Models
Sequent Calculus
and
Tableau Proofs
for first order logic

Models

- To give semantics to formulas in first order logic we need a model.
- A model for L(C,F,P) is a mathematical structure M = <D,I> where
 - D is a non empty set called the domain of M
 - I is a mapping, called an interpretation, that associates
 - $c^{l} \in D$ for every $c \in C$
 - $f^1 \in D^n \to D$ for every n-ary function symbol $f \in F$
 - $p^{l} \subseteq D^{n}$ for every n-ary predicate symbol $p \in P$

Meanings

- We will use a model to give meanings to sentences (closed formula)
- We will need an assignment to give meanings to variables (sometimes called a valuation)
- An assignment A for a model M =<D,I> is a mapping from the set of variables to the set D
- The image of a variable v under a valuation A we denote v^A

$$v^I = v^A$$

Exercise

 Given a model and an assignment design a function mapping quantifier free formula to their meanings.

Next time we will think about quantifers and meanings

Exercise

- Work out the details of a logic language, and a model for it, for the integers modulo 3 under addition. Start with a few constants and function symbols (at least + and -)
- Add a few predicates
- Pick a formula you expect to be true, show that it is true in your model.

Definitions

- Let A be a formula with no free variables
- Let I be an interpretation
- We say
 - I satisfies a formula A if |= A holds
 - A set of formula S is valid if every interpretation of S satisfies every formula in S
 - A set of formula is satisfiable (or consistent) if there is some interpretation of S that satisifes every formula in S
 - A set of formual is unsatisfiable (or inconsistent) if it is not satisfiable (i.e. every interpretation falsifies some formula of S)
 - A model M =<D,I> of a set S is an interpretation I that satisifies every formula of S

Sequent calculus

- A sequent A, B, C => D, E, F
 - provided A B and C are true
 - We can show at least one of D E F are true
- Similar to natural deduction but makes the assumptions explicit
- A sequent is true if it is true in all valuations
- The basic step for proving a sequent is for the same term to be on both sides
 - -AB => CB

basic sequent: $A, \Gamma \Rightarrow A, \Delta$

Negation rules:

$$\frac{\Gamma \Rightarrow \Delta, A}{\neg A, \Gamma \Rightarrow \Delta} \ (\neg l) \qquad \frac{A, \Gamma \Rightarrow \Delta}{\Gamma \Rightarrow \Delta, \neg A} \ (\neg r)$$

Conjunction rules:

$$\frac{A,\,B,\,\Gamma\Rightarrow\Delta}{A\,\wedge\,B,\,\Gamma\Rightarrow\Delta}\,\,(\wedge l)\qquad \frac{\Gamma\Rightarrow\Delta,\,A\quad\Gamma\Rightarrow\Delta,\,B}{\Gamma\Rightarrow\Delta,\,A\wedge B}\,\,(\wedge r)$$

Disjunction rules:

$$\frac{A,\,\Gamma\Rightarrow\Delta\quad B,\,\Gamma\Rightarrow\Delta}{A\vee B,\,\Gamma\Rightarrow\Delta} \,\,{}_{(\vee l)} \qquad \frac{\Gamma\Rightarrow\Delta,\,A,\,B}{\Gamma\Rightarrow\Delta,\,A\vee B} \,\,{}_{(\vee r)}$$

Implication rules:

$$\frac{\Gamma \Rightarrow \Delta, A \quad B, \Gamma \Rightarrow \Delta}{A \to B, \Gamma \Rightarrow \Delta} \ (\to l) \qquad \frac{A, \Gamma \Rightarrow \Delta, B}{\Gamma \Rightarrow \Delta, A \to B} \ (\to r)$$

Rules for FO logic

- Recall some properties of the sequent calculus
 - Weakening (throw things away on the left or add things on the right)
 - Exchange (duplicate things)
- While we don't usually need these rules, in FO logic they are necessary to deal with quantifies
- We need new rules for quantifiers

Here are the sequent rules for \forall :

$$\frac{A[t/x], \Gamma \Rightarrow \Delta}{\forall x \ A, \Gamma \Rightarrow \Delta} \ (\forall l) \qquad \frac{\Gamma \Rightarrow \Delta, A}{\Gamma \Rightarrow \Delta, \forall x \ A} \ (\forall r)$$

Notes

1. The rule $\forall r$ only holds if (the now free) variable x is not free in Γ or Δ

2. The rule $\forall I$ lets one create many instances of $\forall x A$

Here are the sequent rules for \exists :

$$\frac{A, \Gamma \Rightarrow \Delta}{\exists x \ A, \Gamma \Rightarrow \Delta} \ ^{(\exists l)} \qquad \frac{\Gamma \Rightarrow \Delta, \ A[t/x]}{\Gamma \Rightarrow \Delta, \ \exists x \ A} \ ^{(\exists r)}$$

Notes

- 1. The rule $\exists I$ only holds if (the now free) variable x is not free in Γ or Δ
- 2. The rule $\exists r$ lets one create many instances of $\forall x A$
- 3. One may always rename a bound variable if one needs to.

Implementing the Sequent Calculus

- We will implement the sequent calculus in Haskell
- We will make it an interactive program
- The user will choose rules to transform one sequent into an equivalent one
- We will use monads to deal with possible mistakes by the user
- If a rule doesn't apply the computation will fail in the monad.
- By using Monad Plus we can also deal with more than one choice.

Discriminating formulas in FO logic

 As in predicate logic we can discriminate formulas into certain sets (e.g. Alpha, Beta, Lit)