by how it is used. In other words, erasabil-
ity is an extrinsic rather than an intrinsic property. We give several examples
demonstrating this principle.

Type annotations. The domain annotation A in the § rule,
(Az:A. M) N —5 M[N/x]

is simply discarded. For this reason, we may safely erase the domain annota-
tions of all A-abstractions in a program without changing their computational
behavior. In this case, the context in which A appears determines its erasability.

Dummy A-binders. The erasure of domain annotations may cause some \-
binders to become superfluous. Consider the term (Aa:Type. Az:a. ) Nat 5. Af-
ter erasing type annotations, we are left with (Aa. Az.z) Nat 5, in which the
binder A« is superfluous because « no longer appears anywhere in its scope. For
any such dummy binder Az, the resulting specialized g rule

(Az. M) N —5 M ife g FV(M)

discards both the dummy binder and the argument which it would otherwise bind
to z. Therefore we may erase both the binding site Az and any argument /N at an
application site to which this A-abstraction may flow during program execution.
By this reasoning, we may erase the underlined portions of our previous example
term, resulting in (A\z. z) 5.

However, other A-abstractions may flow to some of those same application
sites. We should not erase the argument N at an application sitdd M@QN unless
every A-abstraction that may flow to be the value of M has a dummy binder.
In general, the “may-flow-to” relation induces a bipartite graph (see Figure []).
In order to decide if a given A-binder or @-argument may be safely erased, we
must analyze its entire connected component (CC) in this A/@ graph.

In this type of erasure step, the usage of a term determines its erasability.
The (local) erasability of a binder Az depends on how z is (or is not) used in
its scope. The erasability of an argument N depends on its context — whether
the function that is applied to it always ends up being a A-abstraction with a
dummy binder.

! For our purposes here, a program is a term in a typed A-calculus.
2 We sometimes write @ for application in order to have a more tangible notation than
mere juxtaposition.
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Fig. 1. The A\/@ graph induced by the “may-flow-to” relation of a simple program.
The use of y in A?’s body prevents erasure of both the @*-argument and the A'-binder.

Cascading Erasure. Erasure of @-arguments may make other A-binders into
dummies, thereby enabling erasure in other CCs of the A/@ graph. Consider the
following family of identity functions.

let idy = Aa:s. Az:a.x in let idg = Aa. Ax.x in

let id; = Aa:s. A\x:a.idg a x in let idy = Aa. A\z.idy a = in
let idy = Aa:s. A\x:a.idy a x in = let idy = Aa. A\x.idy a x in
let ids = Aa:s. Ax:a.ids a x in let ids = Aa. A\z.idy a z in

After the initial erasure of domain annotations, a cascading sequence of /@
erasure steps is possible in this program. (Consider the Aa binders).

1.2 Intrinsic Notions of Erasability Beget Code Duplication

Most prior attempts to combine dependent types and erasure semantics treat
erasability as an intrinsic property. These attempts may be divided into two
categories: erasure first and dependent types first.

Erasure first. Languages in this category start with a commitment to era-
sure semantics in the form of a syntactic phase distinction whereby types and
program values may not depend on each other computationally. Singleton types
are then used to simulate dependently typed programming. Examples of this
approach include Dependent ML [22], 2mega [200/19], Applied Type Systems [7],
and Haskell with generalized algebraic datatypes [16].

Singleton types are type families T:I — Type for which each type index :1
uniquely determines the one value of type T'i. For example, the declarations

datakind Nat] : kind datatype Nat! : NatT — Type
where Zero? : Nat| where Zero! : Nat! Zerol
Suce] : Nat] — Natl Suce! : Nat! n — Nat! (Succl n)

introduce a singleton type family for the naturals. The datakind declaration
defines a copy of the natural numbers at the type-level. The singleton type Nat!
then connects the type-level version Nat] to the level of run-time expressions.
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A singleton type acts as a proxy between run-time and compile-time notions
of the same datatype: natural numbers in this case. Whenever a program does
case analysis on the value of a singleton type, the type-checker benefits from the
same case analysis at the type-level. In this way, dependence of types on values
is simulated.

Dependent types first. Languages in this category start with full dependent
types. An erasure phase then strips out parts of the program that are irrelevant to
its run-time execution. Examples of this approach include Cayenne [3], Coq [1],
and Epigram [12/[0].

In Cayenne and Coq, the erasability of a subterm depends on its type. All
types (subterms of type Type) are erased in Cayenne and Epigranﬁ. Coq’s pro-
gram extraction mechanism supports erasure of proofs as well as types. A proof
is distinguished by having a proposition as its type, and propositions are distin-
guished as terms of type Prop. In contrast to the universe Prop, Coq has another
universe Set that is the type of the types of all non-erasable program terms.

Code duplication. Because languages in both categories treat erasability as
an intrinsic property of an expression, usually determined by its type, users
of these languages are sometimes forced to duplicate definitions of datatypes
and functions over them in order to achieve a desired erasure behavior. In the
erasure-first approach, programming with singleton types requires duplication of
datatype definitions at the “type” and “kind” levels of the type hierarchyﬂ as
well as duplication of functions that operate on them. In the dependent-types-
first approach, duplication of datatypes is also required if we want values of a
particular type to be erased in one part of a program but not in another.

1.3 Methodology and Outline

We treat erasability as a property not of a term itself, but of the context in which
it is used. In A-calculus, functions reify such contexts, so we track erasability as
a property of functions by distinguishing between functions that do not depend
computationally on their arguments (of type Va:A. B) and those that might (of
type ITx:A. B).

Note that the same A is used in both cases, because erasability is no longer
an intrinsic property of x, but rather a property of the (functional) contexts
making use of z. In this way we avoid the code duplication problem. We have
one type A and therefore functions over A can be written once.

Pure Type Systems (PTS) are a well-known family of typed A-calculi that
encompass a wide variety of type systems [4]. Most dependently typed languages

3 Some work on representations of inductive types in Epigram notes that values of
type families need not store certain indices that, regardless of their type, are uniquely
determined by the value’s data constructor.

4 The singleton type itself may be thought of as a maximally informative copy of the
original datatype.
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have a PTS at their core. Therefore PTS is a good setting for studying features
of dependently types languages. Section [2] briefly reviews the basics of PTS.

Section[Bintroduces a conservative extension to PTS called Erasure Pure Type
Systems (EPTS) supporting the V type described above and rules for checking
that programs using this type satisfy a phase distinction.

Section @] introduces another PTS variant called Implicit Pure Type Systems
(IPTS) that serves as the target language of the erasure phase. This language is
very closely related to Miquel’s Implicit Calculus of Constructions [13].

Section [B] introduces our erasure translation from EPTS to IPTS. This oper-
ation is the basis for the erasure semantics of EPTS (Section [B). We prove that
erasure exhibits properties one would expect: It respects the static and dynamic
semantics of programs and eliminates portions of the source program that do not
affect its final value.

In Sections[7 B, and[@ we discuss implementation issues, future work, and our
conclusions.

2 Pure Type Systems

Pure Type Systems bring organization to type theory []. They generalize Baren-
dregt’s A-cube, which includes such familiar systems as the simply typed A-
calculus, Systems F and F“, the Edinburgh Logical Framework, and the Calculus
of Constructions.

Pure Type Systems are a family of typed lambda calculi. Each PTS has a
specification (S, A, R) consisting of a set S of sorts (a.k.a. universes), a set
A C 82 of azioms, and a set R C S? of rules. We assume a fixed specification
throughout the development. The syntax of PTS is as follows:

M,N,A,B:=x | Xt:A.M|M N |IIz:A.B | s

Note that there is a single syntactic category for types and terms. The metavari-
able s is used to denote sorts. The typing rules of PTS are parameterized by A
and R and can be obtained from those of EPTS (which we will discuss shortly)
by simply ignoring all erasure annotations.

3 Erasure Pure Type Systems

This section introduces Erasure Pure Type Systems (EPTS), an extension of
Pure Type Systems (PTS) with annotations indicating erasable parts of a pro-
gram. The EPTS type system checks the erasability of the parts so annotated.

Syntax. The syntax of EPTS is that of PTS with erasure annotations added.

(terms) M,N,A,B =z | \N"ax:A.M | MQ™N | II"2:A.B | s
(contexts) INAz=¢e|@Naz"A
(times) Tu=r|c
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The metavariable 7 ranges over erasure annotations. The annotation r means
“run-time”. Syntax with this annotation behaves just as it would in PTS without
any annotation. The annotation ¢ means “compile-time” and indicates erasable
portions of a program.

All ITs, Xs, and @s are annotated. Annotations on I7s distinguish between
computational dependence (II") and polymorphism (I7€). In concrete syntax,
we would simply write IT for II" and V for IT¢, but this choice of abstract
syntax affords us economy of presentation. These annotations guide the erasure
operation to be defined in Section [l

Type System. Figure [2] contains typing rules for EPTS. There are two forms
of judgment, ' - M :© A and I' - M :" A. The judgment I' - M :" A says
that M is a well-formed run-time entity, while I" - M :© A says that M is a
well-formed compile-time (erasable) entity.

The type system needs to check that all As and @s marked c are erasable.
Recall from Section [[LT] that erasability of As and @s in the A\/@ graph must be
considered one connected component (CC) at a time. The flow analysis implicit
in the typing rules ensures that every A and @ in the same CC are annotated
with the same 7. Therefore, if every A®-binder is erasable, then so is every @°-
argument. So we need only verify that each A€ is erasable — for each A¢z:A. M
in the program, all free occurrences of x in M must appear either inside a type
annotation or inside an @¢ argument.

The typing rules enforce this invariant using the following technique, due to
Pfenning [I7]. Each A®-bound variable z is marked with ¢ when it is added to
the typing context. This mark is then locally switched off (reset) whenever we
check a type annotation or @¢ argument. We then require that the mark c has
been switched off by the time we reach any occurrence of x. For economy of
presentation, an “off” mark in the typing context is represented as an r mark.
Passing this mark /reset/check test guarantees that each A€ is actually erasable.

Definition (Context Reset Operation) I'°
e = (D" A)° =T1°,2:"A

The key steps of the mark/reset/check test are found in the typing rules IT-
INTRO (mark), IT-ELIM and RESET (reset), and VAR (check). In particular,
notice how rule II-INTRO marks context entries and IT-ELIM checks function
arguments for both 7 =r and 7 = c.

Rules VAR, WEAK, IT-INTRO, and CONV each have a premise of the form
I' - A :© 5. The purpose of these rules is to check that A is well-formed as a
type. Because these rules deal explicitly with types, they use the compile-time
typing judgment. In particular, domain annotations are considered as compile-
time entities in the I7-INTRO rule.

The II-FORM rule may seem counter-intuitive at first. Because IT is a type
former, one might expect this rule to use c-judgments rather than r ones. How-
ever, in a dependently typed language, terms may compute (at run-time) to
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I'-EM:" A
AXIoM VAR WEAK
(s51,50) € A I'-A:Cs r'cAs TI'+FM:"B
|—51:r52 F,a::rAl—x:rA F,a::TAI—M:rB
IT-FORM
(s1,82,83) ER A s F,x:rAI—B:rsz
'O z:A.B:" s5
IT-INTRO IT-ELiMm
I'tI"z:A.B°s Taz"A+M:"B 'tM:"II':A B TFN:TA
I'EXNazAM:"II"z:A. B I'+ MQ@"N :" B[N/x]
CoNv RESET
remMm:"A TI+B:s A=3B r°rm:"A

r-mM:"B I'eM:*A

Fig. 2. Typing rules for EPTS. (The typing rules for PTS may be obtained from these
by ignoring all erasure annotations and removing the then useless RESET rule).

types, so the r is appropriate. Another possible surprise is that x is marked with
r rather than 7 in the typing context of B. This is because the binding site of
the = will never be erased: The only purpose of the context mark c is to check
erasability of a AC.

If we ignore erasure annotations, these typing rules are exactly those of PTS.
The extra restrictions on erasure annotations ensure the following sort of phase
distinction: evaluation of any well-typed term never depends on its compile-time
portions. We formalize and prove this in Section [B

Semantics. The default operational semantics of EPTS is simply S-reduction.
We do not commit to any particular evaluation order, so the single-step reduction
relation is non-deterministic.

Actually this is only one of two different operational semantics for EPTS. The
remainder of this paper introduces an erasure semantics with potential for more
efficient execution.

Meta-theory. The top half of Figure d depicts the meta-theory of EPTS. Each
box in that figure contains a particular result of the meta-theory. As the devel-
opment follows closely that of Pure Type Systems, we focus on the changes due
to introducing erasure annotations.

First we investigate properties of the context reset operation I'°. It is idempo-
tent (Lemma 1) and weakens the strength of the typing assumptions (Lemma 2).
An admissible phase-weakening rule (Corollary 3) follows immediately from
Lemma 2. Proofs: Lemma 1 is easily proved by induction on I'. Lemma 2 is
proved by structural induction on the typing derivation. The interesting cases
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I'-M:A
AXiom VAR WEAK
(s1,82) € A I'FA:s I'FA:s I'-M:B
Fs1:s2 eAlFz: A Ie:A-M:B
II-FORM V-FOrM
(s1,82,83) ER (s1,82,83) ER
I'EA:s; Ixz:AF B:so I'HA:s Ixz:AF B:so
I'+1Tz:A. B : s3 I'+Vx:A. B : s3
V-INTRO
IT-INTRO x & FV(M)
I'tllxz:A.B:s Ix:A-M: B I'+-Vx:A.B:s I''x:A-M: B
I'tEXe. M :ITz:A. B I'M :Vz:A. B
1I-ELim V-ELiM
I'M:IIxz:A.B I'EN:A ' M :Vz:A. B I'EN:A
I'M N : B[N/x] I'M : B[N/z]
Conv
I'=M:A I'-B:s A=3B
I'-M:B

Fig. 3. Typing rules for IPTS. Note that V-INTRO and V-ELIM are not syntax-directed.

are RESET, where Lemma 1 is used, and VAR and WEAK, which case split on
whether A is empty. Corollary 3 is an immediate consequence of Lemma 2.

Next, we prove the Substitution Lemma (4). Note that the mode 71 of the
typing judgment for the term N to be substituted must match the context entry
mark of the variable z for which it will be substituted. Proof: By induction on
the typing derivation. The interesting cases are RESET (requiring Corollary 3)
and VAR and WEAK (each proceeding by cases on whether A = ¢ or not).

The Coherence Lemma (5) says that our type system is internally coherent in
the following way — If it can prove that M has type A, then it can also prove
that A is a type. Proof: By structural induction on the typing derivation. The
interesting cases are RESET, which uses Lemma 1, and I7-ELiM, which makes
use of Corollary 3 and Lemma 4.

Finally, Subject Reduction (Lemma 6) tells us that evaluation preserves types.
Note that the mode 7 of the typing judgment is preserved as well as the type.
Proof: By structural induction on the typing derivation. The most interesting
case is II-ELIM in which we use Lemma 4.

4 TImplicit Pure Type Systems

IPTS, the target language of the erasure translation, is an implicitly typed
(Curry-style) calculus with both explicit and implicit dependent products. This
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calculus is modeled after Miquel’s Implicit Calculus of Constructions (ICC)
[14U13], a Curry-style variant of Luo’s Extended Calculus of Constructions [10].
ICC has a rich notion of subtyping that orders Church encodings at various
levels of type refinement in a natural way [13].

IPTS is both more and less general than ICC. It is more general because
IPTS is defined in terms of an arbitrary PTS specification. It is less general
because ICC (1) uses n-conversion instead of B-conversion in determining type
equality, (2) supports a notion of universe subtyping called cumulativity as in
Luo’s Extended Calculus of Constructions [I0], and (3) contains extra typing
rules ensuring 7 subject reduction and strengthening.

The syntax of IPTS is as follows:

(terms) M,N,A,B =z | x. M| M N |I[Tz:A.B |Va:A.B | s
(contexts) INAw=¢|Tx:A

Note the distinction between ITx:A. B and Vz:A. B as well as the omission of
domain labels from A-abstractions.

The difference between explicit and implicit products shows up in the type
system (Figure B)). Whereas the explicit product is introduced by functional
abstraction (rule IT-INTRO) and eliminated by function application (rule IT-
ELIM), no syntactic cues indicate introduction or elimination of the implicit
product (rules V-INTRO and V-ELIM). So IT indicates functional abstraction and
V indicates polymorphism.

5 Erasure
We now define erasure as a translation from EPTS to IPTS.
Definition (Erasure). I'* and M*

e*=¢ (Iw:TA)® =TI, 2:A° x* =z s*=s
(IT'z:A. B)® = ITa:A*. B® (Nz:A. M)® = \a. M® (MQ'N)* = M* N*
(ITx:A. B)® = Va:A®. B* (ACa:A. M)* = M* (MQCN)®* = M*

The bottom half of Figure [ sketches out the meta-theory of erasure. We now
discuss the significance of the results listed there.

A pair of key lemmas (7 and 8) characterize which variable occurrences in a
term may survive erasure: those which are tagged with r in the typing context.
Proofs: Lemmas 7 and 8 must be proved simultaneously by structural induction
on typing derivations. The WEAK case of the proof of Lemma 7 requires Lemma 8
and the IT-INTRO case of the proof of Lemma 8 requires Lemma 7.

Preservation of Reductions. Since computation happens by substitution,
we first show that erasure commutes with substitution (Lemma 9). We then
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Phase
3 Weakening
2
IEM:"A ILAFM:™ A | e
'-M: A I'° AFM: A =
Substitution
Lemma 5 Coherence
™A AFM:™ B T'FN:™ A 'EM:™A
I, A[N/z] - M[N/z] :™ B[N/x] (3s) A=s Vv TI'FA:SCs
-------------------------- - Subject
13 Erasure Reflects Reductions \\\ 6 Reduction
'-M:™A M'—>ﬁE ! '-M:™A M —4 N
(3N) N*=E A M-} N| | '-N:TA
\
Erasure\\\ ------------------- -
- 5 Preserves Types
IeCAFM:"A 'EM:™ A 14
T ng(M.) 1—\0 '_ M. :AQ
'-M:™A AFN:™B
M= N
r-M:"A

domain(I') D FV(M?®)

'M:™ A M—>Z§N
MY 5 N*

Erasure I
Preserves Reductions

9 5 P TFM:™A MHBN
(MIN/a])" = MEN® ) e e = e

Fig. 4. Identities and admissible rules in the meta-theory of EPTS (above the dotted
line) and erasure (below it). Arrows indicate proof dependencies.
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show that erasure respects reduction in the following sense: Each reduction step
of a well-formed term in EPTS maps to either one or zero reduction steps in
IPTS (Theorem 10). Proof: Lemma 9 is proved by straightforward induction on
M. Theorem 10 is by straightforward induction over the typing derivation. The
interesting cases are IT-INTRO and I7T-EvLIM, where we split by cases on 7. In the
II-ELIM case when the reduction step is (, the proof depends on Lemma 9 in
the case where 7 = r and on Lemma 7 in the case where 7 = c.

The proof of Theorem 10 shows that some EPTS reductions in fact do no
work when viewed through the lens of erasure. This is precisely why we want an
erasure semantics — to eliminate the work associated with run-time-irrelevant
portions of a program. Examination of the proof shows where erasure eliminates
work. As expected, the eliminated work includes erased redices (terms of the
form (A€z:A. M)@QCN, which erase to just M*®) as well as unnecessary reduction
steps inside domain-annotations and erased arguments.

Corollaries 11 and 12 follow immediately from Theorem 10. The proof of
Corollary 12 also requires the Church-Rosser Theorem.

Preservation of Typing. Again, we first investigate the properties of the
context reset operation. The erasure operation annihilates it (Lemma 14). Proof:
By induction on I'.

Then we prove that erasure preserves well-typedness (Theorem 15). Proof:
We prove Theorem 15 by structural induction on the typing derivation. The
interesting cases are: RESET, in which Lemma 14 is used to simplify 1°®; II-
INTRO, in which Lemma 7 is used to ensure the premise z ¢ FV(M®) of the
V-INTRO rule of IPTS; IT-ELIM, in which Lemma 9 is used to simplify the type
of the application; and CONV, in which Coherence and Corollary 12 are used to
establish the premise A® =g B*® of the IPTS CONV rule.

Reflection of Reductions. Next we show that a reduction of a post-erasure
IPTS term can be reflected back into one or more EPTS reductions (Theo-
rem 13). Proof: By structural induction on the typing derivation. The interesting
case is II-ELIM when the @-annotation is 7 = r and the reduction is a [(-step
(Az. P*) No* — 5 P*[No®/x]. In this case, M = Mo@"Ng and My® = Az. P* and
E = P*[Ny*/z]. The only way M® can be \z. P*® is if My is a A\'z:B. P nested
under some (perhaps zero) “frames” of the form A\¢y:C.[] or [ J@CL. Because
the type of My is II'x:A. B, we know the top-most frame cannot be a AC. Sim-
ilarly, for typing reasons, the bottom-most frame cannot be a @€, because it is
applied to a A". Therefore, if there are any frames at all on top of A'z:B. P, then
there are at least two, and at some point there is a A\¢ frame just underneath
a Q€ one, forming a redex. If we reduce this redex, the rest of the frame struc-
ture remains intact. We repeat this process until no intermediate frames are left.
Then My —j A'z:Blf]. P[f] where 6 is the simultaneous substitution effected
by the sequence of reductions. Because 6 is comprised solely of substitutions
for A\®-bound variables, Lemma 7 tells us there will be no occurrences of these
variables inside P°®. Therefore P[0]® = P*[0®] = P*. Let N = P[0][No/x]. Then

N*® = P[0][No/2]* = P[0]*[No® /2] = P*[No*/a] = E
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and M —§ N because
M = My@Q"Ny —7% (A "=:B[6]. P[0])@"Ny — 5 P[6][No/z] = N,

thereby completing this case of the proof.

The proof of Theorem 13 shows that certain reduction steps in IPTS (of post-
erasure EPTS terms) require additional reductions in the original EPTS term
before the reduction corresponding to that in IPTS can take place in EPTS.
This means that some of the work that erasure avoids is unavoidable, in general,
without erasure.

Theorem 13 says that any post-erasure reduction corresponds to some poten-
tial pre-erasure reductions. In other words, the erasure of a well-formed EPTS
term cannot reduce in IPTS in a strange way that was not possible in EPTS.

6 Erasure Semantics

The erasure semantics for EPTS is simply this: First erase and then execute in
IPTS. The meta-theory supports the claim that this is a good erasure semantics.

Theorem 10 : erasure eliminates some old work
Theorem 13 : erasure does not introduce any new work
Theorem 15 : erasure preserves the meanings (types) of programs

One final result supports the validity of our erasure semantics for EPTS. We
would not want a PTS program to compute to a value while some annotation of
it diverges under the erasure semantics. Thankfully, this cannot happen.

Theorem (Erasure Preserves Strong Normalization)
For a strongly normalizing PTS, any well-typed term in the corresponding EPTS
erases to a strongly normalizing IPTS term.

Proof: Suppose there is an infinite reduction sequence in IPTS starting with
the erasure of a well-typed term M in EPTS. By Theorem 13 and Lemma 6,
this reflects back into EPTS as an infinite reduction sequence starting with M.
Because b (the erasure-annotation-forgetting map from EPTS to PTS) preserves
both reduction steps and typing judgments, we obtain an infinite reduction se-
quence in the underlying PTS starting with the well-typed term M°. But this
contradicts our assumption that the underlying PTS is strongly-normalizing. O

7 Implementation

It should be easy to extend an existing type-checker to handle V-types. One
must add 7 annotations to the abstract syntax and some extra logic to the type-
checker to handle these annotations properly. The only potential increase in the
time complexity of type-checking comes from the context reset operation I™°.
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However, a clever representation of typing contexts renders reset a constant-
time operation. The new representation of typing contexts is as follows:

= (1) [a=¢| oA
(where ¢ denotes an integer). The context operations then become

. (F50),z:CA = (I, 21 A5 ) PN A
e =(&:0) i), A = (I, 2t A i) (7';9) (F3i+1)

(

ﬁ> '\_P

wfAe (i) iff 27Ael and j <i

The top-level ¢ in I' = (f’ ;1) counts how many times prefixes of I" have been
reset. For any binding x:7 A € I originally introduced with the mark 7, we have
j >4 iff (1) 7 = c and (2) there have been no resets since x was introduced —
exactly the condition in which the binding for x would be marked with ¢ in the
original implementation. The implementation of x:"A € I' is therefore correct.

8 Future Work

8.1 Proof Irrelevance

In a dependently typed language, the conversion typing rule reflects the seman-
tics of a language back into its type system. In EPTS, however, there are two
notions of operational semantics. The CONV rule of EPTS reflects the default
semantics rather than the erasure semantics. We may attempt to remedy this
by modifying the CoNv rule as follows:

Conv®
I'M:"A TI'vB:“s A*=4B°

r-m:"nB

This variant of EPTS is interesting because the CONV® rule seems to yield
a generalized form of irrelevance, including proof irrelevance as a special case.
Proof irrelevance in a conversion rule means that two proofs are considered equal
if they prove the same proposition, regardless of how they each prove it. The
Conv® rule only requires the run-time portions of A and B to be equal —
compile-time portions of A and B (including proofs and perhaps other terms)
are considered irrelevant.

Pfenning’s modal variant of LF with built-in notions of intensional code and
proof irrelevance [I7] provided inspiration for EPTS. The conversion rule of that
system seems to us quite similar to CONV*®.

8.2 Parametricity

Languages such as Haskell and ML make heavy use of parametric polymorphism
centered around a V type constructor. Parametricity is a property of such lan-
guages enabling one to derive “free theorems” about polymorphic terms based
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solely on their type [2I]. We conjecture that the V-types of EPTS satisfy para-
metricity properties similar to those of System F.

Many studies of parametricity for System F are based on denotational seman-
tics. It seems impossible to develop a semantic model for an arbitrary EPTS.
We think a proof-theoretic approach is necessary, somehow generalizing existing

work on System F [I82I11].

9 Conclusions

Languages combining dependent types with erasure semantics sometimes require
users to maintain more than one copy of a datatype in order to ensure erasure
of some of its values but not others. This problem stems from the treatment of
erasability as an intrinsic property of data, rather than a property of the way
that data is used.

By treating erasability extrinsically — distinguishing functions that don’t
depend computationally on their arguments from those that do — we overcome
the code duplication problem and arrive at a general form of polymorphism over
arbitrary sorts of entities (types, proofs, numbers, etcetera).

This change of perspective leads to a notion of erasure generalizing both
type-erasure and proof-erasure (program-extraction). We hope the resulting no-
tion of computational irrelevance similarly generalizes both proof-irrelevance and
parametricity-style notions of representation independence.
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