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Abstract. Crowd-sourced sensing systems facilitate unprecedented in-
sight into our local environments by leveraging voluntarily contributed
data from the impressive array of smartphone sensors (GPS, audio, im-
age, accelerometer, etc.). However, user participation in crowd-sourced
sensing will be inhibited if people cannot trust the system to maintain
their privacy. On the other hand, data modified for privacy may be of
limited use to the system without mechanisms to verify integrity. In this
paper, we present an interactive proof protocol that allows an interme-
diary to convince a data consumer that it is accurately performing a
privacy-preserving transformation mixing inputs from multiple expected
sources, but without revealing those inputs. Additionally, we discuss pri-
vacy transformation functions that are compatible with the protocol, and
show that the protocol introduces very little overhead, making it ideal
for real-time crowd-sourced data collection.
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1 Introduction

Crowd-sourced sensing systems must protect the privacy of all data sources,
whilst also providing integrity guarantees for the collected data. Data obtained
from the crowd can enable novel people-centric applications in health care, traf-
fic, and environmental monitoring systems [17, 15, 13]. User contribution of
sensitive data such as location may be inhibited due to privacy concerns. One
way to protect user privacy is to perform a privacy-preserving transformation,
such as mixing, on the raw data collected from mobile users. But this may en-
gender reluctance to trust the integrity of the transformation in the consumer.
The conundrum here is that it is difficult to prove the transformation’s integrity
without revealing the raw data and compromising the privacy of data sources.
Thus, integrity and privacy wind up as dueling goals of a crowd-sourced sensing
system.

Most prior approaches have either proposed novel transformation functions
to provide privacy [8, 16], or proposed mechanisms to verify data integrity [7],
but have not addressed both problems simultaneously. VPriv [14] is the only
prior work that attempts to offer both integrity and privacy using an additive
homomorphic commitment scheme, for the application scenario of computing
tolls over paths taken by vehicles. But its integrity is limited to additive func-
tions, while its privacy is limited by the need for random spot checks.
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Our previous work [6] provided a mechanism to verify the integrity of privacy-
preserving transformations of data from an individual source without revealing
the raw data. But it did not address the problem of verifying the integrity of
privacy-preserving transformations that mix data from multiple data sources.
Mixing data from multiple users, as opposed to performing transformations on
data from a single user, is essential to ensuring better privacy for all users[8].
However, simultaneously achieving privacy and integrity with mixing is not triv-
ial. It is reasonable to assume a user’s vested interest in her own privacy, but not
necessarily in the privacy of others. Thus, the integrity verification must now be
robust to any privacy threats that stem from a collusion between a data source
and the data consumer.

In this paper, we address the problem of privacy-preserving online mixing of
mobile multi-user data. Our work uses the system model illustrated in Fig. 1. It
assumes that multiple independent data sources or producers forward their raw
data to a trusted privacy proxy. The proxy then performs a privacy-preserving
transformation on the received data and forwards the result to a data consumer.
Here, the proxy is analogous to a Tor mix-node [5], which mixes data from
multiple sources to provide anonymity. Note that the proxy is trusted by the
sources but not by the consumer.

Our goal is to enable the privacy proxy to assure the data consumer that, the
result it publishes is indeed the output of a given privacy-preserving transfor-
mation on data from multiple expected sources as input (integrity guarantee),
without having to provide that input to the consumer (privacy guarantee). The
contributions of this paper include:

– An interactive proof protocol [10], using which, only an honest privacy proxy
can convince a data consumer that it is correctly computing a given privacy-
preserving transformation that mixes data from multiple users. Most impor-
tantly, the proof requires the proxy to send the consumer only the output of
the transformation. Since the inputs — sensitive data contributed by partic-
ipants — are never sent to the consumer, each participant’s privacy remains
protected (Section 4).

– Demonstrating privacy-preserving transformations whose integrity can be
proved using our interactive proof protocol (Section 5).

– Deriving the overhead introduced by the protocol. We show that the overhead
is a fraction of the complexity of the privacy-preserving transformation being
computed by the proxy (Section 6)

2 Problem Statement

Only an honest privacy proxy P should be able to convince a data consumer
C that it is indeed publishing the result of a privacy-preserving transformation
function fpriv on data Dj = {d1j , d2j , ..., dnj} received from a set of sources
S = {s1, s2, ..., sn} in interval j (Fig. 1). C receives the result pj = fpriv(Dj),
but never the data Dj . Essentially, the following must be satisfied:
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– Integrity requirement. C must be convinced with high probability that
pj = fpriv(Dj) only if P is honest

– Privacy requirement. C must not be able to learn or verify that Dj =
{d1j , d2j , ..., dnj}

s2

s1

sn

P

Dj = d1j , ..., dnj

pj = fpriv(Dj)

C

accept pj ,
challenge P

d1j

d2j

dnj

pj

Fig. 1. System model

3 Threat Model

The design of our protocol aims to both prevent a malicious data consumer
C from discovering any raw data D contributed by any of the sources S, and
prevent a malicious privacy proxy P from using either alternate transformation
functions besides fpriv, or data besides D, or both.

Insiders pose significant risks to the system. We assume that the data con-
sumer is an adversary of privacy, but not of integrity. This is reasonable be-
cause the data consumer C has a vested interest in the integrity of the privacy-
preserving transformation. Further, we assume that the privacy proxy P is an
adversary of integrity, but not of privacy. The reason being, that the data sources
trust P to protect their privacy, but the consumer may not trust P to preserve
data integrity. An implication of the above adversarial model is that P and C
do not collude in any way. Since sources could contribute bogus information to
skew the collected data, they are considered adversaries of integrity. Our proof
protocol alone, however, is not designed to address the threat of fabricated data
from the sources. The proof only guarantees that the output of a privacy trans-
formation was computed using inputs from S, but the integrity of those inputs
— the sensory data collected by S – cannot be guaranteed by our protocol. Our
earlier work [7] describes the design and implementation of a trusted sensing
platform that can be used to address this issue.

We do not consider denial-of-service attacks in which communicating parties
P , C, and S can potentially suppress responses that are expected by others. Nor
do we consider threats from eavesdropping adversaries that can be mitigated by
standard network security protocols, like TLS.

Our work focuses on the integrity and privacy of content rather than their
origin. Thus, attacks that could reveal or alter the origin of a message are not
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si P

interval j : sense dij

if j mod h = 0,
choose random m from [0, h− 1]
set m = m + j

if j = m,
save [dij , j]

si → P : dij P → C: pj = fpriv(dij)

... ...

Table 1. Normal Operation

considered. Directing traffic from S through a mix network like Tor [5] and using
anonymous group signatures [3] for authentication can mitigate such attacks.

Finally, we assume that C and sources in S honestly execute the protocol
since C has a vested interest in collecting high-integrity data, and S has a vested
interest in protecting personal privacy. Nevertheless, C is free to perform offline
privacy attacks on the data received from P . Mitigation strategies for such at-
tacks have been addressed in the security analysis of our prior work [6], and are
not discussed in this paper.

4 Interactive Proof Protocol

As shown in Fig. 1, after receiving pj , C may randomly choose to issue a challenge
that will require P to prove that it is honestly computing fpriv using inputs from
sources S. This challenge message marks the beginning of the interactive proof
protocol. After the proof, C will be convinced about the integrity of the data
with high probability only when P is honest, but not otherwise.

4.1 Preliminaries

For the protocol to work, we require a shared symmetric key kic between the
source si and the data consumer C, a key kip between si and privacy proxy P ,
and a buffer at si that is large enough to store data collected in b distinct inter-
vals. Where encryption/decryption is necessary, the notation Enckic

and Deckic

indicate a symmetric encryption and decryption algorithm (e.g. AES) using key
kic. Additionally, we need the privacy-preserving transformation function fpriv

to satisfy the following condition: given an obfuscation function g(r, x) that ob-
fuscates input x using random number r that we call the obfuscation key, we
require that

fpriv(g(r, x1j), ..., g(r, xmj)) = g(r, fpriv(x1j , ..., xmj)) (1)

So for example, let g(r, x) = r · x, and fpriv(x1j , ..., xmj) = mean(x1j , ..., xmj)
then,
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fpriv(g(r, x1j), ..., g(r, xmj)) = mean(r · x1j , ..., r · xmj)
= r ·mean(x1j , ..., xmj)
= g(r, fpriv(x1j , ..., xmj))

Here, the privacy-preserving transformation is simply a mean of its inputs (raw
data from sources) and we can see that this particular transformation satisfies
Equation (1). What is significant, is that Equation (1) establishes a relation-
ship between the transformed value, and obfuscated raw data from sources. This
relationship is fundamental to the success of our protocol because it gives us
the ability to check the integrity of the published data without requiring the
potentially sensitive raw data from sources.

Data sources must, however, provide obfuscated data to the consumer during
the protocol. Fortunately, without the obfuscation key, the consumer may have
no way to extract the correct raw data, especially because the key changes every
interval. Further, even if there was a way, say by using an oracle, the consumer
could only ever extract raw data for half the number of intervals in which it
challenges the proxy. So, if C challenges 4 out of 10 intervals, then using the
oracle it could extract raw data for 2 intervals.

4.2 Protocol Details

Table 1 shows the normal operation of source si, which, continuously picks a
random interval j from every h, and saves the corresponding data in its buffer.
Once the buffer is full, si is ready to participate in the interactive proof protocol.
We explain later how each source si picks the same j.

The interactive proof protocol begins once C randomly issues one of two
challenges to P (via S, see Tab. 2). On receiving a response, C performs one of
two different tests to check the response’s integrity.

Both tests are performed using obfuscated raw data from sources in S or
from their chosen leader slead (more on this later). Note that P does not know
which test will be performed until it has responded. Thus, P ’s initial response
acts as a bit commitment [2]. The tests serve three purposes:

1. Allow an honest P to pass either test with the same response, but force a
dishonest P to create a different response for each. Since a dishonest P does
not know which test is going to be performed, its chances of passing are 1/2.
If P repeatedly passes, then C has more confidence in P ’s honesty.

2. Make sure that obfuscated raw data from S and the corresponding obfusca-
tion key are not simultaneously available to C during any given challenge.
If that were the case, C could extract the raw sensitive data from the obfus-
cated values. We can see, that during Challenge 1, C has the obfuscation
key but not the obfuscated data. Where as in Challenge 2, its vice versa.

3. Use one test to check that a published transformed value was indeed com-
puted using raw data from si, and the other to check that the privacy-
preserving transformation computed by P was indeed fpriv. Test 1 does

the former while Test 2 does the latter. Test 1 compares fpriv(Ol)
?=
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Sources S = {s1, ..., sn} C

for each si ∈ S,
With probability 1/2:
C → si: Enckic(Challenge 1)
OR, C → si: Enckic(Challenge 2)

at each si ∈ S,
decrypt challenge
Pick random number r
randomly choose saved interval l, l ≤ j

Sources S = {s1, ..., sn} P

at each si ∈ S,
si → P : Mi0 = Enckip(g(r, dil))

Ol = Deck1p(M10), ..., Decknp(Mn0)
P → C: p = fpriv(Ol)

Sources S = {s1, ..., sn} C

if Challenge 1,
slead → C: M1 = Encklead,c(r, l)

else,
at each si ∈ S,
si → C: Mi2 = Enckic(g(r, dil))

M1 OR M12, ..., Mn2

Test 1 (if Challenge 1):
r, l = Decklead,c(M1)
if p 6= g(r, pl),
reject

Test 2 (if Challenge 2):
Ol = Deck1c(M12), ..., Decknc(Mn2)
if p 6= fpriv(Ol),
reject

Table 2. Interactive proof protocol

g(r, fpriv(Dl)), where Ol is obfuscated sensory data, and Dl is raw sensory
data for a past interval l. This will be true only if source si created Ol by ob-
fuscating Dl. Test 2 compares the transformed value sent by P with fpriv(Ol)
computed by C. Since C is computing fpriv on data received directly from
the sources, this comparison will be true only if P computed fpriv as well.

Once the interactive proof is complete, si purges the respective interval of data
from its buffer, thus making room for more. In the interest of clarity, we have
omitted the use of digital signatures for authentication.

One question remains: how does one get all the sources to pick the same saved
interval j, same challenge interval l, and random number r? With the correct r,
j, and l, each source can obfuscate and forward its own data to C as shown in
Tab. 2.

We can get all the sources to pick the same random numbers if each one uses
the same Pseudo-Random Number Generator (PRNG) with the same random
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Sources S = {s1, ..., sn}
establish shared group key kg

establish leader slead ∈ S
slead broadcasts Minit = Enckg (rseed, b, h)
at each si ∈ S,
set rseed, b, h = Deckg (Minit)
initialize PRNG with rseed

allocate buffer for b intervals of data

Table 3. Initialization phase.

seeds. The random seed could be securely communicated (via P ) to each source
by another that is picked to be the leader (slead). For secure communication
among sources, a group key will need to be established [12]. To reliably elect a
leader, a communication-efficient stable leader election protocol can be used [1].

Once the secure communication channels are established, the elected leader
can broadcast (via P ) the protocol’s various parameters — the random seed, size
of the buffer b, and sampling frame size h — to the rest of the sources during
an initialization phase (Table 3).

5 Privacy-Preserving Transformations

We do not attempt to define what precisely is a privacy-preserving transforma-
tion. Rather, we claim that if such a transformation satisfies Equation (1), then
the entity computing the transformation can provide proofs of integrity for the
result without disclosing the inputs. The question is, what privacy-preserving
transformations satisfy Equation (1)?

Fig. 2. Spatial Cloaking

While providing an exhaustive list (or cat-
egory) of privacy-preserving transformations
satisfying Equation (1) is out of the scope of
this paper, we present one whose computa-
tional integrity can be proven using our proto-
col. The privacy-preserving transformation in
question is a cloaking algorithm similar to the
one by Gruteser and Grunwald [11] intended
for use in Location Based Services (LBS). The
idea is to spatially cloak a set of GPS coordi-
nates published by participants, and return
an area (e.g., a quadrant) that includes at
least kmin of them. Here, kmin quantifies the
amount of anonymity desired. Specifically, it
enforces the fact that each participant’s location cannot be distinguished from
at least kmin − 1 others.

The privacy-preserving transformation fpriv is the function that takes the
GPS coordinates as input and returns the respective area (see Fig. 2) as output.
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Unlike the original algorithm, where the fpriv returned a quadrant, we define
an fpriv that returns a circular area (x, y, u), where (x, y) is the center of that
circle, and u is its radius. Formally, we define fpriv as:

fpriv((x1, y1, 0), ..., (xn, yn, 0)) = (xc, yc, uc) (2)

Intuitively, the privacy transformation above returns a circle large enough to
cover all the circles provided as input. A participant’s coordinates are thus ex-
pressed not as points, but as circles whose radii are zero. We now define the
obfuscation function g as: g(r, (x, y, u)) = (x+ r, y + r, u).

Intuitively again, the obfuscation function moves the input circle by r units
in the x and y dimensions. Using the above definitions for fpriv and g in the left
and right hand side of Equation (1) we have:

fpriv(g(r, (x1, y1, 0)), ..., g(r, (xn, yn, 0)))

=fpriv((x1 + r, y1 + r, 0), ..., (xn + r, yn + r, 0))

=(xc + r, yc + r, uc)

g(r, fpriv((x1, y1, 0), ..., (xn, yn, 0)))

=g(r, (xc, yc, uc))

=(xc + r, yc + r, uc)

Since fpriv and g satisfy Equation (1), our interactive proof protocol is ap-
plicable in this LBS scenario.

6 Overhead

We now present an analysis of the overhead imposed by our protocol. We will
show that the introduced overhead is a fraction of the complexity of the privacy-
preserving transformation computed by the proxy P . Our baseline is a data
collection system like PoolView [8], where privacy guarantees are provided with-
out integrity guarantees. The overhead then, is due to all computations and
message exchanges required to perform the interactive proof of integrity while
preserving privacy (Table 2). Also, note that we are mainly interested in the
overhead of the more expensive challenge where in addition to P , C must also
compute fpriv. Our result, therefore, is the worst case bound for overhead as it
assumes that every challenge from C is the more expensive one, when in reality
that will only be true during approximately half the challenges.

We define tb as the time it takes for baseline operation: sources in S send
data to P , which computes fpriv over that data and forwards the result to C. We
define tc as tb+tproof where tproof is the time it takes to complete the interactive
proof. Then, overhead to = tc − tb = tproof . Now,

tb = tfpriv +
rttSP

2
+
rttPC

2

where, tfpriv is the time it takes to compute the privacy transformation, and rttij
is the round-trip time between i and j. We have excluded minor computations
such as a data source randomly choosing and saving an interval of data in its
buffer. Also,
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tc = 3 tfpriv + 2 rttSP + 2 rttPC + δ

where δ includes symmetric encryption or decryption operations performed on
raw data values, and the computation of the simple obfuscation function g(r, x).

Subtracting tc from tb we get overhead:

to = 2 tfpriv +
3 rttSP

2
+

3 rttPC

2
+ δ

Note that the overhead to is applicable only in those intervals in which the
data consumer issues a challenge. The probability P (challenge) with which the
consumer issues a challenge during any given interval is 1/h (Section ). Further,
if the round-trip, encryption, and decryption times are negligible compared to
the privacy transformation fpriv, then to ≈ 2 tfpriv. With this in mind, the
expected overhead of our protocol after I intervals of data collection is,

E(overhead) = I × to × P (challenge) =
2I tfpriv

h

It is important to note that if the data publishing interval is larger than
E(overhead), then the entire proof will finish before the sources disseminate the
next interval of data. Thus, causing no perceptible delay in data publication.

7 Conclusion

Crowd-sourced sensing can revolutionize applications from intelligent trans-
portation to health care monitoring, but confronts the challenge of maintaining
user privacy to encourage contribution of data, while maintaining data integrity
to encourage governmental and citizen use of that data. We have proposed the
first solution using interactive proofs that allows an intermediary to convince
a data consumer that it is accurately performing a privacy-preserving transfor-
mation that mixes inputs from multiple data sources, without providing those
inputs to the consumer. The proposed protocol preserves the privacy advantages
of mixing data from multiple sources, while being robust to privacy threats that
arise from collusion between a data source and a consumer during integrity veri-
fication. The key idea is that unlike traditional interactive proofs with one prover
(privacy proxy) and one verifier (data consumer), ours involves a collaboration
between the verifier and all additional parties that wants to protect their pri-
vacy (data sources) to keep the prover in check. We have analyzed the protocol
overhead and discussed compatible privacy-preserving transformations.
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