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Abstract 

This paper reports spreadsheet calculations intended to verify the timing of 6-4 GasP 
asynchronous Network on Chip (NoC) control circuits. The Logical Effort model used in the 
spreadsheet estimates the delays of each logic gate in the GasP control. The calculations 
show how these delays vary in response to differing environmental conditions. The 
important environmental variable is the physical distance from one GasP module to 
adjacent modules because longer wires present greater capacitance that retards the 
operation of their drivers. Remarkably, the calculations predict correct operation over a 
large range of distances provided the difference in the distances to predecessor and 
successor modules is limited, and predict failure if the distances differ by too much. 
Experimental support for this view comes from the measured behavior of a test chip called 
“Infinity” built by Sun Microsystems in 90 nanometer CMOS circuits fabricated at TSMC.  
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Abstract: This paper uses the method of Logical Effort to reason about the 
timing of 6-4 GasP asynchronous Network on Chip (NoC) control circuits. 
Logical Effort provides an analytic relationship between the drive strength of a 
circuit, the load it drives, and its delay. The important environmental variable in 
this relationship is the physical distance from one GasP control module to 
adjacent modules because longer wire connections present greater capacitance 
that retards the operation of their drivers. Remarkably, this analysis predicts 
correct operation over a large range of distances provided the difference in the 
distances to predecessor and successor modules is limited, and predicts failure 
if the distances differ by too much. Experimental support for this analytical 
prediction comes from the measured behavior of a test chip called “Infinity” 
built by Sun Microsystems in 90 nanometer CMOS circuits fabricated at 
TSMC.  

Keywords: Network-on-chip, relative timing verification, GasP circuits. 

1. Introduction – Network on a Chip (NoC) 

Advances in integrated circuit technology have produced chips of amazing speed 
containing hundreds of millions of transistors. These same advances have forced 
designers to put more emphasis on communication systems within such chips for four 
reasons. First, it costs energy to send signals on wires, and an increasing fraction of 
the energy budget is spent on communication. Second, the wires cost chip area. 
Modern chips have about a dozen layers of wiring to provide the wiring space 
required. Third, finding routes for the maze of wires, though highly automated, is 
becoming an increasingly daunting task. And fourth, the sheer complexity of modern 
designs requires their partition into more manageable sub pieces.  
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For these reasons, there has been much recent discussion of system on a chip (SoC) 
designs constructed from separate parts linked together by a network on the chip 
(NoC). Such a design approach can partition the system into separate parts that can be 
designed concurrently or even re-used from previous products. Concentrating the 
communication needs of such a design into a network with pre-specified properties 
provides simple interfaces to which each separate part can attach. Moreover, it greatly 
simplifies the final assembly of the separate designs into the final SoC.  

By now there is a diverse family of NoC designs. Many of these communicate the 
presence or absence of data as well as the data itself, using one of a variety of 
handshake protocols for the purpose, see e.g. [1]. Such handshake protocols require 
signals that travel both forward and backward along the network; forward signals to 
indicate the presence of new data that could progress through the network and 
backward signals to indicate the presence of space into which such data may fit.  

Families of NoC circuits generally include special modules that can branch and 
merge arms of the network. Such modules may, for example, send an incoming 
message to several outputs in a “broadcast” mode, or may send the message to only 
one of several outputs in an “addressable” mode. Other modules may join messages 
from two or more inputs, again either by concatenation of simultaneously-arriving 
messages, or on a “first-come-first-served” basis. Such modules form the basis for a 
wide variety of network topologies. The experimental chip described in this paper 
uses a two-way addressable Branch module and a two-way first-come-first-served 
Merge module.  

2. Single Track Handshake Signaling 

A particularly interesting form of forward and back NoC handshake protocol is called 
“single track” signaling [3][12][2]. In a single track protocol a single wire carries both 
the forward and backward handshake signals. A sender briefly drives the wire to one 
logic level, signaling the presence of data on adjacent data wires. The receiver, 
noticing that change in the wire’s state, copies the corresponding data and then briefly 
drives the wire to the other logic state to indicate that it has absorbed the data values.  

Single track signaling is attractive not only because a single wire occupies less 
space, but also because single track signaling consumes minimum energy per cycle. A 
transition must pass in each direction, and the single wire does exactly that with 
automatic return to the initial state after each handshake. These two advantages are 
offset by a timing issue inherent in the word “briefly.” Because sender and receiver 
share the signaling wire and drive it in opposite directions, each must take care to 
cease its drive promptly so that the other has free use of the wire. Proper operation of 
single-track systems depends on the proper behavior of each participant to drive only 
briefly. The GasP family of asynchronous control circuits discussed in this paper is 
such a “single track” system [9].  

The 6-4 GasP family gets its name from the six logic gates in the forward direction 
between each stage and its successor, gates A B C D E F shown in Fig. 1, and the four 
logic gates in the backward direction, gates A B C X in the figure. The longer delay 
appears in the forward direction because copying data forward requires action on the 
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part of data latches, whereas moving a “bubble” backwards to indicate that a register 
has become empty requires none. 

Note also that the 6-4 GasP circuit has sets of five inverting gates that form closed 
loops. One such loop, called the successor loop, involves gates A B C D E. Whenever 
the inputs to the AND function of gate A cause gate A to act, the successor loop will 
change the state of the successor state wire in such a way as to discontinue that action. 
Similarly, the five gates A B C X F form a predecessor loop that serves a similar 
purpose. The five gates in each loop form, in effect, a pair of five-inverter ring-
oscillators coupled to neighbors by the AND logic function inside the GasP module 
and the state wires through which the module communicates with its neighbors.  

2.1. Timing in Single Track Circuits 

Each participant in a single-track signaling protocol must cease driving the state wire 
soon enough to make room for the action of the other participant. Were a participant 
to drive the wire for too long a time, both might drive it concurrently in opposite 
directions, consuming unnecessary energy and producing an indeterminate logic 
signal. How is this to be avoided?  Some single-track systems [3][2] make use of the 
analog properties of the state wire. Each participant drives the wire “long enough” for 
it to pass some threshold voltage that will alert the other participant. Other single-
track systems, including GasP, depend on the relative timing of logic gates to avoid 
drive conflict at the state wire. Careful choice of the transistor widths in GasP circuits 
enables the two participants to operate quickly while avoiding conflict.  

The transistors in the 6-4 GasP circuits reported here are chosen to be strong 
enough so that each logic gate has approximately the same delay. This is possible 
because all but two of the logic gates drive fixed loads. The AND function, called A 
in Fig. 1, drives only its own output capacitance, the capacitance of the relatively short 
wire to the inverter called B, and the input capacitance of inverter B. Likewise, B 
drives only itself, a short wire, and inverter C. In addition to driving both inverter D 
and the NMOS transistor X and the wires to them, inverter C must drive the rather 
large load presented by the long control wire to the many latches that will capture the 
data. The figure labels this load L1. Thus inverter C tends to be rather large, but its 
load is the same in every module.  

Only the two lone transistors, E and X, drive loads that vary from module to 
module. Their major load is the capacitance of the state wire between modules, 
labeled L2 in the figure. If the neighbor module happens to be nearby, L2 will be 
small, but if it happens to be far away, L2 may be much larger. The module designer 
cannot know the exact length of the state wire until the module has been placed in the 
system. Thus the designer of a system of GasP modules faces a choice; either opt for 
identical modules with variable delay or opt for custom modules with constant delay. 
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Fig. 1. Two stages of 6-4 GasP. From AND to AND, the forward path is 6 gates:   
ABCDEF; the backward path is 4 gates: ABCX; the successor loop is 5 gates:  

ABCDE; and the predecessor loop is 5 gates: ABCXF. 

 
This is an unpleasant choice because both options present problems. The choice of 

constant delay requires specialized transistor sizing and thus unique layout for each 
module after establishing the distance to its neighbors. The choice of identical 
modules causes variation in performance with distance. Although some variation in 
performance is acceptable in an asynchronous system, excessive variation may cause 
failures as we shall describe below.  

3. The Problem 

Faced with the choice between identical modules and constant delay, the VLSI 
Research Group at Sun Microsystems chose identical modules. The Sun group’s 
earlier efforts with 4-2 GasP [12] had shown them how hard it is to tailor the 
transistors in each module to the length of the wires between modules. First, such 
customization requires very late binding of transistor widths after layout is complete, 
and second, it requires calculation of wire capacitance. Accurate calculation of wire 
capacitance is very difficult because such calculation requires complete knowledge of 
what structures lie adjacent to the wire throughout its length. The Sun group now uses 
6-4 GasP rather than the faster but more demanding 4-2 GasP precisely to relax the 
tight constraints on delay presented by the faster 4-2 GasP circuits. The problem 
remains, however, to understand the conditions under which an identical set of 6-4 
GasP modules will operate correctly in the face of variable distance between modules. 
This paper addresses only the handshake operations, omitting any discussion of data 
validity. 
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The Sun group did electrical simulations of the behavior of modules in 
environments with long and short state wires. These simulations used the SPICE 
electrical simulation tool to simulate the behavior of each and every transistor, wire 
capacitance, and logic function, a fairly laborious and compute-intensive process. The 
results of these simulations showed proper operation over the range of state wire 
lengths actually needed in the test chip. Now that the chip has been tested, we can 
happily report that it does work. However, to use the 6-4 GasP modules in a more 
complex design requires a deeper understanding of the conditions under which such a 
design will be valid. Because the GasP modules in a more complex design will be 
placed automatically, such understanding could easily be converted into constraints 
on the automatic placement software.  

With this in mind, Sun was eager to enlist the help of the authors of this paper. 
Together we sought to identify the failure mechanisms possible to the 6-4 GasP 
design in a much wider range of environments. What can be said about the conditions 
under which GasP circuits will or will not operate properly? It is always useful to 
have an outside group, the “red team,” identify flaws in a design. A red team has no 
vested interest in showing that the design is correct and every motive to show how it 
will fail. Sun felt that the value contributed by a red team would outweigh any loss of 
proprietary information that might result.  

4. Relative Timing 

Our timing verification approach is based on relative timing constraints in which we 
explicitly identify timing constraints in the form of ordering of signal transitions 
within the circuit [8]. In addition to providing insight into the circuit behavior, we are 
exploring whether we can verify asynchronous circuits using standard commercial 
static timing analysis tools, capturing the margins necessary to cover all sources of 
delay variability that asynchronous circuits may exhibit. 

Using this relative timing approach, we identified and formally modeled the 
intended behavior and circuit implementation of the GasP circuits and identified two 
important failure modes. Both these failure modes occur because the two loops of 
logic gates in each GasP module meet at the AND function. Completion of either of 
the loops shuts off both of them. Failure can result if either of these two loops 
completes before the other is adequately underway. The timing constraints involve the 
difference in delay of the two loops. 

The constraints are illustrated in Fig. 2 in which the behavior of the GasP design 
illustrated in Fig. 1 is represented by up- and down-going transitions (+ or -) of key 
signals to the latches and neighboring GasP stages: FIRE, PRED, and SUCC. The 
constraints are illustrated by the pair of paths in Fig. 2(a1)-(a2) and Fig. 2(b1)-(b2); the 
delay of the dotted path must be smaller than the delay of the solid path. These timing 
constraints help ensure a full rail-to-rail swing on the state wires between stages by 
turning the drivers on long enough to drive the state wire high or low before turning 
the drivers off.  

The first timing constraint, illustrated in Fig. 2(a1)-(a2), states that PRED of the 
next GasP stage should go high before PMOS gate E of the current stage stops driving 
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            (a1)                             (a2) (b1)                               (b2) 

Fig. 2. Relative Timing Constraints on GasP. 

 
it; see Fig. 1. Presence of a large state wire load from SUCC of stage (a1) to PRED of 
stage (a2) and a small state wire load on PRED of stage (a1) can lead to a violation of 
this constraint. Moreover, if PMOS gate E in stage (a1) fails to drive the state wire all 
the way up before the predecessor loop shuts E off, data moving forward may be lost.  

The second timing constraint, illustrated in Fig. 2(b1)-(b2), states that SUCC of the 
previous GasP stage should go low before NMOS gate X of the current stage stops 
driving it; see Fig. 1. Presence of a large state wire load from PRED of stage (b2) to 
SUCC of stage (b1) and a small state wire load on SUCC of stage (b2) can lead to a 
violation of this constraint. Moreover, if NMOS gate X in stage (b2) fails to drive the 
state wire all the way down before the successor loop shuts X off, bubbles moving 
backward may be lost, resulting in duplication of data. 

Notice that each constraint involves the relative ordering of two actions on the state 
wire that leads to an adjacent module. When the first of the two actions completes, it 
turns off the driving action of both loops. Thus a very fast predecessor loop may 
prematurely terminate the drive of a slower successor loop, and vice versa. Armed 
with this understanding the question remains: “How much faster?” 

5. Applying Logical Effort 

The Theory of Logical Effort [13] offers a formal calculus to compute the delay in 
logic gates. According to the Logical Effort model, the delay in a logic gate depends 
on the logic function it implements, and is directly proportional to the load that it 
drives and inversely proportional to the width of its transistors. In general, a logic gate 
can be made faster by making its transistors wider or by reducing the load that it 
drives.  

One result of this analysis is that fastest overall operation of a three-gate string of 
logic is obtained by making the “size” of the central gate the geometric mean of the 
“sizes” of the first and last gate. If the central gate is too small, the first gate will 
operate faster, but the central gate will be too slow. If the central gate is too large, the 
central gate will operate faster, but the first gate will be too slow. Logical Effort 
teaches that the “size” of a gate depends not only on the width of its transistors, but 
also on its logic function.  
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According to the Logical Effort model, the delay in a logic gate is given by:  

d = gh + p  (1) 

where d is the delay in the gate in normalized time units, g is the Logical Effort of the 
gate, h is the ratio of the load it drives to the input load it presents to its driver, and p 
is a constant delay that arises from the diffusion capacitance connected to the gate’s 
output. The Logical Effort, g, depends on the logic function implemented by the gate. 
Table 1 shows the logical effort of some logic gates.  

The Theory of Logical Effort ignores the time it takes for signals to change from 
one logic level to another. More accurate models can take the "rise time," or its 
reciprocal, "slew rate," into account at the cost of computational complexity.  More 
accurate models are particularly important for estimating the delay introduced by the 
resistance and capacitance of long wires.  A long wire not only adds capacitive load to 
its driver, retarding the signal at its source, but also delivers any change in logic level 
with degraded rise or fall time.  The available tools that model the effects of rise and 
fall time degradation in long wires are suitable only for synchronous systems. Peter 
Beerel and his students at USC seek to adapt such tools to asynchronous systems. The 
analysis offered in this paper models only how the capacitance of the wires retards the 
gate that drives them and ignores the delay inherent in the wire itself.  The simpler 
Logical Effort model used in this paper is valid because none of the wires considered 
here is long enough to present significant electrical resistance. 

 

Table 1. The Logical Effort for some simple logic gates. 

Gate type Number 
and width 
of NMOS 

Number 
and width  
of PMOS 

Total 
transistor 

width  

Width 
seen per 

input 

Logical 
Effort  

per input 
Inverter 1 @ W 1 @ 2W 3W 3W 1 (norm.) 
2 input NAND 2 @ 2W 2 @ 2W 8W 4W 4/3 
2 input NOR 2 @ W 2 @ 4W 10W 5W 5/3 
2 input XOR 4 @ 2W 4 @ 4W 24W 12W 4 
NMOS transistor 1 @ W none W W 1/3 
PMOS transistor none 1 @ 2W 2W 2W 2/3 

 
 
The logical efforts in Table 1 are normalized to the inverter whose logical effort is 

arbitrarily set to one. A NAND gate is worse than an inverter at providing electrical 
amplification by the ratio 4 to 3, and a NOR gate is worse by the ratio 5 to 3. The 
difference between NAND and NOR comes from the fact that in most CMOS 
processes, a PMOS transistor conducts about half as much current as an NMOS 
transistor of the same width. Except for the single transistor gates, these logical effort 
numbers are at least one because, unlike inverters, logic gates must use transistors in 
series or parallel combinations. Transistors in series conduct current less well than 
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individual transistors and transistors in parallel require more input charge than does a 
single transistor. XOR is a particularly nasty function that involves parallel 
combinations of series transistors. Another way of thinking about this is that the 
output of an XOR logic gate will change in response to any single input change. This 
makes XOR a “more complex” logic function than either NAND or NOR and gives it 
correspondingly higher logical effort.  

In both the NAND and the NOR logic gates, the AND function comes from two 
series transistors. Both must conduct before current can flow though the series pair to 
the output. In the NAND logic gate, the AND function appears in NMOS transistors, 
whereas in the NOR logic gate, the AND function appears in PMOS transistors. The 
symbol used for logic gate A in Fig. 1 indicates that PMOS transistors provide its 
AND function and therefore the logical effort of gate A is 5/3.  

One of us, Prasad Joshi, applied the Logical Effort model to the 6-4 GasP circuits. 
He built a spreadsheet much like that shown in Table 2 to calculate the delays earlier 
identified as critical to correct operation. Table 2 greatly simplifies the sizes and wire 
lengths in order to offer simple numbers that are, nevertheless, approximately correct. 
The size S of a gate is a measure of its drive strength and depends on the width of its 
transistors. Table 2 normalizes wire lengths as the size of an inverter that would 
present an equal load. Logical effort enters Table 2 as an increase in input load rather 
than as increased delay.  

 

Table 2. Logical Effort calculations of delays in the 6-4 GasP module of Fig. 1. The three 
columns with bold numbers are fixed by design: size S and self-delay P follow from the gate 
implementation and the gate complexity, and wire load WL follows from the wire dimensions. 
Note that in the calculation of the self delay for E and X we count the diffusion output 
capacitance of both E and X, because both their outputs connect to the state wire. Using Table 1 
for the logical efforts, IL = (S / logical effort of the gate). The formulas for the delays are as 
follows:  D1 = GL/S, D2 = WL/S, Total delay = D1 + D2 + P.   

Gate 
Name 

Size 
(S) 

Load 
per 

input 
(IL) 

Drives 
next gates 
and wire 

Next 
gate 
load 
(GL) 

Delay 
from 
GL 
(D1) 

Self 
delay 

(P) 

Next  
wire 
load 

(WL) 

Delay 
from 
WL 
(D2) 

Total 
delay 

A 18 30 B+wire 40 2.2 2 9 0.5 4.7 
B 40 40 C+wire 100 2.5 1 20 0.5 4 
C 100 100 D+X+wire 20+20 

+200 
2.4 1 100 1 4.4 

D 20 20 E+wire 40 2 1 20 1 4 
E 
L2=15 

60 40 A+F+ L2 30+10 0.67 with X 
= 1 

15 0.25 1.9 

E 
L2=150 

60 40 A+F+ L2 30+10 0.67 with X 
= 1 

150 2.5 4.2 

F 10 10 A+wire 30 3 1 5 0.5 4.5 
X  
L2=15 

60 20 A+F+ L2 30+10 0.67 with E 
= 1 

15 0.25 1.9 

X  
L2=150 

60 20 A+F+ L2 30+10 0.67 with E 
= 1 

150 2.5 4.2 
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 The longer wire that makes L2  = 150 was the design target. Notice that for this 
case the gates all have approximately the same total delay, in the range 4 to 5.  

Unlike Table 2, which shows only two values of L2, Prasad’s spreadsheet shows all 
delays for a wide variety of lengths of the predecessor and successor state wires. 
Although we initially thought that the ratio of the lengths of these wires might be 
important, Prasad’s spreadsheet revealed instead that the difference in the lengths of 
these wires matters.  

Table 3 summarizes the total delay for several paths of interest. A tenfold change in 
L2 results in a change in these path delays of only about 10% to 15% because of the 
fixed delays of gates A B C D and F.  

 

Table 3. Total delay for various paths. 

Path name Path Delay, L2=15 Delay, L2=150 Difference 
Forward latency A B C D E F 23.5 25.8 9.6 % 
Backward latency A B C X 15 17.3 15 % 
Successor loop A B C D E 19 21.3 12 % 
Predecessor loop A B C X F 19.5 21.8 12 % 

6. The Infinity Chip 

The VLSI group at Sun Microsystems designed a test chip called “Infinity” to 
demonstrate 6-4 GasP modules suitable for use in a network on a chip [10]. Infinity 
tests the operation, speed, and power consumption of the various types of modules 
required, with special focus on the modules for branching and merging networks. The 
Branch and Merge modules are electrically more complex than the simple 6-4 GasP 
circuit shown in Fig. 1, but have many similar elements. Like the circuit of Fig. 1, the 
Branch and Merge modules each provide 6 gates in the forward direction and 4 in the 
backward direction. Moreover, each logic gate used in the Branch and Merge modules 
has a delay in the range of 4 to 5 just like the logic gates in the simple GasP module1. 
Thus we expect performance from the Branch and Merge modules similar to that of 
the simpler circuits.  

Logically, the Infinity chip consists of two rings of 100 GasP modules each, as 
shown in Fig. 3. Each module passes on a word of 52 bits of data whose latches and 
the wire to reach them form the large load L1 in Fig. 1. The rings share a common 
center section from Merge to Branch inclusive of 50 modules. At the start of the 
center section a Merge module combines input from the two rings upon demand, 
using an arbiter to decide which input was presented first. At the end of the center 
section, a Branch module separates the data elements according to one of the bits that 
they carry. This bit marks each data element as “belonging” to either the left or the 
right ring.  

                                                           
1 The delay in the Merge module will be longer in the rare case of contention at its arbiter. 
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Fig. 3. Layout view of the Infinity experiment. It occupies an area of about 0.5 mm2. 
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Geometrically, the Infinity chip is arranged as three columns of modules; see Fig. 3. 
Each module is 288 lambda2 high and about 5000 lambda wide. Their width requires 
that the center-to-center distance of the columns exceed 5000 lambda. The center 
column is the shared part of the two rings; data flows down through the center column 
from the Merge module near its top to the Branch module near its bottom. Data flows 
back upwards through the outer columns, thus completing each of the two logical 
rings. Each outer column includes a counter to measure how many data elements pass 
through the column. Each outer column also includes two “proper stoppers” to 
properly fill and drain data elements from each ring at the beginning and end of each 
experiment. Low speed scan techniques load data into the rings prior to each 
experiment and unload the data afterwards to check for errors.  

Infinity’s designer, Ivan Sutherland, anticipated that the task of copying data 
elements from one column to another was “harder” than passing data within the 
columns because it requires state wires that are approximately 16 times longer, 
namely about 5000 rather than about 300 lambda long. To avoid placing a large 
electrical burden on the Branch module in addition to its inherently larger logical 
burden, he chose to isolate the Branch from the column-crossing section. Thus it is, as 
Fig. 3 shows, that the pair of buffer stages immediately below the Branch drives data 
to the adjacent column. A similar pair of buffer stages above the Merge module offers 
the Merge module similar protection from excess electrical load.  

7. Experimental Results 

Performance experiments with asynchronous rings typically measure throughput 
versus occupancy [14][7][5]. It is easy to see that plots from such experiments show a 
roughly triangular shape. If the ring contains no data, there can be no throughput. 
Similarly, if every stage in the ring contains a data element, none can move, and again 
there’s no throughput.  

Let us first consider the low-occupancy side of such a plot. A single data element 
passes once around the ring by passing through each and every module once. Two 
data elements make the same trip in about the same time, achieving twice the 
throughput. Three data elements offer three times the throughput, and so forth. Thus 
for small occupancy, throughput increases linearly with occupancy.  

Now let us consider the high-occupancy part of such a plot. If the ring is 
completely full, there’s no throughput. If all but one module is occupied, the blank 
space, or bubble, can circulate backwards, just as space for your automobile moves 
backward when you advance one car length on a very crowded highway. Two bubbles 
make a complete circuit of the ring backwards in about the same time as one, and so 
throughput increases roughly linearly with the number of bubbles. The bubble side of 
the graph is steeper than the data side because 6-4 GasP circuits move bubbles faster 
than data. A 6-4 GasP circuit moves data forward with a latency of 6 logic gates and 
moves bubbles backward with a latency of 4 logic gates. 

 

                                                           
2 Lambda is a distance measure characteristic of the manufacturing process. 
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Fig. 4. Throughput versus occupancy for Infinity’s rings operated separately.  

 
 
Somewhere in the middle these two linear regions meet, giving the roughly 

triangular shape often seen in such plots. One might expect a sharply defined 
maximum at an occupancy defined by the slopes of the two linear regions, but such a 
sharp top is rarely observed. The shape at near maximum throughput is defined by the 
details of the delay in the AND function when both its inputs change at the same time. 
Real AND gates suffer more delay when both inputs change together than when one 
input changes well before the other [5]. This effect gives the plot a smooth curved top.  

It also sometimes happens that a single module in the ring or a few modules are 
inherently slower than the others. A slow stage places a maximum limit on 
throughput, giving the plot a flat top, as can be seen in Fig. 4 which shows throughput 
versus occupancy for each of Infinity’s rings operated separately. We notice from the 
figure that each of Infinity’s rings is limited to a throughput of about 3.8 * 109 data 
items per second. Extrapolation of the two linear portions of the plot, however, 
suggest that speeds of about 4.2  * 109 data items per second might be possible, a 10% 
increase.  
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7.1. Single-Column Experiment 

A separate and simpler experiment on the same chip as the Infinity experiment and 
using the same 6-4 GasP modules contains only a single FIFO ring, with all its 
modules arranged in a single column. Upward bound and downward bound stages 
alternate in the column, so that no stage is more than two modules away from its 
logical neighbors. This simpler experiment avoids the column change required in 
Infinity. The measured peak throughput of this simpler experiment is about 4.2 * 109 
data items per second, about 10% higher than either of Infinity’s two rings operating 
alone.  

Naturally, we want to know which module in the Infinity design limits its 
performance. The first suspects, of course, are the Branch and Merge modules 
because of their greater complexity. Neither of these modules appears in the simpler 
experiment.  

7.2. The Cross-Column Hypothesis 

Alternately, the speed limit might be the result of the long state wire required to pass 
from one column to the adjacent column. Indeed, Infinity includes special buffer 
modules to drive this wire, but their PMOS and NMOS drive transistors, E and X in 
Fig. 1 are the same width as those in other modules that drive shorter wires. Moreover, 
the logical effort calculations summarized in Table 3 suggest that the greater wire 
length involved might result in a 10% to 15% decrease in speed.  

Thus we offer the hypothesis that the long state wires for the cross-column transfer 
limit Infinity’s performance. This hypothesis renders harmless the greater logical 
complexity of the Branch and Merge modules. Is there an experiment we can do with 
Infinity to support this Cross-Column Hypothesis? 

7.2.1. The Supporting Experiment 

Indeed there is. Consider the case where each ring contains data elements that mingle 
as they pass through the center column. The Branch module delivers data to the two 
side columns via the two buffer stages immediately below it. If it should happen that 
the data elements alternate as they pass through the center section, the Branch module 
will deliver them alternately to the two sides. In this case, the data rate needed to 
move from the center column to either side would be only one half of the data rate 
sustained in the center column. Such a reduction in data rate would leave twice as 
much time for crossing to the adjacent column, much more than the task requires. 
Any small excess delay of 10% to 15% for crossing from one column to the next will 
thus be masked. Of course, to achieve its maximum throughput the Branch module 
must receive a sufficiently fast supply of elements of alternate types.  

Similarly, the Merge module at the top of the center column receives data elements 
from each ring via the two buffer stages immediately above it; see Fig. 3. The Merge 
module contains an arbiter to decide which element arrives first and dispatch it down 
the center column. An element observed slightly later at the other input to the Merge 
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must wait for the next cycle of the Merge module. If there is always a data element 
waiting at the beginning of each cycle of the Merge module, we say that the Merge 
module is “saturated”. In saturation it happens that the electrical properties of its 
arbiter cause the Merge module to send forward data elements alternately from its two 
inputs.  

When the Merge module is saturated, it will accept data elements from an 
individual side column at only half of its maximum data rate. This reduction in data 
rate leaves twice as much time for crossing from the side column, much more than the 
task requires. Thus, just as alternate delivery by the Branch module masks the cross-
column delay at the bottom, so alternate receipt by the Merge module likewise masks 
the cross-column delay at the top of the center column. Moreover, because the Merge 
module forwards data alternately from the two sides, the center stream meets the 
alternating condition assumed for the Branch module.  

7.2.2. Confirming the Hypothesis 

How many data elements must there be in the side column to achieve at least half the 
maximum throughput?  We can discover the answer by examining Fig. 4 which shows 
the throughput for any given occupancy. If we need half the maximum throughput, we 
must have occupancy of at least 24% and not more than 80%. Why is this?  With less 
occupancy there aren’t enough data elements to sustain the throughput, and with 
greater occupancy there is too much congestion. Applying the 24% to 80% numbers 
to the 50 modules of the side column and its buffers requires them to contain at least 
12 data elements and not more than 40, a maximum that leaves enough bubbles, 
namely 10, to achieve the required throughput.  

In addition, of course, the 50 modules of the shared center column at maximum 
throughput contain a total of about 60% * 50 = 30 data elements. Because these 
alternate from the two rings, half of them must belong to each ring.  The total number 
of elements in each ring is the sum of its unshared data elements and its shared data 
elements, a number that lies between 12 + 15 = 27 and 40 + 15 = 55. We expect 
occupancy in each of the two rings in this range to mask any cross-column delay.  

Unfortunately, Infinity lacks a counter able to measure directly the throughput of 
the center column. However, the throughput of the center column must be the sum of 
the throughputs of the two side columns. Thus we can use the sum of the two side 
throughputs to test the hypothesis that the cross-column delay limits the single-ring 
throughput of Infinity.  

Experimental confirmation of the Cross-Column Hypothesis comes from an 
experiment in which each ring holds 45 data elements. In this condition we measure a 
combined throughput of about 4.2 * 109 data elements per second. This higher 
combined throughput is very similar to that of the simpler single-column experiment.  

Analytic confirmation of the Cross-Column Hypothesis comes from Table 3 which 
suggests that the longer state wires required for crossing from one column to another 
will retard the buffer modules about 10% to 15%.  

The near agreement between formal analysis and chip measurements give us 
confidence that the flat top of Fig. 4 comes from delay in the cross-column buffers and 
that the Branch and Merge modules can operate at their full design speed. 
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8. Conclusions 

One might be tempted to conclude that the cross-column drivers in Infinity are too 
small. It would have been possible to use wider drive transistors in the buffer stages to 
speed up the cross-column transfer. However, examination of Table 2 illustrates 
otherwise. Notice that for the long wire case in Table 2 the delays of transistors E and 
X are about the same as the delays of all the other logic gates. In fact, the width of 
transistors E and X was chosen for the long wire case, but the same E and X widths 
appear in all stages. The close proximity of stages in a single column makes the state 
wires between them too short for the chosen width of their drive transistors. Thus, 
rather than concluding that Infinity’s cross-column drivers operate too slowly, we 
should conclude that the single-column modules, including the Branch and Merge, 
operate too quickly.  

We can improve the design by providing a few additional module types with 
smaller transistors for driving short state wires. Such a design would have reduced 
transistor width, and thus would consume less energy. All its stages would operate 
with about the same delay, albeit with the longer delay of the cross-column stages. 

The most important result from this work is that a limited set of module types can 
provide reliable operation for an extended range of state wire lengths. GasP circuits 
fail when the delays in the predecessor and successor loops differ by too much. 
Notice, however, that each loop includes the delay of gates A B and C in Fig. 1. 
Moreover, the delays of gates D and F can be made approximately the same. Thus for 
such a timing failure to occur, the delay in gate E or X must exceed the combined 
delay of the other logic gates, A B C and D or F. It would require an excessively long 
state wire to delay E or X so much, a wire long enough to span many of Infinity’s 
columns. Moreover such a wire would have too much electrical resistance to be 
useful. The analysis offered here bolsters our confidence that the 6-4 GasP family of 
control circuits may prove applicable to a wide variety of NoC conditions.  
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The Project 

The asynchronous VLSI/CAD group at the University of Southern California (USC) 
led by Prof. Peter Beerel does research in various aspects of making asynchronous 
circuits a viable alternative to synchronous design. One of its current goals is to 
extend the application of standard static timing analysis techniques to non-traditional 
circuits, including high-speed asynchronous pipelines, see e.g. [6]. Heretofore nearly 
all timing verification tools have been built to validate the operation of synchronous 
circuits in which a global clock provides a common rhythm of operation to an entire 
system. In asynchronous designs, however, separate parts of the system each use their 
own timing signals, thus making it very hard to apply the standard validation tools. 
The USC group seeks ways to simplify timing verification for asynchronous systems.  

The USC group is sponsored in part by the Global Research Collaboration (GRC) 
program of the Semiconductor Research Consortium (SRC). GRC provides for a 
global forum for pre-competitive collaboration among all segments of the 
semiconductor industry, universities and government agencies. Marly Roncken 
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mentors the SRC work at USC for Intel Corporation, and was seeking additional 
asynchronous design examples to which the USC timing validation tools and 
understanding might apply. She found these at the University of California, Berkeley 
(UCB), where Ivan Sutherland has an ongoing collaborative research project between 
Sun Microsystems and UCB, called Fleet [4][11][15]. Meanwhile, the VLSI Research 
Group at Sun Microsystems had fabricated an asynchronous test chip for Fleet, called 
Infinity, in 90 nanometer TSMC technology.  

The fortuitous juxtaposition of these activities brought the four authors together. 
Marly’s earlier association with Prof. Willem-Paul de Roever, as his master’s student 
at the University of Utrecht, leads us to offer this paper in honor of Willem-Paul’s 
“Declaration of Independence” through retirement from the University of Kiel on 4 
July 2008. July 4th is also a very important holiday in the United States, being the 
anniversary of the date when the United States declared independence from England.  
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