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Abstract—Current feature tracking frameworks in sensor net-
works exploit advantages of either mobility, where mobile sensors
can provide micro scale information of a small sensing area or
of numerical models that can provide macro scale information of
the environment but not both. With the continual development
of sensor networks, mobility becomes an important feature to
integrate next generation sensing systems. In addition, recent
advances in environmental modeling also allow us to better
understand basic behavior of the environment. In order to further
improve existing sensing systems, we need a new framework that
can take advantage of existing fixed sensor networks, mobile sen-
sors and numerical models. We develop CoTrack, a Collaborative
Tracking framework, that allows mobile sensors to cooperate with
fixed sensors and numerical models to accurately track dynamic
features in an environment. The key innovation in CoTrack is
the incorporation of numerical models at different scales along
with sensor measurements to guide mobile sensors for tracking.
The framework includes three components: a macro model for
large-scale estimation, a micro model for locale estimation of
specific features based on sensor measurements, and an adaptive
sampling scheme that guides mobile sensors to accurately track
dynamic features. We apply our framework to track salinity
intrusion in the Columbia River estuary in Oregon, United States.
Our framework is fast and can reduce tracking error by more
than 50% compared to existing data assimilation frameworks
and state-of-the-art numerical models.

I. INTRODUCTION
As sensor networking technologies evolve, the ability to provide

larger scale, better reliability, and longer-term service continues to
improve. With all these advances, however, there is still a gap between
the needs of some scientists and the ability of the sensor system
to provide the data that they need. One such example includes
environmental scientists who want to understand both small scale
(< 1km) and large scale (> tens of km) environmental factors. The
key problem they face is that they would like to understand particular
dynamic physical phenomena that, while isolated to a relatively small
area at a particular time, may need to be studied over a very large
geographic region.
While deploying a relatively dense sensor network throughout the

system being studied would be nice, the sheer area to be covered
makes it impractical and cost prohibitive. As a result, environmental
scientists have implemented and deployed very, very sparse and static
sensor networks in order to provide some basic coverage of the area
being studied and used complex data assimilation models with the
resulting sensor data [1]. While this is good for understanding macro-
scale systems (eg. average water volume or velocity), they provide
limited information about small-scale phenomena (eg. exact salinity
intrusion front location) that can impact the macro-scale system. To
help improve this situation, one could deploy a number of mobile
sensing systems such as unmanned underwater vehicles to capture
data in selected areas to improve sensing within a region. Given the

dynamic nature of large-scale environmental systems, figuring out
where to place such vehicles becomes hugely problematic.
To provide the best sensing data to the application in such

scenarios, we believe that the best solution might be the careful
integration of (i) sparse and static sensor nodes to provide basic
macro-scale data, (ii) data models that assimilate the sparse sensor
data into a basic understanding of where phenomena of interest may
be occurring, (iii) mobile sensing platforms that can move to areas
of interest, and (iv) feedback driven data assimilation to refine the
movement of the sensors. In such a way, the data assimilation process
can provide the basic macro-scale parameters which it is better at
doing, and the mobile sensor can provide specific point data, which
it is better at doing.
In this paper, we develop CoTrack, a Collaborative Tracking frame-

work, for estimating and tracking dynamic features in an underwater
environment using fixed and mobile sensors, and numerical models.
The key innovation in CoTrack is the incorporation of numerical
models at different scales with granularity of location ranging from
100 meters to 0.5 meters, and sensor measurements to guide mobile
sensors for tracking. We apply our framework to track salinity
intrusion in the Columbia River Estuary in Oregon. In short, the
contributions of this paper are the following:

• A framework for building macro models for specific features
(Section III-A). Unlike previous approaches, we address the
case where general models for the environment are available.
From these models and empirical data, we develop specific mod-
els for features of interest. Our model reduces the estimation
error by 27% and the framework for building model can be
adapted for other features.

• A framework for building micro models estimating distances
to a feature from sensor measurements (Section III-B). The
model estimates the true feature location from mobile sensor
measurements. This model can reduce the estimation error of
the macro model by 37%.

• An adaptive sampling scheme to improve tracking performance
(Section III-C). Based on the two models above, we develop an
iterative adaptive sampling scheme for mobile sensors. The idea
is to use macro models to guide a mobile sensor where to take
its first measurement and use micro models to iteratively refine
the location of the feature. By combining these two models,
we can reduce the total error by more than 50% compared to
existing frameworks.

II. PROBLEM STATEMENT
Let G be a finite set of points in space modeling the environment.

For each point ω ∈ G, let pω,i = (p1
ω,i, p

2
ω,i, .., p

j
ω,i..., p

k
ω,i) be a

tuple of k physical parameters such as temperature, water velocity,
or salinity level associated with ω at time step i. j is the parameter
index.
Definition 1: A wedge of parameter pj at threshold u at time i is

a set Ω = {ω ∈ G|pj
ω,i = u}.
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For example, a salinity wedge at 15 practical salinity unit (psu)
is the set of points that have salinity level equal to 15 psu. We can
track a wedge by estimating its relative location or distance to a
landmark with known location. For many real scenarios, the wedge
shape and location change over time. Hence, it is difficult to quantify
the distance between two wedges or the distance from a wedge to
a landmark. To simplify the tracking problem, we often estimate the
wedge along a transect, whose location is also known. For example,
Figure 1 shows the Columbia river estuary and a transect illustrated
by the dashed line. Figure 2 shows the salinity level along the transect
at different times of day. The salinity level ranges from 0 psu (fresh
water) to 32 psu (sea water). The salinity wedge at 15 psu is about
15km, 18km, and 20km from the mouth of the estuary at 1:00am,
6:00am, and 12:00pm respectively.
Let d be the distance from the intersect of the true wedge and the

transect to a landmark and d̂ be the estimation of d. The subscript
i in di, d̂i and other notations is to indicate the parameter at the
corresponding time step i. Let n be the total number of time steps
and M = {m1, m2, ..., mn} is the set of known physical parameters
of the environment such as atmospheric pressure, wind velocity, and
time of day and sensor measurements. The tracking wedge problem
can be stated as

Problem 1: Given M , mind̂ RMSE =

√

∑

i=n

i=1
(di−d̂i)2

n

Fig. 1. Transect in the Columbia river estuary, Oregon, U.S. The model
overlays on top of the physical map of the river estuary. The dashed line is
the transect. The dots are existing fixed sensor stations. The square indicates
the beginning of the transect.
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Fig. 2. Salinity levels along the transect at different times of day.

Table I lists the notation that we use through out the paper. In
addition, we make the following assumptions:

• At every time step, the physical parameters of the environment,
also called forcings, are available from global ocean models
and weather models. In addition, the measurements from fixed
sensor stations are also available via some means of communi-
cation.

• Mobile sensors can communicate with a base station and with
each other via a real-time telemetry network. Each mobile
sensor has certain computation power. In our case study, com-
putation power equivalent to a laptop is reasonable.

NOTATION MEANING REFERENCE
d distance from a point on the definition 1

true wedge to a landmark
d̂ estimation of d problem 1
e error defined as d − d̂ equation 3
i time step definition 1
n total number of time steps definition 1
u parameter threshold definition 1
ur real measurement section III-B2
δu difference between real equation 4

measurement and the threshold
µ, δµ first regression coefficients equation 1,4
β, α, γ vector of regression coefficients equation 1, 4
m vector of inputs equation 1, 4
ε, ω random variables equation 1, 4

TABLE I
NOTATION

• Mobile sensors can travel to a defined location accurately.
Current cruise ships are equipped with GPS and can estimate
their location within meters of accuracy.

III. COTRACK FRAMEWORK OVERVIEW
Instead of developing a specific physical model for the wedge, we

decide to develop a statistical model for several reasons. First, the
detailed physical relationship between external parameters and the
physical process is complex and still not well understood. Second,
statistical modeling does not require expert knowledge of a specific
field. Hence, we can apply our framework for tracking to a broad
range of applications. Finally, in many cases [2], a statistical model
performs better than a physical model in terms of estimation error
because physical modeling often seek to understand the relationship
between physical parameters and how the process works rather than
minimizing estimation error.
Based on the above advantages, we develop the CoTrack frame-

work with three main components (Figure 3). The first component is
a macro model that estimates the wedge location at a large scale from
existing information such as time, environmental forcings, and fixed
sensor measurements. This model might have a high estimation error
but it helps us to quickly zoom into the area where the wedge location
can be. The second component is a micro model that estimates
the distance to the true wedge from mobile locations where the
measurements are taken. This model estimates wedge location at a
much smaller scale compared to the macro model because it assumes
that the measurements are taken at locations estimated from the
macro model and hence are nearby the true wedge location. The final
component is an adaptive sampling scheme that incorporates both
macro and micro models to guide mobile sensors. At the beginning,
mobile sensors go to the locations estimated by the macro model and
take measurements. The mobile sensors should form a non-collinear
shape to increase tracking accuracy. Priyantha et al. [3] address the
problem of finding the best formation of mobile sensors to improve
tracking performance. The mobile sensors then use the micro model
to calculate the offset between their current locations and the true
wedge location. They can exchange their estimations to find the best
matched location. The process can be iterative until the estimation
is stable or the difference between the sensor measurements and the
expected threshold is negligible.
In the following sections, we will describe the three components;

macro model, micro model, and adaptive sampling.

A. Macro Model for Tracking Wedge
1) Regression Model: Let d be the distance from the intersect

between the wedge at a certain threshold (eg. 15 psu) and the transect
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Fig. 3. CoTrack Overview. Macro model quickly zooms into the area where
the wedge is.Micro model refines the estimation at a higher accuracy. Adaptive
sampling iteratively guides mobile sensors based on estimations from macro
model and micro model to track the wedge.

to the beginning of the transect (marked as the square in Figure 1)
and m is a length p vector of inputs including time of day, day of
month, forcings and observations and their combinations. We can
describe the relationship between d and m by using the following
linear model
Macro model

d = µ + m × β + ε (1)

where
• µ is the first regression coefficient, which is usually estimated
as the average of d,

• β is a vector of regression coefficients, and
• ε is a zero mean random variable representing error in the
model.

m is usually called the predictor variable and d is called the response.
If we observe n pairs of responses di and predictor variables mi, the
model can be written as

di = µ + mi × β + εi. (2)

The goal of regression is to find µ and β that minimize the overall
error ε. Although the model is linear in the coefficients, the predictor
variables can be nonlinear such as square or cube or combination
of variables. We actually consider predictor variables up to the 6th

polynomial order and their combinations. Once we find µ and β, we
can fit a distance d̂i from inputs mi as

d̂i = µ + mi × β. (3)

The difference between the true distance di and fitted distance d̂i,
ei = di − d̂i, is the residual.
Standard techniques [2] such as multicollinearity handling, model

selection, model checking and evaluation, and cross validation are
applied to build the model and examine if the model is good.
We have described the model for predicting the wedge from fixed

sensor measurements and other physical parameters. A mobile sensor
can travel to the predicted location and take measurements to improve
the next prediction. In the next section, we will describe the micro
model that incorporates new mobile sensor measurements to refine
where the wedge is.

B. Micro Model For Tracking Wedge From Measurements
1) Measurement Types: Several possible measurement types

are used in practice. Binary measurements only indicate whether
an event is present or not. In our case, they can be whether the
current location is the salinity wedge or not. Location measurements
contain location information of an event. In our case, they can be
the locations of the salinity wedges. However, the location often
cannot be measured directly and can only be inferred from other
information. Scalar measurements contain values of some physical
parameters. In our case, they can be the salinity, temperature or water
velocity. These measurements can be obtained directly from sensors.
Combined measurements contain a combination of some physical
parameters. For example, Sanford et al. [4] have developed a sensor
device that can measure integrated salinity across the entire water
column.

We choose to build the model using scalar measurements for
several reasons. Binary measurements can be inferred directly from
scalar measurements and often contain less information. Location
measurements are unavailable and are actually what we would like
to predict. Combined measurements are promising, but new sensors
have not been deployed widely yet. In particular, we develop the
model that predicts a nearby wedge from measurements recorded
from mobile sensors.
2) Regression Model: Let u be the threshold of the wedge y and

ur be the real measurement from a mobile sensor. Let δu = u− ur

be the difference between the threshold or the expected value and the
real measurement. Let δd be the distance from the mobile sensor to
the true wedge. We can describe the relationship between δd and δu
using the following model

δd = δµ + δu × α + m × γ + ω (4)

where
• m is the vector of inputs (predictor variables) including time of
day, day of month, forcings, and observations

• α and γ are regression coefficients, and
• ω is a zero mean random vector representing error.
The model is for δu within a vicinity of 1000 m since the macro

model has already predicted the wedge within a reasonable accuracy.
As in section III-B, we also remove multicollinearity, use stepwise
model selection and check the model [2].

C. Adaptive Sampling
Based on the two models, we develop an adaptive sampling

algorithm to track wedges. First, we use the macro model to predict
roughly where the wedge is and let the mobile sensor go there and
take a measurement. Second, we use the micro model to refine where
the true wedge is from the mobile sensor measurements. The process
can be iterative by simultaneously taking measurements and using the
micro model to further refine the wedge location. Table II describes
the algorithm.
Predict Location Use macro model to calculate d̂i

Take a measurement ur
i at d̂i

for i = 1 to MAX ITERATIONS do
Predict Offset Use micro model to calculate ˆδdi

Update d̂i = d̂i + ˆδdi

if δui ≤ uthreshold or ˆδdi < δdthreshold then
exit

else
Take a measurement ur

i at d̂i

δui = ur
i − ui

end if
end for
TABLE II
COTRACK ADAPTIVE SAMPLING ALGORITHM

IV. CASE STUDY: TRACKING SALINITY INTRUSION IN
THE COLUMBIA RIVER ESTUARY

CORIE is a pilot environmental observation and forecasting system
(EOFS) for the Columbia River estuary and the Eastern North Pacific
ocean. CORIE integrates a real-time sensor network, a data manage-
ment system and advanced numerical models. The goal of CORIE is
to characterize and predict complex circulation and mixing processes
in a system encompassing the lower river, the estuary and the near-
ocean. The CORIE observation network includes an extensive array
of 24 stations in the Columbia River estuary and the nearby coastal
ocean. At each station, in-situ sensors measure physical properties of
water or atmosphere. Data assimilation combines observational data
with numerical data models to produce an estimated system state
for the physical process. Mobile sensors such as research vessels are
used to dynamically collect interesting data and track features, such
as water flow, temperature map, and salinity wedges.
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Figure 1 shows the physical layout of the Columbia river estuary.
Due to tidal forces, the sea water intrudes into the river estuary daily.
Understanding the intrusion behavior will help us better monitor the
impact of natural and human activities on the estuary ecosystem. Our
goal is to track the salinity intrusion wedges at various levels along
the transect. The range of salinity measurement in practical salinity
unit (psu) is from 32 psu (sea water) to 0 psu (fresh water). In this
case study, d is the distance from the beginning of the transect to the
intersect between the salinity wedge and the transect.

A. Experimental Design and Evaluation
1) Ground Truth: One of the challenges in designing the exper-

iments is lack of ground truth due to the large scale environment in
the Columbia River estuary. To create the ground truth for evaluation,
we use an existing numerical model [5] and the state of the art data
assimilation framework [1] to estimate the system state and consider
it as the truth. The system state is for the whole Columbia River
estuary from 15-May-2004 to 29-Jul-2004 [6]. This system state is
then used to generate measurements based on real sensor models. The
generated measurements and the real forcings are used to develop the
macro and micro models.
2) Experiment Setup: Figure 4 shows the main components of

the experiment setup.
• A physical model ELCIRC [7] was used to simulate the ground
truth including true wedge distance d and measurements m as
described in section IV-A1.

• A physical model SELFE [5](with different formulation of the
model numerics) was used to generate the first guess d− of the
wedge location. In practice, the model was approximated using
a nonlinear model surrogate.

• Existing data assimilation framework [1] estimates the wedge
dDA from the measurements m and the first SELFE guess d−.

• CoTrack independently estimates the wedge dCoTrack from the
measurements m.

• The two estimates are then compared with the true wedge
location d using RMSE and MAE metrics.

Fig. 4. Experiment setup

For the macro model, we have 74 days of hindcast data with
observations from fixed sensor stations every 0.5 hour. We randomly
select one week - 7 days - and leave it out for evaluation. The
rest of the data are used for regression. We first consider all the
predictor variables up to the 6th polynomial order and their interac-
tions. We realize that there are many redundant predictor variables
that are unnecessary and also cause multicollinearity, which may
make the model unstable numerically. We decide to apply stepwise
regression for selecting a model. Stepwise regression starts with a
single most significant predictor variable and adds more variables if
they significantly improve the model or remove variables otherwise.
The regression procedure is performed on Matlab with the Matlab
statistics toolbox.
Similarly for the micro model, from each salt wedge location,

we consider 200 nearby points and use the ground truth to generate
the measurements and the relative distance from the salt wedge. We

choose only 200 points because we assume that a measurement is
taken within a vicinity of maximum 1000m the the wedge as the
previous model has estimated the salt wedge with a RMSE of 400m.
Due to a large number of points, we independently and randomly
select 5000 entries for regression and 5000 entries for evaluation.
We also decide to apply stepwise regression for selecting a model.
Stepwise regression starts with a single most significant predictor
variable and adds more variables if they significantly improve the
model or remove variables otherwise. The regression procedure is
performed on Matlab with the Matlab statistics toolbox.
To ensure that the model is adequate, we examine the normality

and independence properties of the residual error. If the residual error
is independent Gaussian noise, we find a good model because we
cannot extract more information from the noise.
We compare the performance of existing numerical models [5],

the state-of-the-art data assimilation framework [1], and CoTrack in
estimating the salt wedge at various thresholds from 32 psu (sea
water) to 0 psu (fresh water). Both frameworks use one mobile sensor.
In addtion, we also compare the performance of the adaptive sampling
scheme using the macro model and multiple refinement iteration
using the micro model. All implementation is done in Matlab. A
preliminary version of the code is available at
http://sys.cs.pdx.edu/home/projects/cotrack.

B. Results
1) Macro Model: There are 660 predictor variables included in

the model. It has an RMSE = 500m. The R-square is 98%, meaning
the model can explain 98% of the variations in the responses based
on the inputs. d in this case study is the distance from the salinity
wedge to the begining of the transect. The model can be rewritten as

d = 2.36 × 1012 + m × β + ε (5)

where the first coefficient 2.36 × 1012 and β are found during
regression, and

• m is the vector of 660 predictor variables including time of
day, forcings, sensor observations and their combinations. These
variables are available from weather stations.

• β is a vector of regression coefficients, and
• ε is a random variable with the distribution is approximately

N(0, 5002).
To evaluate if the model we found was good, we inspected the

residual plot, normality plot, and the autocorrelation of the residuals
and found that the residuals had a normal distribution but there
were dependencies among them. Unfortunately, we tried to fit an
auto regressive model and found that we could not eliminate this
dependency. Further inspection into the residuals may be able to build
a better model where the residuals are completely independent.
2) Micro Model: Although the total number of predictor vari-

ables is 120, only 24 variables (time of day and some forcing
parameters) are included in the model. It has an RMSE = 200m.
The R-square is 80%, meaning the model can explain 80% of the
variations in the responses based on the inputs. The model can be
rewritten as

δd = 19.7 − δu × 354.8 + m × γ + ω (6)

where
• m is the vector of 24 predictor variables including time of
day and forcings. These variables are available from weather
stations.

• γ are regression coefficients which are found during regression,
and

• ω is a random variable with a distribution approximately
N(0, 2002).

To evaluate whether the micro model we found is good, we
inspect the residual plot, normality plot, and the autocorrelation of
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Fig. 5. a) Tracking salinity wedge using adaptive sampling. Using CoTrack, we can follow the salinity wedge most of the time. b) Error reduction versus
number of iterations for tracking salinity wedge at 10 psu. The error degrades quickly and becomes stable after 6 iterations. c) Tracking performance of
CoTrack and exisiting data assimilation framework at various thresholds. CoTrack can reduce the RMSE by half compared to the existing data assimilation
framework.

the residuals. We find that the residuals are independent although
they do not strictly follow a normal distribution.
3) CoTrack Adaptive Sampling:

Error reduction using CoTrack. CoTrack can improve tracking
performance compared to existing models and data assimilation
framework. Figure 5(a) plots the true salinity wedge at 15 psu and
the estimates using data assimilation and CoTrack adaptive sampling
for 7 days. CoTrack can estimate the salinity wedge well most of
the time. The comparison among different frameworks is shown in
Table II. In terms of RMSE, SEFLE model has the worst RMSE of
more than 6km. Existing data assimilation framework can estimate
the salinity wedge with a RMSE = 550m. CoTrack can reduce the
error to 200m.

Metric SELFE Data Assimilation CoTrack
surrogate model

RMSE (m) 6362 550 200
MAE (m) 4553 450 155
Processing Time (s) 0.02 25 0.2

TABLE II
TRACKING PERFORMANCE COMPARISON.

Processing time. We evaluate the three frameworks on a Lenovo
X61 laptop with Intel(R) Core(TM)2 Duo 1.6 Ghz CPU, 2G RAM,
and running Windows Vista Business under a normal load. Running
SELFE model takes about 0.02 seconds, which is the fastest. While
CoTrack takes only 0.2 seconds to process the inputs, the data
assimilation takes about 25 seconds.
Error reduction versus number of iterations. Figure 5(b) shows

the estimation error versus the number of iterations in CoTrack
adaptive sampling. The RMSE degrades quickly and becomes stable
after about 6 iterations. This results suggest that only about 6
iterations in adaptive sampling are able to provide a good estimation
of the salinity wedge.
Performance at difference salinity thresholds. Figure 5(c) com-

pares the existing data assimilation framework with CoTrack in track-
ing wedges at different thresholds. CoTrack can reduce the RMSE
by half compared to data assimilation. Interestingly, CoTrack seems
to work best with thresholds from 10 to 20 psu. The performance
gets worse for salinity levels close to sea water or fresh water. For
thresholds that are close to 32 psu and 0 psu, the physical process
is much more dynamic than at 15 psu. In addition, the framework
might also suffer from the boundary problem where we do not have
adequate empirical data to regress a good model.

V. CONCLUSION AND FUTURE WORK
We have described CoTrack, a collaborative tracking framework

that incorporates existing fixed sensor networks with mobile sensors
and numerical models to track dynamic features in a large scale
environment. The key idea is to use a macro model to quickly
locate a feature’s vicinity and a micro model to iteratively refine the
feature location. CoTrack has three main components: a macro model
that estimates features’ locations at a large scale within 100 meters,
a micro model that estimates the offset between mobile sensors’
locations and the features’ locations at a small scale within 0.5
meters, and an adaptive sampling scheme that uses the two models to
iteratively refine the estimation. We apply CoTrack to track salinity
intrusion in the Columbia river estuary in Oregon. CoTrack is fast
and can reduce the error by more than 50% compared to the state-
of-the-art data assimilation framework. This improvement promises
a significant contribution in understanding and improving exisiting
physical models as well as the impacts of natural and human activities
in the river estuary ecosystem.
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