
DHV: A Code Consistency Maintenance

Protocol for Multi-Hop Wireless Sensor

Networks

Thanh Dang, Nirupama Bulusu, Wu-chi Feng, and Seungweon Park

Department of Computer Science,
Portland State University,

PO Box 751, Portland, OR, USA
(dangtx,nbulusu,wuchi,spark)@cs.pdx.edu

Abstract. Ensuring that every sensor node has the same code version
is challenging in dynamic, unreliable multi-hop sensor networks. When
nodes have different code versions, the network may not behave as in-
tended, wasting time and energy. We propose and evaluate DHV, an ef-
ficient code consistency maintenance protocol to ensure that every node
in a network will eventually have the same code. DHV is based on the
simple observation that if two code versions are different, their corre-
sponding version numbers often differ in only a few least significant bits
of their binary representation. DHV allows nodes to carefully select and
transmit only necessary bit level information to detect a newer code ver-
sion in the network. DHV can detect and identify version differences in
O(1) messages and latency compared to the logarithmic scale of current
protocols. Simulations and experiments on a real MicaZ testbed show
that DHV reduces the number of messages by 50%, converges in half the
time, and reduces the number of bits transmitted by 40-60% compared
to DIP, the state-of-the-art protocol.

Key words: Code consistency, network reprogramming, sensor networks

1 Introduction

Experience with wireless sensor network deployments across application domains
has shown that sensor node tasks typically change over time, for instance, to vary
sensed parameters, node duty cycles, or support debugging. Such reprograming
is accomplished through wireless communication using reprogrammable devices.
The goal of network reprogramming is to not only reprogram individual sensors
but to also ensure that all network sensors agree on the task to be performed.

Network reprogramming is typically implemented on top of data dissemina-
tion protocols. For reprogramming, the data can be configuration parameters,
code capsules, or binary images. We will refer to this data as a code item. A node
must detect if there is a different code item in the network, identify if it is newer,
and update its code with minimal reprogramming cost, in terms of convergence
speed and energy.

2 Dang et al.

Network reprogramming must address two main challenges — node unrelia-
bility and network dynamics. In a static network, sensor nodes run on batteries,
leading to inconsistent behaviors, with periods of no operation followed by ac-
tive periods. Radio communication is also known to be unreliable and dynamic
with intermittent connectivity and link asymmetry. Sensor networks are becom-
ing more dynamic due to mobility. Mobile sensor nodes might dynamically leave
and join a network, requiring that they also vary their tasks dynamically. For in-
stance, a sensor equipped car might be tasked to report carbon emissions within
city A but to report temperature in city B. In this case, even if code items are
disseminated correctly to all connected nodes during the reprogramming period,
some nodes may not have the current code version.

Naturally, this creates the need for a protocol to ensure that all network nodes
have the same up-to-date code items, which we refer to as a Code Consistency
Maintenance Protocol (CCMP). Depending upon the application, the bandwidth
and energy consumption of a CCMP can be comparable to sensing, particularly
for networks with mobility or large churn. The key requirements for a CCMP
are that they:

– ensure all network nodes eventually have the same updated code
– enable a node with an old code item to discover a newer code item and

update it with low latency
– conserve energy and bandwidth
– scale with both the network size and the total number of code items

We represent code items as a set of (key, version) tuples. Each key uniquely
identifies a code item. The corresponding version indicates if the code item is
old or new (the higher the version, the newer the code). A CCMP allows any
node to discover if there is a (key, version) tuple in the network with the same
key but a different version compared to its own tuple. A natural approach is
to allow a node to keep querying its neighbors, to find if there is a new code
item by comparing its own tuple to its neighbors tuples. If there are only two
nodes and one code item, a node can simply broadcast it own (key, version)
tuple periodically. In a realistic scenario involving hundreds of dynamic nodes
and hundreds of code items, a node should ask smart questions at the right time
to discover if it needs an update. This requires careful CCMP design to reduce
code update latency and to conserve both energy and bandwidth.

Previous CCMP protocols like DRIP [1] and DIP [2] incur high latency, high
cost and may be complicated. Both DRIP and DIP are built on top of Trickle
[3], a self-regulating algorithm for code propagation and maintenance in wireless
sensor networks. In DRIP, a node randomly broadcasts each of its own (key,
version) tuples to its neighbors separately. DRIP scales linearly with the total
number of items (O(T)). DIP improves the total number of messages and latency
to O(log(T)) by searching for a different (key, version) using hashes of the (key,
version) tuples. A common feature in both approaches is that they try to detect
and identify differences of versions as a whole.

In this paper, we propose a new code consistency maintenance protocol called
DHV. We observe that if two versions are different, they often only differ in a

DHV: A Code Consistency Maintenance Protocol 3

few least significant bits of their version number rather than in all their bits.
Hence, it is not necessary to transmit and compare the whole version identifier
in the network. DHV aims to detect and identify differences of version-levels for
code items with the goal of transmitting much less data in the network compared
to DRIP and DIP. The name DHV comes from the three steps in the protocol —
Difference detection, Horizontal search, and Vertical search. Each step requires
only O(1) total messages and latency with respect to the total number of items.
So DHV can identify a difference with as few as 3 transmissions.

The contributions of this paper are as follows:

– We design and implement DHV, a code consistency maintenance protocol
for wireless sensor networks (Sections 3, 4 and 5). DHV is simple, intuitive,
and easy to adapt to current systems. DHV does a two dimensional search
to identify exactly where the different (key, version) tuples are. DHV can
detect and identify differences in O(1).

– We evaluate DHV using simulations and real-world experiments on a MicaZ
testbed, comparing it to state-of-the-art CCMP protocols (Section 6). Our
results show that DHV reduces the number of messages by 50%, converges
in half the time, and reduces the number of bits transmitted by 40-60%.
Potentially, DHV can conserve significant energy compared to DIP, a state-
of-the-art CCMP protocol.

2 Related Work

Code consistency management protocols can be thought of as a complement
to data (code) dissemination protocols because a CCMP helps to efficiently
discover when a node needs updates. Several dissemination protocols like Deluge
[4], Sprinkler [5], and MNP [6] were developed to reprogram the whole network
by disseminating new binaries. Maté [7] and Tenet [8] break a program into
small code capsules or virtual programs and disseminate them to reprogram the
sensors. Finally, DRIP [1], DIP [2], and Marionette [9] disseminate configuration
parameters that can change sensor tasks.

Early attempts tried to adapt epidemic algorithms [10] to disseminate code
updates during specific reprogramming periods. But there is no way for new
nodes to discover past updates. If a node is not updated during the reprogram-
ming period, it will never get updated. To discover if a node needs an update, a
natural approach is to query or advertise its information periodically. The net-
work as a whole may transmit an excessive and unnecessary number of query
and advertisement messages. To address this problem, Levis et al [3] developed
the Trickle protocol to allow nodes to suppress unnecessary transmissions. In
Trickle, a node periodically broadcasts its versions but politely keeps quiet and
increases the period if it hears several messages containing the same information
as it has. When a difference is detected, the node resets the period to the lowest
preset interval. Trickle scales well with the number of nodes and has successfully
reduced the number of messages in the network.

4 Dang et al.

However, the total messaging cost of a naive approach using Trickle scales
linearly with the total number of code items, according to [2]. Lin et al [2]
proposed DIP, a dissemination protocol that scales logarithmically with the total
number of items. In DIP, a node periodically broadcasts a summary message,
containing hashes of its keys and versions. The use of hashing helps detect if there
is a difference in O(1). But, once a difference is detected, DIP requires multiple
iterations to hone in on the exact code items that have different version numbers.
The search is analogous to a binary search in a sorted array. Therefore, DIP has
O(log(T)) complexity in both the time and the number of messages required to
identify an item that needs an update. DIP uses a bloom filter to further improve
the search but it requires extra bytes to be included in every summary message.
If there are N new items, then the total number of messages is O(Nlog(T)).

Protocol Total cost Latency

Scan Serial O(T) O(T)
Scan Parallel O(T) O(1)

DIP O(Nlog(T)) O(log(T))
DHV O(N) O(1)

Table 1. Complexity Comparison of different CCMP protocols

Ideally, when there are N new items (N < T), we would like to transmit just
enough information to identify these N items to update. Both Trickle and DIP
transmit redundant information, O(T) and O(Nlog(T)) respectively, to identify
difference in version numbers. However, if two versions differ by even one bit in
their binary representation, the two versions are different from each other. Based
on this fact, we develop the DHV protocol, which can detect the differences in
O(1) complexity in both time and total number of transmitted messages. The
total number of messages required to identify which items have newer versions
is O(N). 1 Table 1 shows a complexity comparison of different CCMP protocols.

3 Design Philosophy and Assumptions

3.1 Design Philosophy

Bit-level identification: Previous CCMPs have transmitted the complete version
number for a code item. We observe that it may not always be necessary to do
so. We treat the version number as a bit array, with the versions of all the code
items representing a two dimensional bit array. DHV uses bit slicing to quickly
zero in on the out of date code segment, resulting in fewer bits transmitted in
the network.

1 Strictly speaking, the DHV cost has one component with O(T). However, the con-
stant is very small and O(T) is often less than 2 messages for T less than 256. Please
refer to 4.1 for further details.

DHV: A Code Consistency Maintenance Protocol 5

Statelessness: Keeping state in the network, particularly with mobility, is not
scalable. DHV messages do not contain any state and usually small in size.
Preference of a large message over multiple small messages: To reduce energy
consumption, it is better to transmit as much information possible in a single
maximum length message rather than transmit multiple small messages. Sensor
nodes turn off the radio when they are idle to conserve energy. Radio start-up
and turn-off times (300 microseconds) are much longer than the time used to
transmit one byte (30 microseconds) [11]. A long packet may affect the collision
rate and packet loss. However, that effect only becomes noticeable under bursty
data traffic conditions.

3.2 Assumptions

We assume that the order of code items in the set of (key, version) tuples is the
same at all nodes, by using the same sorting algorithm at all nodes as the keys
are often assigned at a base station and are unique. This assumption allows DHV
to identify which items need updates from the indices of the different versions.
In rare cases, nodes might have a different number of items, requiring that they
compare every (key, version) tuple to identify which items are missing. We do
not address these rare cases here.2

We also assume that the version number is incremented by only one for each
update. This assumption is reasonable and implicitly made in both DRIP and
DIP.3 It allows us to infer that, if two version numbers are different, they mostly
differ in a few least significant bits. DHV exploits this assumption to restrict the
comparison scope to only a few least significant bits of the versions.

4 The DHV Protocol

DHV has two main phases — detection and identification. In detection, each
node broadcasts a hash of all its versions called a SUMMARY message. Upon
receiving a hash from a neighbor, a node compares it to its own hash. If they
differ, there is at least one code item with a different version number.

In identification, the horizontal search and vertical search steps identify which
versions differ. In horizontal search, a node broadcasts a checksum of all versions,
called a HSUM message. Upon receiving a checksum from a neighbor, the node
compares it to its own checksum to identify which bit indices differ and proceeds
to the next step. In vertical search, the node broadcasts a bit slice, starting at
the least significant bit of all versions, called a VBIT message. If the bit indices
are similar, but the hashes differ, the node broadcasts a bit slice of index 0 and
increases the bit index to find the different locations until the hashes are the
same. Upon receiving a VBIT message, a node compares it to its own VBIT

2 We plan to address these cases in the future as we integrate DHV with current
dissemination protocols.

3 In the implementations of DRIP and DIP, each time a code item is updated, its
version number is incremented by 1.

6 Dang et al.

to identify the locations corresponding to the differing (key, version) tuples.
After identifying which (key, version) tuples differ, the node broadcasts these
(key, version) tuples in a VECTOR message. Upon receiving a VECTOR mes-
sage, a node compares it to its own (key, version) tuple to decide who has the
newer version and if it should broadcast its DATA. A node with a newer version
broadcasts its DATA to nodes with an older version.

Figure 1 illustrates the DHV protocol steps to complete a search to identify
which vectors differ. DHV requires O(1) in both latency and cost to identify all
the differences, in contrast to DIP, which requires O(log(T)) in both latency and
cost for searching.

Fig. 1. Main steps in the DHV protocol. DHV completes a search in only three steps,
having 0(1) complexity in both latency and cost.

Figure 2 illustrates how DHV works. Node 1 and Node 2 have a set of keys and
versions, in which key number 2 has different versions. Node 1 first broadcasts its
SUMMARY hash of all the versions. Node 2 receives hash 1 and sees that hash 1
is different from hash 2 of node 2. Hence, node 2 broadcasts its HSUM message,
checksum of all versions. Node 1 receives the HSUM message 2 and compares
it to its own checksum. Node 1 identifies that the 2nd bits differ. Hence, node
1 copies the 2nd bit of all the versions into one or more VBIT messages and
broadcasts them. Node 2 receives a VBIT message, compares it to its own VBIT
message and detects that the 2nd bits differ. Hence, node 2 knows that the item

DHV: A Code Consistency Maintenance Protocol 7

Fig. 2. DHV protocol example. Nodes identify a difference in only 3 steps.

with key index 2 is different from its neighbors. Node 2 broadcasts a VECTOR
message containing (key 2, version 2). Node 1 receives (key 2, version 2) from
node 2 and sees that node 1 has a newer version of this item. Hence, node 1
broadcasts the DATA of key 2.

4.1 Message Formats

DHV uses 5 message types (Figure 3). One byte is used to indicate message type.
SUMMARY : This message contains the hash of all versions as well as the random
seed used for hashing. It contains the least amount of information. A node can
only detect if there is a difference or not using this message.
HSUM : This message contains the checksum of all versions, the hash of all
versions as well as the random seed used for hashing. It is used to identify which
bit indices differ.
VBIT : This message contains the corresponding bits of all versions and is used
to identify which vectors differ. The bits corresponding to the differing indices
of the VBIT messages are identified from the HSUM messages. If two HSUM
messages are similar but the SUMMARY messages differ, the VBIT messages
for the least significant bit indices are compared. This approach is suitable as
the versions mostly differ in a few least significant bits. The VBIT size can be
varied. DHV prefers large messages over multiple small messages. The VBIT
message often has either the maximum packet length or the smallest size that
can fit all the corresponding bits of all versions. The size of this message scales

8 Dang et al.

4 4
SALT HASH

4
CHECK

SUM

4 4
SALT HASH

4 4
SALT HASH

1
T

1
T

1
T

1
N

1
B

1
V

...
VBIT

1
T

1
L

4 4
KEY 1 VERSION 1

4 4
KEY 2 VERSION 2

...
...

T

4 4
KEY 1 VERSION 1

1
DATA

...

SUMMARY

HSUM

VBIT

VECTOR

DATA

MESSAGE
TYPE

FORMAT

Fig. 3. DHV message format

linearly with the total number of code items. However, the constant factor is
very small. Hence, DHV transmits only a few VBIT messages for searching.
VECTOR: This message contains one or more (key, version) tuples, and is used
to identify who has newer versions to and send the code items.
DATA: This message contains the actual code items to be updated.

4.2 Suppression mechanism

Suppression mechanisms must be carefully designed to avoid flooding the net-
work. As in Trickle, we develop our own suppression mechanism appropriate for
DHV. A decision if to send out a message is made when a Trickle timer fires
after a specified time interval. When the timer fires, if a node has DATA, VBIT,
or HSUM messages to send, it will send one message out, selected by order of
importance, DATA, VBIT, and HSUM messages. If there are no DATA, VBIT,
HSUM messages to send and the node has heard two or more messages in the
last interval, it decides to suppress its own messages. Otherwise, the node will
send either the VECTOR or the SUMMARY message. If a SUMMARY message
is sent, the next time interval is doubled as it expects that the network is stable.

5 Implementation

We have implemented DHV in TinyOS 2.1 and tested the protocol with MicaZ
motes. DHV uses the Trickle timer [7] to control transmission suppression. Sim-
ilar to DIP, both key and version in DHV are 4 bytes. The key and version sizes
can be adjusted for the application. Table 2 compares DHV memory usage to
DIP. They are largely similar, but DHV uses more RAM than DIP. We plan to
carefully optimize the code implementation and believe that the RAM usage can
be reduced significantly in subsequent versions.

DHV: A Code Consistency Maintenance Protocol 9

Item DIP DHV

ROM (Byte) 20K 19K
RAM (Byte) 534 8739

Compiled code size (Byte) 63K 81K
Table 2. DHV Implementation Statistics

6 Experimental Design and Analysis

6.1 Goals and Metrics

Previous work has shown that DIP outperforms other CCMP protocols [2]. Our
experimental goals are to study if DHV performs better than the state-of-the-art
DIP protocol over different scenarios. We use the following metrics to evaluate
the performance, with a lower value indicating better performance for all metrics.

– Total latency to update new items. This metric indicates how fast a CCMP
can help the network converge.

– Total numbers of transmitted messages and transmitted bytes to update new
items. These metrics indirectly represent energy and bandwidth consump-
tion.

– Total number of transmitted DATA messages. DATA can be as small as a
few bytes or as big as several KBytes.

– Latency of the first transmitted DATA message. This metric indicates how
quickly a new item is discovered.

6.2 Methodology

We conducted both simulations using TOSSIM [12], a discrete event simulator
tool for wireless sensor networks, and experiments using our DHV implemen-
tation on a real MicaZ sensor network testbed (Figure 4 Left). TOSSIM does
not allow simulation of packet loss directly. Instead, the packet loss depends on
several parameters like receiving gain, noise, and clear channel access threshold.
As a first step, we studied the effect of these parameters on packet loss. We
simulated a two-node network. The noise is simulated using the state-of-the-art
closest pattern matching approach with noise traces from the Stanford Meyer
library, available in the TinyOS source code. Due to memory limitations, we only
use the first 1000 entries in the trace, which is well above the minimum require-
ment of 100 entries. Figure 4 (Right) shows the packet loss rate versus receiving
gain. The receiving gains correspond to packet loss rates of 5, 10, 15, 20, 25, 30,
35, 40, and 45% are -70, -74, -76, -78, -81, 84, -87,-88, -89dBM, respectively.

We conducted three sets of experiments. Two sets are simulation-based and
one is on a real MicaZ sensor network. The first set studies how DHV perfor-
mance is impacted by different parameters including the total number of items
T , the total number of new items N , the packet loss rate L, and the density D.
Density refers to the number of radio communication neighbors. We compare

10 Dang et al.

−120 −100 −80 −60 −40
0

20

40

60

80

100
packet loss versus receiving gain

receiving gain (dBm)

pa
ck

et
 lo

ss

Fig. 4. (Left) Real MicaZ Testbed. (Right) Packet loss versus receiving gain using
TOSSIM simulation.

DHV and DIP in a clique network. The default setting is D = 32 (nodes), T =
64 (keys), N = 8 (keys), L = 5%. We vary D, T , N , and L and observe the total
numbers of transmitted messages, transmitted bytes, and DATA messages, the
true dissemination time, and the latency until the first data is sent out. Each
experiment is repeated 10 times to account for randomness in timing. Like DIP,
DHV uses 2 key/version tuples per VECTOR message to ensure comparability.

The second set includes two experiments with a medium and a tight density
multi-hop network. The total number of nodes is 225. The topology and link con-
figurations are extracted from example files in TOSSIM (15-15-medium-mica2-
grid.txt and 15-15-tight-mica2-grid.txt in tossim/topologies directory). We ob-
serve the total number of transmitted messages and bytes required to complete
updating as well as the update progress in terms of time.

Finally, we experimented with a real MicaZ sensor network testbed. We var-
ied the number of sensor nodes and observed the total number of transmitted
messages and total time required to complete updating the whole network. Un-
fortunately, the latest version of DIP on TinyOS 2.1 did not function properly on
the MicaZ platform. Due to time constraints and lack of hardware, the TinyOS
maintainers were unable to verify the problem. Hence, we can only evaluate DHV
experimentally, and not compare it to DIP.

6.3 Experimental Results

DHV Performance versus Total Number of Items Figure 5 compares
DHV and DIP when we vary the total number of items, T . DHV performance
is relatively constant with T . Meanwhile, the cost and latency in DIP increases
as T increases. As an example case, when T = 64, nodes using DHV transmit
only about 40% of the total number of messages and complete reprogramming
within 45% of the time taken by nodes using DIP. The discovery latency for the
first new item in DHV is also a constant. Nodes using DHV also transmit only
about 50% of the total number of DATA messages and less than 50% of the total
number of bytes compared to nodes using DIP.

DHV: A Code Consistency Maintenance Protocol 11

0 50 100 150
20

40

60

80

100

120
total latency versus total items

total number of items

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 50 100 150
0

50

100

150

200

total number of items
to

ta
l t

ra
ns

m
itt

ed
 m

es
sa

ge
s

total transmitted messages versus total items

dip
dhv

0 50 100 150
1000

2000

3000

4000

5000

6000

7000

total number of items

to
ta

l t
ra

ns
m

itt
ed

 b
yt

es

total transmitted bytes versus total items

dip
dhv

0 50 100 150
10

15

20

25

total number of items

to
ta

l t
ra

ns
m

itt
ed

 d
at

a
m

es
sa

ge
s

total data messages versus total items

dip
dhv

0 50 100 150
0

5

10

15

20

25

30
latency of the first data versus total items

total number of items

la
te

nc
y

(s
ec

on
d)

dip
dhv

Fig. 5. Total latency versus total items: D = 32, N = 8, L = 5%. T varies from 8 to
128.

12 Dang et al.

0 20 40 60 80
0

100

200

300

400
total latency versus total new items

total of new items

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 20 40 60 80
0

200

400

600

800

total of new items

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

total transmitted messages versus total new items

dip
dhv

Fig. 6. Total latency versus total new items: D = 32, T = 64, L = 5%. N varies from
8 to 64.

DHV Performance versus Total Number of New Items Figure 6 com-
pares DHV and DIP when we vary the number of new items. DHV always uses
fewer messages than DIP and uses only half the time to complete updating the
network. For example, when N = 32, DHV uses about 70% of the messages of
DIP and completes reprogramming in half the time.

0 20 40 60 80
20

40

60

80

100
total latency versus density

density

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 20 40 60 80
0

50

100

150

200

density

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

total transmitted messages versus density

dip
dhv

Fig. 7. Total latency versus network density: T = 64, N = 8, L = 5%. D varies from
8 to 64.

DHV Performance versus Network Density Figure 7 compares DHV and
DIP when we vary the density of the network. DHV completes updating twice
faster and uses 50% fewer messages than DIP. Since, DHV uses smaller size
messages than DIP except for the VBIT message, the total transmitted bytes in
DHV are also much smaller than DIP.

DHV: A Code Consistency Maintenance Protocol 13

0 10 20 30 40 50
0

200

400

600

800

1000

1200
total latency versus packet loss

packet loss (%)

la
te

nc
y

(s
ec

on
d)

dip
dhv

0 10 20 30 40 50
0

100

200

300

400

packet loss (%)

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

total transmitted messages versus packet loss

dip
dhv

Fig. 8. Total latency versus network density: D = 32, T = 64, N = 8. Packet loss rate
L varies from 5% to 45%.

DHV Performance versus Packet Loss Rate Figure 8 compares DHV and
DIP when we vary the packet loss rate. DHV completely outperforms DIP in
terms of latency. DHV completes updating ten times faster than DIP while using
only half the number of messages. Unlike previous experiments, DHV and DIP
use similar numbers of DATA messages. But both DHV and DIP exhibit a high
performance variation, that increases with the packet loss rate.

1 2
0

1000

2000

3000

4000

5000

6000

7000

8000
total transmitted messages for multihop networks

density

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s

dip
dhv

1 2
0

0.5

1

1.5

2

2.5

3x 10
5 total transmitted bytes for multihop networks

density

to
ta

l t
ra

ns
m

itt
ed

 b
yt

es

dip
dhv

Fig. 9. Total transmitted messages for multi-hop networks.

DHV Performance in Multi-hop Networks Figure 9 shows the total num-
ber of transmitted messages and bytes to complete updating a multi-hop network
using DHV and DIP. As expected, a denser network requires fewer total num-
ber of messages for updating data. In both medium and tight density networks,
DHV uses about 60% to 70% number of messages and about 50% number of bytes
compared to DIP. Figure 10 plots the update progress time versus the number
of completed nodes for both DHV and DIP. In update completion time, DHV
is at least two times faster than DIP in medium density networks and nearly

14 Dang et al.

0 50 100 150 200 250
50

100

150

200

250

300
total latency − medium density

number of completed node

tim
e

(s
ec

on
d)

dip
dhv

0 50 100 150 200 250
0

50

100

150

200
total latency − tight density

number of completed node

tim
e

(s
ec

on
d)

dip
dhv

Fig. 10. Convergence time for multi-hop networks.

five times faster in tight density networks. In the medium density network, both
DHV and DIP update completion times grow linearly with the completed nodes
because in each transmission, only a few nodes can receive the messages. The
update progresses from the node with the new items and spreads out to the
whole network. Hence, the number of completed nodes grows linearly with time.
In contrast, in the tight density network, when a node broadcasts, most other
nodes receive the message. Hence, the network converges quickly. The inflection
point when the number of completed nodes is around 200 can be explained by
the fact that some nodes always receive messages with high noise. It takes much
longer to complete updating these nodes.

0 20 40 60
0

20

40

60

80

100

120

140
total transmitted messages versus density

density

to
ta

l t
ra

ns
m

itt
ed

 m
es

sa
ge

s dhv−simulation
dhv−real

0 20 40 60
0

20

40

60

80
total latency versus density

density

la
te

nc
y

(s
ec

on
d)

dhv−simulation
dhv−real

Fig. 11. Total transmitted messages versus network density: T = 64, N = 8, D is
varied from 8 to 56 nodes.

DHV Performance on a real MicaZ test-bed Figure 11 shows the total
number of transmitted messages and the update completion time on a real MicaZ
network. There are total T=64 items and N=8 new items. The number of nodes

DHV: A Code Consistency Maintenance Protocol 15

is varied from 8 to 56 nodes. Surprisingly, DHV performs better in the real
testbed than the simulation in section 6.3. DHV uses both fewer total messages
and completes updating earlier in the real testbed than in the simulation. This
might be explained by the fact that in the simulation the packet loss rate is 5%
while the packet loss rate of the testbed is pretty low.

7 Discussion

Unlike dissemination protocols like Deluge or MNP [4, 6], which address the
problem of how to disseminate code items in the network, code consistency
management protocols address the problem of when to perform code updates.
Therefore, it is important to ensure that the two protocols can be integrated
well. The DHV protocol enables a dissemination protocol to decide when to
begin transferring a new code item in the network so that the network can
be updated quickly while still conserving energy. This decision making process
can be independent from the operation of the dissemination protocol. Hence,
the DHV protocol should work well with the existing dissemination protocols.
We plan to integrate the DHV protocol with Deluge in the next source code
release. Sensor networks are becoming more heterogeneous with devices based on
different hardware/software platforms, having different numbers of code items.
Ensuring code consistency for such networks is challenging, and a future research
topic.

8 Conclusion

We have proposed and evaluated the DHV protocol to maintain code consistency
in wireless sensor networks. The key innovation in DHV is that it reduces the
number of transmitted bytes in the network by carefully selecting and transmit-
ting only absolutely necessary information at the bit level to detect and identify
which code items need updates. Together with a carefully designed suppression
mechanism, DHV is able to reduce the total number of messages significantly.
Theoretically, DHV can identify differences with O(1) complexity in the total
number of items instead of logarithmically compared to DIP. Simulations and
real-world experiments validate that DHV performs at least twice better than
the state-of-the-art DIP protocol. We believe that DHV can not only be used
in wireless sensor networks but also in other distributed applications that re-
quire data consistency. The preliminary version of the DHV source code can be
downloaded at http://sys.cs.pdx.edu/home/dhv.

Acknowledgments — This research was supported in part by National Science
Foundation grants 0514818 and 0722063. Any opinions, findings, conclusions or
recommendations it contains are those of the authors, and do not necessarily
reflect the views of the Foundation.

16 Dang et al.

References

1. Tolle, G., Culler, D.: Design of an application-cooperative management system
for wireless sensor networks. In: Proceedings of the 2nd European Workshop on
Wireless Sensor Networks (EWSN 2005), Istanbul, Turkey (2005)

2. Lin, K., Levis, P.: Data discovery and dissemination with dip. In: Proceedings of
the 2008 International Conference on Information Processing in Sensor Networks
(IPSN 2008), Washington, DC, USA, IEEE Computer Society (2008) 433–444

3. Levis, P., Patel, N., Culler, D., Shenker, S.: Trickle: a self-regulating algorithm for
code propagation and maintenance in wireless sensor networks. In: Proceedings of
the 1st conference on Symposium on Networked Systems Design and Implementa-
tion (NSDI 04), Berkeley, CA, USA, USENIX Association (2004) 2–2

4. Hui, J.W., Culler, D.: The dynamic behavior of a data dissemination protocol for
network programming at scale. In: Proceedings of the 2nd international conference
on Embedded networked sensor systems (Sensys 04), New York, NY, USA, ACM
(2004) 81–94

5. Naik, V., Arora, A., Sinha, P., Zhang, H.: Sprinkler: A reliable and energy efficient
data dissemination service for wireless embedded devices. In: Proceedings of the
26th IEEE International Real-Time Systems Symposium (RTSS 05), Washington,
DC, USA, IEEE Computer Society (2005) 277–286

6. Kulkarni, S.S., Wang, L.: Mnp: Multihop network reprogramming service for sen-
sor networks. In: Proceedings of the 25th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS 05), Washington, DC, USA, IEEE Computer
Society (2005) 7–16

7. Levis, P., Gay, D., Culler, D.: Active sensor networks. In: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implementation (NSDI
05), Berkeley, CA, USA, USENIX Association (2005) 343–356

8. Gnawali, O., Jang, K.Y., Paek, J., Vieira, M., Govindan, R., Greenstein, B., Joki,
A., Estrin, D., Kohler, E.: The tenet architecture for tiered sensor networks. In:
Proceedings of the 4th international conference on Embedded networked sensor
systems (SenSys 06), New York, NY, USA, ACM (2006) 153–166

9. Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta,
P., Culler, D.: Marionette: using rpc for interactive development and debugging of
wireless embedded networks. In: Proceedings of the fifth international conference
on Information processing in sensor networks (IPSN 06), New York, NY, USA,
ACM (2006) 416–423

10. Akdere, M., Çagatay Bilgin, C., Gerdaneri, O., Korpeoglu, I., Ulusoy, Ö.,
Çetintemel, U.: A comparison of epidemic algorithms in wireless sensor networks.
Computer Communications 29(13-14) (2006) 2450–2457

11. Kramer, M., Geraldy, A.: Energy measurements for micaz node. In: Technical
Report, Technical University Kaisers Lautern,GI/ITG KuVS, (2006). 1–7

12. Levis, P., Lee, N., Welsh, M., Culler, D.: Tossim: accurate and scalable simulation
of entire tinyos applications. In: Proceedings of the 1st international conference
on Embedded networked sensor systems (Sensys 03), New York, NY, USA, ACM
(2003) 126–137

