
Resource-aware Broadcast Encryption for
Selective-Sharing in Mobile Social Sensing

Akshay Dua
Portland State University

akshay@cs.pdx.edu

Nirupama Bulusu
Portland State University

nbulusu@cs.pdx.edu

Abstract—The rapid proliferation of smartphones has led to
the emergence of mobile social sensing applications, spanning
sharing of health data, location-based encounters, and trans-
portation. A major concern for such applications is selective
sharing, i.e., how does a user publish a sensor data stream
confidentially to only authorized members in his/her social net-
work? The needs of mobile sensing applications, such as dynamic
communities and data dissemination from resource-constrained
handhelds, make this problem more challenging than apparent.
The novelty of this paper lies in the use of a cryptographic
scheme called broadcast encryption to enable selective sharing
for mobile social sensing. This is in contrast to unicast or pairwise
encryption that is commonly used today. We evaluate state-of-
art broadcast encryption schemes and note that they provide
either efficiency, or adaptation to dynamic group sizes, but not
both. We propose ECS (Extended Complete Subtree), a resource-
aware broadcast encryption scheme that can efficiently support
dynamic groups. We implement each encryption scheme on the
Nokia N800 handheld device and demonstrate that ECS is more
feasible than other schemes in terms of key storage, code size,
and encryption and decryption efficiency.

I. INTRODUCTION

The most transformational computing and communications
revolution in the last decade has been the rapid proliferation of
mobile handhelds and smart phones. Several interesting appli-
cations have become possible using data gathered from sensor
and positioning-equipped mobile phones. These include the
emergence of Mobile Health, Intelligent Transportation, and
Mobile Social Networks. At UCLA, the DietSense project al-
lows people to contribute pictures of their dietary intake using
mobile camera phones and share it with their care providers
[16]. Cartel [10] and BikeNet [6] enable drivers to share
location, timestamps, and other information collected while
driving or biking respectively. Social sensing applications like
CenceMe [14] and PetrolWatch [5] enable sensory information
sharing with friends to enable opportunistic location-based
meetings, and to collect fuel price data respectively.

Unfortunately, the shared information may be confidential
and those who share the data may only want it accessible
to a select few. For example, CenceMe constantly infers
user activities (e.g dancing), social contexts (e.g. party), and
locations. A user may be comfortable with sharing the inferred
information with close friends and family, but not co-workers,
all of whom are also on her list of friends.

One approach to selective sharing would be to employ
unicast or pairwise encryption schemes like AES (Advanced
Encryption Standard) to exchange messages between devices.

In unicast schemes, encrypting data for n users requires n en-
cryptions. This quickly becomes inefficient in situations where,
say, applications need to encrypt bandwidth-intensive video
streams. Traditionally however, a more efficient cryptographic
solution to the problem of selective sharing has been to use
broadcast encryption [15], [4], [9].

In contrast to unicast schemes, broadcast encryption
schemes enable a sender to encrypt data using k � n encryp-
tions. Furthermore, broadcast encryption schemes provide the
ability to efficiently revoke users from a transmission. Thus,
they adapt well to encrypting data for dynamic groups of
users. For example, the CenceMe user, could use broadcast
encryption to efficiently encrypt sensitive information to any
subset of her friends.

In this paper, we evaluate the feasibility of implementing
broadcast encryption on mobile devices. More specifically, our
contributions are:

• Implementation and evaluation of several existing broad-
cast encryption schemes on the Nokia N800 devices.

• ECS (Extended Complete Subtree): a broadcast encryp-
tion scheme for selective information sharing using mo-
bile devices that is efficient enough to be viable on mobile
devices, and is scalable to typical social graph sizes [1].

• We find that unlike many algorithms that must be setup
with a maximum number of friends, ECS does not.
Thus, ECS can be scaled gradually. Furthermore, when
compared to algorithms that don’t need a pre-determined
maximum, ECS has lower encryption and decryption
overhead.

II. SYSTEM MODEL

In this section, we describe our system model. Our goal is to
make broadcast encryption practical on mobile platforms. We
assume that a sender, Alice, uses her mobile platform to send a
secret message to a subset of her friends. Even if the message
were to fall into the hands of a friend not in the subset, its
contents should be inaccessible. The encryption scheme should
allow the subset of friends to be chosen on the fly. Figure 1
shows a sender sharing a secret message M with her family.
She encrypts M specifically for her family members and sends
it to a web portal that forwards it to each of them. The web
portal is not a necessary component of the model, but does
make the communication more efficient.



U1
U6 Un

U2

U3

U5

U4 Web Portal

Family

CF = E(M, Family)

CF
CF

M = D(CF, Family) 

Fig. 1. System Model: sender U1 has friends {U2, U3, . . . , Un} and would
like to send a secret message to a subset of them.

III. BACKGROUND

In this section, we describe the concepts underpinning
broadcast encryption schemes. Several of these schemes were
designed to support access control on streaming paid televi-
sion content. The schemes assume a single broadcaster with
abundant computational resources and potentially millions of
receivers. However, the resource assumptions are not practical
for a sender using a mobile device [4], [15]. Our challenge is
to build a broadcast encryption scheme for efficient selective
sharing on mobiles.

A Broadcast Encryption scheme enables a sender to encrypt
a message for any arbitrary subset S of receivers 1, ..., N who
are listening on a broadcast channel [3], [7]. Any receiver in
S can decrypt the broadcast using their private key. Usually,
the broadcast-encrypted content is a session key rather than
the data in question. The session key can then be used to
encrypt the data with an algorithm of choice. Thus, for the
purposes of this work, ciphertext in this paper refers to an
encrypted session key. Furthermore, the act of changing the
aforementioned session key is called re-keying.

In the following sections, we consider three well known
broadcast encryption schemes: the pairing-based scheme de-
veloped by Boneh and Waters [4], the subset cover system by
Naor et al [15], and the Logical Key Hierarchy scheme (LKH)
in “batch” mode as described in [12] by Li et al. We discuss
each scheme briefly in the following sections.

A. Boneh-Waters

Boneh-Waters is a public key cryptosystem that provides
the following functions.

Setup(N, . . .) generates the public and private keys needed
by the scheme. It outputs a public key PK and private keys
SK1, . . . , SKn, where SKu is given to user u. The input N
is the number of users the system should be setup with. Note
that the number of users must be determined beforehand.

Name Number of Receiver Sender Number of
Encryptions Storage Storage Decryptions

Boneh O(
√
N) O(

√
N) O(

√
N) 1

Comp. Subtree rlog(N/r) logN 2N − 1 1
Subset Diff 2r − 1 1/2log2N 2N − 1 1

LKH rlog(n/r) log(n) 2n− 1 1

TABLE I
ALGORITHMIC COMPLEXITY OF ENCRYPTION SCHEMES

Encrypt(S, PK,M, . . .) is the encryption algorithm
wherein PK is the public key, S the subset of users, and
M = Ks is the session key. It outputs a ciphertext C that can
be successfully decrypted by a private key belonging to any
user in S.

Decrypt(SKj , C, . . .) is used to decrypt a ciphertext C.
The output is the message M = Ks as long as M was intended
for user with private key SKj . For more details please see [2].

B. Subset Cover
The subset cover group of algorithms consists of the com-

plete subtree scheme and the subset difference scheme. Both
are based on symmetric cryptography but provide a similar
interface as Boneh, namely:

(Setup(N), Encrypt(S,M), Decrypt(j, C))

These schemes are, (i) stateless, because users need not
update their keys across sessions; once the keys are obtained,
they are valid for the life of the system, and (ii) static, because
the schemes are initialized with the maximum number of
receivers that will ever use the scheme. It should be noted that
by this definition, the Boneh scheme would also be considered
a stateless and static scheme.

1) Complete Subtree: The complete subtree method is
based on a key tree with N leaves, one for each user (see Fig-
ure 2(a)). Each user gets all log(N) keys along the path to the
root. So for example, user 8 gets the keys {K8,K4,K2,K1}.
If no users are revoked from the transmission, the session key
is distributed by broadcasting the message EK1(Ks) to all
the users. Here, E is a symmetric encryption algorithm (like
DES), K1 is the key used for encryption and Ks is the group
session key. Since, each user has K1 they can derive Ks using
DK1

(Ks) where D is the corresponding decryption algorithm.
Notice that Ks will be used to encrypt the actual data that is
transmitted. The algorithm used for that purpose can be E.

Revoking users involves constructing a minimum spanning
tree from the root to the revoked users, called a cover.
As an example, consider that users 10 and 11 are being
revoked, the resulting minimum spanning tree is shown in
Figure 2(b). Here, the nodes with out-degree 1 ({1, 2}) in
the cover are particularly interesting because the keys associ-
ated with their missing children will be used to encrypt the
session key Ks. So, the message that will be broadcast is
{EK4

(Ks), EK3
(Ks)}. Note that revoked users cannot obtain

the session key since none of them have keys K4 or K3

required to successfully decrypt the message.
2) Subset Difference: The subset difference algorithm is

more involved. A subset of users Si,j is defined as Si \ Sj

where Si (or Sj) is the set of leaves below node i (or j).
Each such subset is associated with a label Labi,j and a key
Ki,j . A user is given the labels to all subsets Si,j where i is
a node on its path and j is a node hanging off its path to the
root. Thus node 8 (in Figure 2(a)) would get the labels:

{Lab1,3, Lab1,5, Lab1,9}
{Lab2,5, Lab2,9}

{Lab4,9}



1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

(a) Key tree used in the complete subtree scheme

5

10

2

1

11

(b) Revoking 10 & 11

Fig. 2. The complete subtree scheme

These labels can then be used to derive keys for any subset
the user belongs to, even those it does not have labels for. This
due to the way labels were created to begin with. For details on
the algorithm please refer to the paper by Naor et al. [15]. The
subset difference scheme was primarily designed to reduce the
generated cipher text size when revoking users. However, the
trade-off was an added storage cost at the receiver.

C. LKH

LKH is very similar to the complete subtree algorithm, but
with two key differences. (i) It is stateful, i.e., the keys for the
system change when membership changes. If users miss key
updates, they need to contact the server to obtain the current
ones. (ii) It is dynamic because unlike the subset cover scheme
it does not need to know the maximum number of users N
before-hand. LKH adds or removes users to the tree when they
join or leave.

In LKH “batch” mode, users can be removed a batch at a
time rather than individually as prescribed by the original LKH
scheme [17], [18]. Revoking users thus becomes very similar
to revoking users in the complete subtree algorithm, with the
difference being that keys pertaining to nodes in the tree may
change. Further, since users (i.e. leaves of the tree) will be
joining and leaving, the height and the intermediate nodes in
the tree may change as well. Another subtle difference, is that
adding users in LKH requires an update to existing users while
this is not the case in other schemes.

Table I presents the algorithmic complexity of each scheme.
One might be inclined to pick a suitable system based on
the summary in Table I, however, note that the expressions
represent worst case scenarios and that key sizes, real encryp-
tion times, and communication overhead are not clear from
complexity expressions alone.

IV. ECS: RESOURCE-AWARE BROADCAST ENCRYPTION

The advantage with stateless schemes is that users need not
be online to decrypt received messages. This is largely due
to the fact that keys belonging to the scheme do not change
once they are created. However, the disadvantage is that the
schemes are static — the maximum number of users Nmax

that might ever use the system needs to be known before hand.
If such information is not available, then the system will need
to be setup with some large estimate of Nmax and this will
result in the client and server storing a larger number of keys
and requiring more computation when re-keying.

1

2

4 5

Block

(a) ECS is initialized with
M = 2

1

2 3

4 5 6 7

Block

(b) Third user arrives and ECS is scaled

Fig. 3. The ECS scheme is initialized with a block size of 2 and then scaled
when the third user arrives

The advantage with a scheme like LKH is that the key tree
is only ever big enough to support the number of users actively
using the scheme (i.e. the scheme is dynamic). However, the
disadvantage is that clients need to be online all the time to not
miss any key updates (i.e. the scheme is stateful). Considering
that our system model (Figure 1) assumes mobile users in a
cellular network, a user’s mobile phone will be prevented from
sleeping and key updates will be missed in places without
coverage, or when the phone batteries are dead.

A good compromise would be a stateless scheme that could
dynamically grow to accommodate new users. Of course, it is
always possible to just re-initialize any of the stateless schemes
with a larger Nmax, but then this would require the entire
group of users to be re-keyed with new keys individually
through secure unicast channels like SSL. Further, this does
not solve the problem of estimating a good value for Nmax.

We present Extended Complete Subtree (ECS), a new broad-
cast encryption scheme that has a combination of both the
properties desirable on a mobile platform: being simultane-
ously stateless and dynamic. ECS combines multiple instanti-
ations of the complete subtree scheme into a single broadcast
encryption scheme. More specifically, ECS consists of a root
node with multiple subtrees, each of which operate under the
complete subtree scheme.

ECS is first initialized with M users where M is a power
of two. We refer to M as the block size and the system is then
scaled in multiples of these block sizes. Figure 3(a) shows the
ECS scheme initialized with M = 2. Here, the subtree rooted
at node 2 is called a block and node 1 is the new root. In this
example, client 4 gets keys {1, 2, 4} while client 5 gets keys
{1, 2, 5}. When the third user arrives, the system is scaled
by adding a new subtree with M leaves i.e. a new block, to
the root (see figure 3(b)). Now, the new clients (represented
by nodes 6 and 7 in Figure 3(b)) get the keys {1, 3, 6} and
{1, 3, 7} respectively. Notice that since the key associated with
the root node has not changed, no key updates need to be sent
to the existing users. As more users arrive, more blocks can be
added to the root node. The cover finding algorithm remains



essentially the same as described in section III-B1 except that
the cover is now an aggregate of all the block covers.

Another advantage of this scheme, is that the key storage
requirements at each receiver remain constant at log(M)
regardless of the number of users joining the group. For
a given maximum number of users, Nmax, the sender and
receiver-side key storage are proportional to the choice of
M . However, the relationship between M and ciphertext size
is not that simple. When M is at its smallest i.e. M = 2,
the ciphertext size is O(Nmax). When M ≈ Nmax, then
ciphertext size is similar to the complete subtree scheme at
O(log(Nmax)).

Figure 4 shows the change in ciphertext size with block
size for a set of maximum number of users Nmax =
{128, 256, 512}, and block sizes that ranged from 32 ≤
M ≤ Nmax. The ciphertext size was computed after randomly
revoking 20% of the users and repeating the test 40 times for
each block size. For each value of Nmax, we can see that
ciphertext size is minimum when block size M = 64.

V. RESULTS

This section compares ECS with the broadcast encryption
schemes described in Section III. We show how ECS is both
stateless and dynamic, thus making it more suitable to use
on mobile platforms. Our goal is to determine whether ECS
matches the efficiency of static schemes while supporting
dynamic user groups.

A. Experimental Setup

All broadcast encryption schemes had to be implemented
from scratch since no readily available implementations were
found. The Boneh-Waters scheme was implemented using the
Pairing Based Crypto (PBC) library developed at Stanford
University by Benn Lynn [13]; LKH was implemented as
described by Li et al. [12]; and the subset cover group of
algorithms were implemented as described by Naor et al. [15].
All schemes except Boneh-Waters use symmetric encryption
and for that we used the DES algorithm with 256 bit keys.

Senders, receivers and each of the broadcast encryption
schemes were implemented in C and deployed on Nokia N800
devices. In each of the experiments, a sender is assumed to
have a maximum of Nmax ∈ {512, 1024} friends. A fixed
Nmax is needed for broadcast encryption schemes that require
it as a setup parameter. At any given time, a sender may have
Nactive ≤ Nmax friends. Additionally, ECS is setup with a
block size M = 64 (see Section IV).

To confidentially broadcast a message, a sender first en-
crypts it for a desired subset of 1 ≤ n ≤ Nactive friends using
one of the aforementioned encryption schemes and sends it to
a web server. The web server then forwards it to the respective
set of n friends.

B. Key Storage

We start by comparing sender and receiver-side key storage
requirements for each of the broadcast encryption schemes.

Figure 5 compares sender-side key storage requirements. Re-
call that Boneh-Waters has a single public key where as the rest
have multiple smaller keys (256 bits each). Also, the number
of such keys is a function of Nmax for the subset cover group
of schemes and Boneh-Waters, whereas they are a function
of Nactive for LKH and ECS. We can see that LKH and
ECS requirements grow linearly with the number of active
users. The subset cover group of schemes on the other hand,
are the most expensive and the storage cost remains constant
throughout. Unicast schemes have the minimum storage cost
since the sender needs to store only one symmetric key per
receiver.

Fig. 5. Sender-side key storage

Figure 6 shows receiver-side key storage requirements. We
can see that among all broadcast encryption schemes, ECS
has the minimum storage requirements that remain constant
regardless of Nactive. This is because ECS’s fixed block size.
Unicast encryption requires the least amount of storage since
each receiver only needs to store a single 256 bit key.

Fig. 6. Receiver-side key storage

C. Encryption Efficiency

We evaluate the cost of creating a ciphertext message. Recall
that the message being encrypted is a 256-bit session key. We
compare ciphertext size (Figure 7(a)), number of encryptions
required to create the ciphertext (Figure 7(b)), and the time
required for its creation (Figure 7(c)). For each of the Nactive

receivers, the ciphertext was created for a random subset of
80% of them. The experiment was then repeated 40 times for
each value of Nactive.

Notice that LKH quickly becomes more expensive than all
the other algorithms. The reason for this, is that unlike other



(a) Number of users n = 128 (b) Number of users n = 256 (c) Number of users n = 512

Fig. 4. Finding a suitable block size (M) for the ECS scheme

(a) Ciphertext message size (b) Number of encryptions (c) Encryption time

Fig. 7. Comparing the cost of creating a ciphertext

algorithms which only need to encrypt a new session key and
broadcast it to the group, LKH actually changes many of the
keys in its tree. These keys are then encrypted and sent to the
respective groups of receivers.

In contrast to other schemes, Boneh-Waters has a constant
size ciphertext (dependent only on Nmax) regardless of the
number of active users. However, the ciphertext is still sub-
stantially larger than the subset cover schemes and ECS. Also,
notice that the ciphertext size for ECS is similar to that of
complete subtree. Thus, we have not adversely impacted the
ciphertext size, but have still gained the ability to scale the
system dynamically.

Figure 7(b) shows that LKH, ECS and the complete subtree
scheme have similar number of encryptions. Boneh-Waters
requires a single encryption regardless of the number of
active users. However, the time required by that encryption is
prohibitive — ≈ 33 secs) — which is why the plot for Boneh-
Waters has not been included in Figure 7(c). Finally, we can
see that for large number of active users, unicast encryption
is most expensive.

D. Decryption Efficiency

Another important energy and efficiency consideration is
the cost of decrypting the ciphertext. We evaluate this cost
based on amount of time taken for decryption as well as the
energy consumed. Figure 8 shows the decryption time using
each scheme for various values of Nactive. The decryption
time for all symmetric broadcast encryption schemes is the
same since only a single decryption is required per ciphertext.
The same is true for Boneh-Waters, however the decryption
time is quite large, approximately 10 secs. This is mainly due
to the resource-intensive mathematical operations required to
perform the decryption.

E. Energy Consumption

Table II shows the mean energy consumed (in Joules) by
the various algorithms while decrypting a ciphertext message.
Again, the symmetric broadcast encryption schemes and the
unicast scheme consume similar amounts of energy, while
Boneh-Waters was significantly more expensive.

Complete Subtree, ECS, LKH, Unicast, Subset Difference Boneh
2.55× 10−4 J 6.63 J

TABLE II
RECEIVER-SIDE ENERGY CONSUMPTION IN JOULES

F. Code Size

It is important that resource requirements at the receiver
remain practical for personal devices like cell phones and
PDAs. Table III shows the code sizes for the various schemes
that we implemented. The code size of the receiver-side
program, excluding any encryption library, is also shown. The
complete subtree scheme is the smallest mainly due to the
simplicity of its implementation on the client side. Notice

Fig. 8. Time taken to decrypt ciphertext



Broadcast Encryption Library (Kbytes) Other Code (Kbytes)
Complete Subtree ECS Subset Difference LKH Boneh Producer/Consumer

0.42 0.47 4.75 1.93 1.28 3

TABLE III
CLIENT SIDE CODE SIZE FOR VARIOUS BTR LIBRARIES AS WELL AS THE PRODUCER/CONSUMER API

that ECS is very similar to the requirements by complete
subtree since the decryption algorithm remains unchanged.
Although the size of the Boneh library as implemented is
1.28 Kbytes, its dependency on the PBC library (175 Kbytes)
[13] and the GNU Multi-Precision Library (150 Kbytes) [8]
effectively makes it much larger. The size of the rest of the
code for communicating with the web portal and providing a
common interface to the encryption libraries is shown in the
last column.

VI. RELATED WORK

Significantly, no prior work has focused on efficient and
scalable selective sharing for mobile social networks. Zhu et
al[19] propose a group re-keying scheme for ad-hoc sensor
networks that exploits the property of each member being a
host and a router to create secure hop-by-hop channels to re-
key the group. This is quite different from our scenario where
a sender may encrypt data for any subset of users. Lazos et
al [11] adopted the LKH scheme also for ad-hoc networks.
However, the resource and communication overhead incurred
is of the same order as the original LKH scheme [17], [18].
As we have shown, the LKH scheme is quite expensive for
groups with even few hundred members.

VII. CONCLUSION

Emerging social sensing applications like health data shar-
ing, location-based encounters, and transportation need an
efficient, scalable, and secure method for selectively shar-
ing sensitive information. A broadcast encryption scheme
the sender to simultaneously encrypt data for a given set
of receivers. Traditional broadcast encryption schemes are
either computationally expensive or do not adapt gracefully to
dynamic group sizes. We addressed this problem by proposing
a new resource-aware broadcast encryption scheme called ECS
(Extended Complete Subtree). We have shown that ECS can be
implemented very efficiently for cell phone class devices, that
it scales to thousands of users per group, naturally supports
large and dynamic groups, and is power efficient.

REFERENCES

[1] Anatomy of Facebook. https://www.facebook.com/notes/
facebook-data-team/anatomy-of-facebook/10150388519243859.

[2] P.S.L.M. Barreto, B. Lynn, and M. Scott. Efficient Implementation of
Pairing-Based Cryptosystems. Journal of Cryptology, 17(4):321–334,
2004.

[3] D. Boneh, C. Gentry, and B. Waters. Collusion Resistant Broadcast
Encryption with Short Ciphertexts and Private Keys. LECTURE NOTES
IN COMPUTER SCIENCE, 3621:258, 2005.

[4] D. Boneh and B. Waters. A fully collusion resistant broadcast, trace, and
revoke system. In Proceedings of the 13th ACM conference on Computer
and communications security, pages 211–220. ACM Press New York,
NY, USA, 2006.

[5] Y. F. Dong, Salil S. Kanhere, Chun Tung Chou, and Nirupama Bulusu.
Automatic collection of fuel prices from a network of mobile cameras.
In Sotiris E. Nikoletseas, Bogdan S. Chlebus, David B. Johnson, and
Bhaskar Krishnamachari, editors, DCOSS, volume 5067 of Lecture Notes
in Computer Science, pages 140–156. Springer, 2008.

[6] SB Eisenman, E. Miluzzo, ND Lane, RA Peterson, GS Ahn, and
AT Campbell. The BikeNet mobile sensing system for cyclist experience
mapping. In Proceedings of the 5th international conference on
Embedded networked sensor systems, pages 87–101. ACM New York,
NY, USA, 2007.

[7] A. Fiat and M. Naor. Broadcast encryption. Proceedings of the 13th
annual international cryptology conference on Advances in cryptology
table of contents, pages 480–491, 1994.

[8] T. Granlund. The GNU MP LIBRARY, version 2.0. 2, June 1996.
Online: http://gmplib.org/.

[9] H. Harney and E. Harder. Logical Key Hierarchy Protocol. Intemet
Draft, draft-harney-sparta-lkhp-sec-00. txt, Internet Engineering Task-
Force, 3, 1999.

[10] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko, A. Miu,
E. Shih, H. Balakrishnan, and S. Madden. Cartel: a distributed mobile
sensor computing system. In Proceedings of the 4th international
conference on Embedded networked sensor systems, pages 125–138.
ACM New York, NY, USA, 2006.

[11] L. Lazos and R. Poovendran. Energy-aware secure multicast com-
munication in ad-hoc networks using geographic location informa-
tion. In Acoustics, Speech, and Signal Processing, 2003. Proceed-
ings.(ICASSP’03). 2003 IEEE International Conference on, volume 4,
2003.

[12] X.S. Li, Y.R. Yang, M.G. Gouda, and S.S. Lam. Batch rekeying for
secure group communications. In Proceedings of the 10th international
conference on World Wide Web, pages 525–534. ACM New York, NY,
USA, 2001.

[13] B. Lynn. PBC library. Online: http://crypto.stanford.edu/pbc/.
[14] E. Miluzzo, N.D. Lane, S.B. Eisenman, and A.T. Campbell. CenceMe-

Injecting Sensing Presence into Social Networking Applications. LEC-
TURE NOTES IN COMPUTER SCIENCE, 4793:1, 2007.

[15] D. Naor, M. Naor, and J. Lotspiech. Revocation and Tracing Schemes
for Stateless Receivers. LECTURE NOTES IN COMPUTER SCIENCE,
pages 41–62, 2001.

[16] S. Reddy, A. Parker, J. Hyman, J. Burke, D. Estrin, and M. Hansen.
Image browsing, processing, and clustering for participatory sensing:
lessons from a DietSense prototype. In Proceedings of the 4th workshop
on Embedded networked sensors, pages 13–17. ACM Press New York,
NY, USA, 2007.

[17] D. Wallner, E. Harder, and R. Agee. Key Management for Multicast:
Issues and Architectures. Work in Progress.

[18] C.K. Wong, M. Gouda, and SS Lam. Secure group communications
using key graphs. Networking, IEEE/ACM Transactions on, 8(1):16–30,
2000.

[19] S. Zhu, S. Setia, S. Xu, and S. Jajodia. GKMPAN: An Efficient Group
Rekeying Scheme for Secure Multicast in Ad-Hoc Networks. Journal
of Computer Security, 14(4):301–325, 2006.


