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Abstract

Languages like ML and Haskell encourage the view of
values as first-class entities that can be passed as argu-
ments or results of functions, or stored as components
of data structures. The same languages offer paramet-
ric polymorphism, which allows the use of values that
behave uniformly over a range of different types. But
the combination of these features is not supported—
polymorphic values are not first-class. This restriction
is sometimes attributed to the dependence of such lan-
guages on type inference, in contrast to more expressive,
explicitly typed languages, like System F, that do sup-
port first-class polymorphism.

This paper uses relationships between types and logic
to develop a type system, FCP, that supports first-class
polymorphism, type inference, and also first-class ab-
stract datatypes. The immediate result is a more ex-
pressive language, but there are also long term implica-
tions for language design.

1 Introduction

Programming languages gain flexibility and orthogonal-
ity by allowing values to be treated as first-class enti-
ties. Such values can be passed as arguments or results
of functions, or be stored and retrieved as components
of data structures. In functional languages, the for-
mer often implies the latter; values are stored in a data
structure by passing them as arguments to constructor
functions, and retrieved using selector functions.

In languages like ML [20] and Haskell [8], new types
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of first-class value are specified by giving the names and
types for their constructors. For example, a definition:

data List a = Nil | Cons a (List a)

introduces a new, unary type constructor, List , with
two constructor functions:

Nil :: ∀a.List a
Cons :: ∀a.a → List a → List a.

Pattern matching allows the definition of selectors:

head :: ∀a.List a → a
head (Cons x xs) = x

and other useful operations on lists, such as:

length :: ∀a.List a → Int
length Nil = 0
length (Cons x xs) = 1 + length xs.

All of these functions have polymorphic types, which
indicate that they work in a uniform manner, indepen-
dently of the type of elements in the lists concerned.
Indeed, examples like these are often used to illustrate
the flexibility of polymorphic type systems.

An important property of languages based on the
Hindley-Milner type system [6, 19] is that most general,
or principal, types for functions like these can be in-
ferred automatically from the types of the constructors
Nil and Cons. There is no need for further type annota-
tions. At the same time, the typing discipline provides
a guarantee of soundness or type security; the execution
of a well-typed program will not “go wrong.” Combin-
ing these attractive features, the Hindley-Milner type
system has been adopted as the basis for a number of
different programming languages.

However, the Hindley-Milner type system has a sig-
nificant limitation: polymorphic values are not first-
class. Formally, this is captured by making a distinc-
tion between monomorphic types and polymorphic type
schemes. Universal quantifiers, signalling polymorphism,



can only appear at the outermost level of a type scheme,
and quantified variables can only be instantiated with
monomorphic types. To put it another way: first-class
values have monomorphic type.

In many applications, this limitation is considered a
reasonable price to pay for the convenience of type in-
ference. For example, it is often enough to be able to
pass particular monomorphic instances of polymorphic
values to and from functions, rather than the polymor-
phic values themselves. On the other hand, comparisons
with explicitly typed languages, like System F [4, 29],
that do support first-class polymorphism, reveal signifi-
cant differences in expressiveness. We will see a number
of practical examples in later sections that use first-class
polymorphism in essential ways, but cannot be coded
in a standard Hindley-Milner type system.

1.1 This paper

In this paper we show that polymorphic values can be
used as first-class objects in a language with an effective
type inference algorithm, provided that we are prepared
to package them up as datatype components. The con-
structs that are used to build and extract these compo-
nents serve as an alternative to type annotations; they
allow us to define and use first-class polymorphic val-
ues without sacrificing the simplicity and convenience
of type inference. Although the notation is different,
the use of special constructs to package and unwrap
polymorphic values is not new. For example, System F
uses type abstraction to build polymorphic values and
type application to instantiate them. However, in con-
trast with our approach, the standard presentation of
System F requires explicit type annotations for every
λ-bound variable, and the type inference problems for
implicitly and partially typed variations of System F
are undecidable [34, 1, 26].

Our approach is inspired by rules from predicate cal-
culus that are used to convert logical formulae to prenex
form, with all quantifiers at the outermost level. This
leads to a system that allows both universal and exis-
tential quantifiers in the types of datatype components.
The former provides support for first-class polymor-
phism, while the latter can be used to deal with ex-
amples of first-class abstract datatypes [21] in the style
suggested by Perry [23] and refined by Läufer [14, 16].

The main subjects covered in the remaining sections
of this paper are as follows:

• Section 2 shows how ideas from logic can be used to
develop a type system that allows datatypes with
components whose types include universal or exis-
tential quantifiers. We refer to this type system as
FCP, a mnemonic for First-Class Polymorphism.

• Section 3 illustrates the expressiveness of FCP.
Our examples include a representation for booleans
and Church numerals, a facility for using monads
[32] as first-class values, a treatment of stacks as
abstract datatypes, and the Pierce-Turner repre-
sentation of objects using existential types [27].
These examples have been tested using a prototype
implementation of FCP developed by the author.

• Section 4 gives a formal definition of FCP, includ-
ing the treatment of special syntax for constructors
and pattern matching. Type inference for FCP is
described in Section 5.

• Section 6 highlights a correspondence between uses
of constructors and selectors in FCP, and uses of
type abstraction and application, respectively, in
System F. By defining an appropriate collection of
datatypes, we show that every System F program
can be implemented by a term in FCP.

• Section 7 describes the background for FCP and
discusses its relationship to other, largely orthog-
onal extensions of Hindley-Milner typing.

2 Quantified component types

Consider a simple datatype definition:

data T a = C τ,

which introduces a new type constructor T , with a con-
structor C and an easily-defined selector unC of type:

C :: ∀a.τ → T a
unC :: ∀a.T a → τ.

In both types, the quantified variable a ranges over ar-
bitrary monomorphic types, so the components of any
data structure that we build or access using these func-
tions must have monomorphic types.

The purpose of this section is to show how these
ideas can be extended to datatypes with quantified com-
ponent types. Specifically, we are interested in a system
that allows definitions of the form:

data T a = C (Qx .τ),

for some quantifier Q ∈ {∀, ∃}. This would give con-
structor and selector functions with types of the form:

C :: ∀a.(Qx .τ) → T a
unC :: ∀a.T a → (Qx .τ).

A general treatment of the nested quantifiers in these
types would make it difficult to deal with type infer-
ence, and could lead to undecidability [34, 1, 26]. But
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our goal is more modest—nested quantifiers are used
only in the types of constructors and selectors—so it
is reasonable to hope that we can make some progress.
Indeed, we are not the first to consider extensions of
the Hindley-Milner type system that support datatypes
with quantified component types. For example, Perry
[23] and Läufer [14] have each described extensions of
Milner’s type inference algorithm that allow datatypes
with existentially quantified components. Rémy [28]
used an extension of ML with both universally and ex-
istentially quantified datatype components to model as-
pects of object-oriented languages, but did not discuss
type inference. Recent work by Odersky and Läufer
[22] has similar goals to the present paper and permits
universal quantification of datatype fields, with an en-
coding to simulate existential quantification. However,
their approach requires a significant extension of the
usual type inference mechanisms—replacing unification
with instantiation. We believe that the approach de-
scribed here is simpler, achieving the same degree of
expressiveness, but based on techniques that are easier
to use and easier to implement.

2.1 Eliminating nested quantifiers

If we cannot work with nested quantifiers, then perhaps
we can find a way to eliminate them. There is a well-
known procedure in predicate logic for converting an
arbitrary formula, possibly with nested quantifiers, to
an equivalent formula in prenex form with all quantifiers
at the outer-most level. The process is justified by the
following equivalences from classical logic, all subject to
the condition that x does not appear free in P :

(∀x .P ⇒ Q) = P ⇒ (∀x .Q) (1)
(∀x .Q ⇒ P) = (∃x .Q) ⇒ P (2)
(∃x .P ⇒ Q) = P ⇒ (∃x .Q) (3)
(∃x .Q ⇒ P) = (∀x .Q) ⇒ P (4)

Using the Curry-Howard isomorphism [7] as a bridge
between logic and type theory, we can use Equation 1
to justify the equivalence:

(∀a.∀x .T a → τ) = ∀a.T a → (∀x .τ) .

This result tells us that we can convert an arbitrary
term of one type to a corresponding term of the other
type. In this case, the equivalence allows us to deal
with selectors for datatypes with universally quantified
components, that is, with functions whose types are of
the form on the right hand side, by treating them as
values of the prenex form type on the left hand side.

In a similar way, Equation 2 suggests a simple treat-
ment for constructors of datatypes with existentially

quantified components:

(∀a.∀x .τ → T a) = ∀a. (∃x .τ) → T a.

We might hope that the two remaining equations
could be used to deal with selectors for datatypes with
existentially quantified components, and with construc-
tors for datatypes with polymorphic components, re-
spectively. But the Curry-Howard isomorphism deals
with the relationship between type theory and intu-
itionistic rather than classical predicate calculus, and
Equations 3 and 4 are not valid in this setting. Instead,
we are forced to make do with weaker implications. For
example, the closest that we can get to the classical
equivalence of Equation 3 is the implication:

(∃x .P ⇒ Q) ⇒ P ⇒ (∃x .Q) . (3′)

A term with the type shown on the right-hand side
is a function that, for each argument of type P , re-
turns a result of some type [τ/x ]Q . The choice of the
otherwise-unspecified witness type τ may depend on the
particular value that the function is applied to; differ-
ent argument values may produce results of different
types. This is exactly the behaviour that we expect for
a selector function for a datatype with an existentially
quantified component. But compare this with the type
on the left-hand side of the implication; the position
of the quantifier in the formula (∃x .P ⇒ Q) indicates
that the choice of a witness type τ is independent of
any particular argument value of type P . Clearly, the
two types are not equivalent, although the implication
tells us that we can convert an arbitrary term of the
left-hand type to a term of the right-hand type.

In a similar way, the closest that intuitionistic logic
gets to the classical equivalence of Equation 4 is an im-
plication:

(∃x .Q ⇒ P) ⇒ (∀x .Q) ⇒ P . (4′)

It follows that certain terms of type ∀a.∃x .(τ → T a)
can be substituted for terms of type ∀a.(∀x .τ) → T a,
the type of a constructor function for a datatype with
a polymorphic component. Unfortunately, it does not
help us to determine which terms of the latter type can
be represented in this way. And even if that were not
a problem, we would still need some form of top-level,
existential quantification—a feature that is not usually
supported in Hindley-Milner style type systems.

We find ourselves in a rather frustrating situation. If
we are restricted to a language of types that allows only
outermost quantification, then we can select from, but
not construct datatypes with polymorphic components,
and we can construct, but not select from datatypes
with existentially quantified components. We cannot
meet our goals if constructors and selectors are to be
treated as normal, first-class functions.
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2.2 Special syntax for constructors

The problems that we have seen are the result of re-
stricting our attention to types in prenex form. In the
context of logic, such restrictions seem rather artificial;
given (∀x .Q) ⇒ P as a hypothesis, we can try to con-
struct a proof of (∀x .Q) and then deduce P as a con-
clusion, as in the following derivation:

A ` (∀x .Q) ⇒ P
A ` Q x 6∈ A

(∀I )
A ` ∀x .Q

(→E )
A ` P

Switching back from logic to terms and types, this is
exactly the structure that we need to deal with a con-
structor for a datatype with a universally quantified
component1:

K : (∀x .τ) → T a

A ` E : τ x 6∈ TV (A)
(∀I )

A ` E : ∀x .τ
(→E )

A ` K E : T a

For this rule, there is no need to treat the constructor
K , with its non-prenex form type, as a normal, first-
class function. Instead, we view the application of K
to E as a completely new syntactic construct—and as
a clear hint for the type-checker.

The remaining problem, to provide access to a value
stored in a datatype with an existentially quantified
component, can also be dealt with by introducing a new
syntactic construct. In this case, our inspiration comes
from the elimination rule for existential quantification:

∃x .P ∀x .P ⇒ Q x 6∈ Q
Q

If we consider a constructor K : (∀x .τ) → T a, then we
obtain a typing rule:

A ` E : T a
A ` K−1 E : ∃x .τ

A, x :τ ` E ′ : τ ′
(→I )

A ` λz .E ′ : τ → τ ′ (∀I )
A ` λz .E ′ : ∀x .τ → τ ′ (∃E )

A ` (case E of (K z ) → E ′) : τ ′

with the side condition that x 6∈ TV (A, τ ′). An attrac-
tive feature of this approach is that soundness of our
typing rules follows directly from the soundness of the
corresponding rules in intuitionistic predicate logic.

We now have the key to understanding FCP—the
type system introduced in this paper. By abandon-
ing the first-class status of constructors and introducing
new syntactic constructs in their place, we obtain the
tools that we need to construct and access datatypes
with universally or existentially quantified components.

1The notation TV (A) used here denotes the set of type variables

appearing free in A.

3 Examples

Before going on to the formal definition of FCP, we
pause for some examples. These serve both to illus-
trate the expressiveness of the system, and to show the
notation that is used in our prototype implementation,
which is an extension of the Hugs [12] implementation
of Haskell 1.3 [24].

The first example is an implementation for booleans
using polymorphism and functions. Apart from pass-
ing them around as normal first-class entities, the only
way that boolean values can be used is to make choices
between alternatives. This leads us to a representation
for booleans as functions of type ∀a.a → a → a, and
there are only two interesting functions of this type:
true, which always returns the first of its two argu-
ments, and false, which always returns the second of
its arguments. We can make this idea concrete using

data Boolean = B (a -> a -> a)

true, false :: Boolean
true = B (\t f -> t)
false = B (\t f -> f)

cond :: Boolean -> a -> a -> a
cond (B b) = b

and, or :: Boolean -> Boolean -> Boolean
and x y = cond x y false
or x y = cond x true y

Figure 1: An encoding of boolean values

the definitions in Figure 1. Our implementation adopts
the convention that variables like a in the definition of
the Boolean datatype that are not bound on the left
hand side of the definition are instead bound by an im-
plicit universal quantifier. So we can (almost) think of
B as a constructor of type (∀a.a → a → a) → Boolean.
The corresponding selector function, cond, is just the
familiar conditional and can be used to define standard
operators like and and or. We have included type signa-
ture declarations for the operators defined here, and in
later examples, as a form of documentation. However,
they are not strictly necessary; the same types would
have been obtained by the type inference algorithm.

This treatment of booleans is an example of well-
known techniques that are used to encode standard
datatypes in λ-calculus. The FCP encodings of natural
numbers (Church numerals) in Figure 2, and of lists in
Figure 3, are obtained in a similar way.
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data Church = Ch ((a->a) -> (a->a))

unCh :: Church -> (a -> a) -> a -> a
unCh (Ch n) = n

zero, one :: Church
zero = Ch (\f x -> x)
one = Ch (\f x -> f x)

succ :: Church -> Church
succ n = Ch (\f x -> unCh n f (f x))

pred :: Church -> Church
pred n = fst (unCh n s z)
where s (x,y) = (y,succ y)

z = (error "pred zero", zero)

iszero :: Church -> Boolean
iszero n = unCh n (\x -> false) true

add, mul :: Church -> Church -> Church
add n m = unCh n succ m
mul n m = unCh n (add m) zero

Figure 2: An encoding of Church numerals

data List a = L ((a -> b -> b) -> b -> b)

fold :: List a -> (a -> b -> b) -> b -> b
fold (L f)

= f

nil :: List a
nil = L (\c n -> n)

cons :: a -> List a -> List a
cons x xs

= L (\c n -> c x (fold xs c n))

hd :: List a -> a
hd l = fold l (\x xs -> x) (error "hd []")

tl :: List a -> List a
tl l = fst (fold l c n)
where c x (l,t) = (t, cons x t)

n = (error "tl []", nil)

Figure 3: An encoding of lists and folds

data Monad m
= MkMonad (a -> m a)

(m a -> (a -> m b) -> m b)

unit (MkMonad u b) = u
bind (MkMonad u b) = b

join :: Monad m -> m (m a) -> m a
join m xss = bind m xss id

listMonad :: Monad [ ]
listMonad = MkMonad unit bind
where unit x = [x]

bind [] f = []
bind (x:xs) f = f x ++ bind xs f

data Maybe a = Just a | Nothing

maybeMonad :: Monad Maybe
maybeMonad = MkMonad unit bind
where unit x = Just x

bind Nothing f = Nothing
bind (Just x) f = f x

Figure 4: Monads as first-class values

The next example, in Figure 4, demonstrates the
combination of FCP and higher-order polymorphism
in our prototype implementation, to provide a type-
safe representation for monads [32] as first-class values.
Much has been achieved using constructor class over-
loading [11] to explore the use of monads and monad
transformers [2, 18]. As this example suggests, the same
experiments can be repeated in FCP by packaging these
items up as first-class values. In fact, FCP has exactly
the features needed to describe the implementation of
constructor classes by a source-to-source translation.

The ability to reify monads as first-class data struc-
tures was also an important part of Steele’s work to con-
struct programming language interpreters from reusable
building blocks [31]. These ideas can be expressed very
neatly in FCP, using essentially the same definitions as
in Figure 4. By comparison, Steele found that he had
to use a program specializer to circumvent problems
caused by limitations in the type system of the version
of Haskell that he was using at the time.

As an application of existential types, Figure 5 shows
a portion of an implementation of an abstract stack
datatype. The definition of testExpr produces a list of
integers by mapping an operation over a list of stacks,
each of which could have a different internal representa-
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data Stack a
= Stack xs -- self

(a -> xs -> xs) -- push
(xs -> xs) -- pop
(xs -> a) -- top
(xs -> Bool) -- empty

makeListStack :: [a] -> Stack a
makeListStack xs
= Stack xs (:) tail head null

push :: a -> Stack a -> Stack a
push x (Stack self push’ pop top empty)
= Stack (push’ x self) push’ pop top empty

top :: Stack a -> a
top (Stack self push pop top’ empty)
= top’ self

testExpr :: [Int]
testExpr = map (top . push 1)

[makeListStack [1,2,3],
makeListStack [4,5]]

Figure 5: A simple encoding of stack packages

tion, hidden by an existential quantifier. Note that our
prototype implementation adopts the convention that
variables beginning with an x are existentially quanti-
fied, avoiding the need for an explicit quantifier2.

Our final example, in Figure 6, is an implementation
of objects using the representation described by Pierce
and Turner [27], and demonstrating the use of both ex-
istentially and universally quantified datatype compo-
nents. For example, in this encoding, objects are repre-
sented by values of type Obj m, with a state component
and a collection of methods; the type of the state, xs, is
hidden using an existential quantifier. Classes, on the
other hand, are represented by functions that are poly-
morphic in the ‘final representation type’, f, for objects
of that class. Other items defined in Figure 6 include a
function for constructing new instances of a class; a spe-
cific example—the ubiquitous pointClass; and the ext
operator that is used to describe inheritance. The NT
type—which might be used in a more general setting to
describe natural transformations—is of particular inter-
est here. While Pierce and Turner rely on higher-order
subtyping, we use values of type NT p q as explicit coer-

2This convention is acceptable in a prototype, but is also rather

ugly. We hope to find a more attractive alternative for use in future

language designs.

data Obj m = MkObj xs -- state
(m xs) -- methods

data Class m s
= MkClass ((f -> s) -- extract

-> (f -> s -> f) -- overwrite
-> m f -- self

-> m f)

new :: Class m s -> s -> Obj m
new (MkClass c) s = MkObj s m
where m = c (\r -> r) (\_ r -> r) m

-- Natural transformations:
data NT m n = MkNT { coerce :: m a -> n a }

-- A specific example:
data PointM s = MkP{ set :: (s -> Int -> s),

get :: (s -> Int) }

point’Set :: NT p PointM ->
(Obj p -> Int -> Obj p)

point’Set st (MkObj s m) i
= MkObj (set (coerce st m) s i) m

pointClass :: Class PointM Int
pointClass = MkClass (\extr over self ->

MkP{ set = \r i -> over r i,
get = \r -> extr r })

-- Inheritance:
data Inc s n r
= MkInc ((f -> r) -- extract

-> (f -> r -> f) -- overwrite
-> s f -- super methods

-> n f -- self methods
-> n f) -- new methods

ext :: NT p q
-> Class q s -- super

-> Inc q p r -- increment
-> (r -> s) -- extract

-> (r -> s -> r)-- overwrite
-> Class p r -- new class

ext st (MkClass sup) (MkInc inc) get put
= MkClass (\g p self ->

inc g p (sup (\s -> get (g s))
(\s t -> p s (put (g s) t))
(coerce st self))

self)

Figure 6: The Pierce and Turner encoding of objects
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cions; another alternative would have been to use (mul-
tiple parameter) constructor classes, but these are not
currently supported in Hugs. It is beyond the scope of
this paper to explain the Pierce and Turner encoding
in any further detail; instead, we refer the interested
reader to the original paper [27].

4 Formal Development

Our formal presentation of FCP begins with the Hindley-
Milner type system whose type language, term language,
and typing rules are summarized in Figure 7. The ex-

Type Language:

σ ::= ∀t .σ polymorphic type
| τ monotype

τ ::= t type variable
| τ → τ ′ function type

Term Language:

E ::= x variables
| E E application
| λx .E abstraction
| let x = E in E local definition

Typing Rules:

(var)
(x :σ) ∈ A

A ` x : σ

(→E ) A ` E : τ ′ → τ A ` E ′ : τ ′

A ` E E ′ : τ

(→I )
Ax , x :τ ′ ` E : τ

A ` λx .E : τ ′ → τ

(let)
A ` E : σ Ax , x :σ ` E ′ : τ

A ` (let x = E in E ′) : τ

(∀E ) A ` E : ∀t .σ
A ` E : [τ ′/t ]σ

(∀I )
A ` E : σ t 6∈ TV (A)

A ` E : ∀t .σ

Figure 7: The Hindley-Milner Type System

tensions that are needed to accommodate FCP are sum-
marized in Figure 8.

Mechanisms for defining new datatypes and their as-
sociated constructor functions are clearly going to play
an important part in any practical system based on

Type Language:

τ ::= T τ1 . . . τn datatype, arity(T ) = n
| . . .

Term Language:

E ::= K e construction
| λ(K x ).E decomposition
| . . .

Typing Rules, for each K : (∀α.∃β.τ ′) → τ :

(make)
A ` E : [ν/β]τ ′ α 6∈ TV (A)

A ` K E : τ

(break)
A, x :[ν/α]τ ′ ` E : τ ′′ β 6∈ TV (A, τ ′′, ν)

A ` (λ(K x ).E ) : τ → τ ′′

Figure 8: Extensions for FCP

FCP. For the formal development, we will assume that
the type language of our system has been extended with
a collection of new datatype constructors, T , and that
the term language has been similarly extended with a
family of constructor function constants, K . However,
it is not necessary for us to go any further here in speci-
fying how this information might be extracted from the
notation used in particular source program texts. We
also assume that each constructor K has been assigned
a closed type of the form: σK = ∀γ. (∀α.∃β.ν) → ν′,
where α, β, and γ represent (possibly empty) sequences
of quantified variables. We use the notation:

K : (∀α.∃β.τ ′) → τ

to indicate that the type (∀α.∃β.τ ′) → τ can be ob-
tained by instantiating the variables γ in σK to partic-
ular types. Note that we do not make any assumptions
about uses of the type constructors, T , in the types τ
and τ ′, so the type inference mechanisms described here
can be used in more general ways than our current focus
on datatypes and constructor functions might suggest.
For example, our framework could also be used to type
Launchbury and Peyton Jones’ runST construct [17],
and Gill et al.’s build construct [3].

Note that we allow both universal and existential
quantifiers in the type of datatype components; this
avoids the need to treat constructors with existentially
and universally quantified components as separate cases,
although it does require slightly more complicated typ-
ing rules. The ordering of the quantifiers, placing ex-
istentials inside the universals is fairly arbitrary, but
we have found this to be the most convenient choice
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in practical applications. Of course, programmers can
control the ordering of quantifiers by embedding values
of one datatype inside another.

To simplify the presentation, we have assumed that
each constructor has precisely one argument. Construc-
tors with multiple arguments can be modelled by ex-
tending the language with n-ary tuples; in fact, this
could be achieved with an FCP encoding of pairs:

data Pair a b = MkPair ((a -> b -> c) -> c)

Construction and decomposition are described by
FCP terms with a syntax that was chosen to reflect the
close analogy with normal function application and ab-
straction. A more conventional, but complex notation
for decomposition uses a case or match construct. For
example, an expression of the form:

case E of (K x ) → E ′

could be treated as syntactic sugar for (λ(K z ).E ′)E .
Pattern matching against values from datatypes with
multiple constructors can be described using a ‘fatbar’
operator, as described by Peyton Jones [25].

The type checking rules for FCP are again justified
by appealing to the underlying logic, as explained in
Section 2.2. The actual derivations are complicated by
the presence of both existential and universal quanti-
fiers. For example, assuming K : (∀α.∃β.τ ′) → τ , the
(make) rule is obtained from the derivation:

A ` E : [ν/β]τ ′

A ` E : ∃β.τ ′ α 6∈ TV (A)

A ` E : ∀α.∃β.τ ′

A ` K E : τ

The derivation of (break) is a little more complex, but
follows the same basic pattern as in Section 2.2. To
simplify the presentation, we omit the terms at each
node of the proof tree:

A, τ ` τ
(a)

A, τ ` ∀α.∃β.τ ′

A, τ ` [ν/α]∃β.τ ′
(b)

A, τ ` ∃β.[ν/α]τ ′

A, τ, [ν/α]τ ′ ` τ ′′

A, τ ` [ν/α]τ ′ → τ ′′
(c)

A, τ ` ∀β.[ν/α]τ ′ → τ ′′
(d)

A, τ ` τ ′′

A ` τ → τ ′′

The step labelled (a) corresponds to stripping the con-
structor K from a value of type τ to obtain a value
of type ∀α.∃β.τ ′. The side conditions β 6∈ TV (ν),
β 6∈ TV (A), and β 6∈ TV (τ ′′) are used in steps (b),
(c), and (d), respectively.

From a language design perspective, it may be prefer-
able to allow only one kind of local quantifier in the
type of any given constructor; none of the examples
in this paper actually use both kinds of quantification
in a single constructor. It is easy to obtain the ap-
propriate typing rules for this as special case of the
(make) and (break) rules. For example, a constructor
U : (∀α.τ ′) → τ with universally quantified components
can be dealt with using the rules:

A ` E : τ ′ α 6∈ TV (A)

A ` K E : τ

A, x :[ν/α]τ ′ ` E : τ ′′

A ` (λ(K x ).E ) : τ → τ ′′

In a similar way, a constructor K : (∃β.τ ′) → τ with
existentially quantified components can be dealt with
using the rules:

A ` E : [ν/β]τ ′

A ` K E : τ

A, x :τ ′ ` E : τ ′′ β 6∈ TV (A, τ ′′)

A ` (λ(K x ).E ) : τ → τ ′′

Another option would have been to include only univer-
sal quantification in the formal description, and to have
dealt with existential quantifiers using an encoding:

∃x .P = ∀y .(∀x .P ⇒ y) ⇒ y .

We have not followed this approach in the current pa-
per; first, because the encoding can sometimes be a
bit awkward to use in practice, and second because we
wanted to provide a reasonably symmetric treatment of
the two forms of quantification.

5 Type inference for FCP

In this section, we describe a type inference algorithm
for FCP, based on Milner’s algorithm W [19]. The al-
gorithm is both sound and complete with respect to the
typing rules for FCP in Section 4. In other words, the
algorithm succeeds if, and only if the input term is well-
typed, in which case it calculates a principal type for
that term. This is important because it allows program-
mers to take advantage of the expressiveness of FCP,
without giving up on the convenience of type inference.

5.1 Unification

As usual, unification [30] plays a central role in the type
inference process. Given two types τ and τ ′, the goal
of a unification algorithm is to find the most general
substitution U such that U τ = U τ ′. In this paper, we
use a modest extension of the standard algorithm that
takes a set of variables, V , as an additional parame-
ter. The algorithm treats each of these variables as a
constant that can only be unified with itself, or with
other variables that are not in V . As a result, none of
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the variables in V will be bound by the substitution U
produced as a result of unification; in other words, the
restriction of U to V , written U |V , will be the identity
substitution, id , on V . This is particularly important
in the rules for constructing and decomposing values of
datatypes with universally and existentially quantified
components, respectively.

The algorithm is a straightforward modification of
Robinson’s original algorithm. The presentation in Fig-
ure 9 uses judgements of the form:

τ
U∼ τ ′ mod V

to indicate that the unification algorithm succeeds with
a most general unifier U for the types τ and τ , such
that U |V = id . The substitution U is most general in
the sense that, if Sτ = Sτ ′ and S |V = id , then there
is a substitution R such that S = RU . Moreover, it is
easy to show that the algorithm fails only if there are
no substitutions S that satisfy these properties.

(id) τ
id∼ τ mod V

(var)
α

[τ/α]∼ τ mod V

τ
[τ/α]∼ α mod V



 α 6∈ V ∪ TV (τ)

(fun)

τ
U∼ ν mod V

U τ ′ U ′
∼ U ν′ mod V

(τ → τ ′) U ′U∼ (ν → ν′) mod V

Figure 9: Rules for unification.

5.2 A type inference algorithm

The rules in Figure 10 give a type inference algorithm
for FCP, with one rule for each of the six syntactic con-
structs in the language. A successful invocation of the
type inference algorithm is represented using a judge-
ment of the form:

TA `WE : τ mod V ,

where the type assignment A, the term E , and the set
of variables V are the inputs, and the substitution T
and type τ are the outputs. The following theorem is
important because it tells us that any typing produced
by the type inference algorithm corresponds to a valid
typing derivation under the original typing rules.

Theorem 1 (Soundness) If TA `WE : τ mod V , then
TA ` E : τ and T |V = id.

Conversely, the following theorem indicates that, if a
term has type τ under the original rules, then the type
inference algorithm will succeed, and the inferred type
will be at least as general as τ .

Theorem 2 (Completeness) If SA ` E : τ and S |V =
id, then TA `WE : ν mod V for some T, ν, and there
is a substitution R such that S ≈ RT 3 and τ = Rν.

For example, consider the special case of a well-typed
expression E in a top-level environment A with V = ∅,
and TV (A) = ∅ (and hence SA = A, for any substitu-
tion S ). Together, the two theorems above tell us that
the type inference algorithm will succeed with a typing
A ` E : ν and that every possible type of E in A can
be expressed as a substitution instance of ν.

6 From System F to FCP

The examples of first-class polymorphism and abstract
datatypes that we have seen in previous sections can
also be programmed directly in explicitly typed lan-
guages like System F, the polymorphic λ-calculus of
Girard [4] and Reynolds [29], or higher-order variants
like Fω. In fact, the FCP implementations for booleans,
numbers, and lists in previous sections are direct trans-
lations of the standard System F encodings for these
datatypes. The main difference is that FCP programs
use constructor and selector functions where the Sys-
tem F uses type abstraction and type application, re-
spectively. For example, compare our definition of the
successor function:

succ = λn.Ch (λf .λx .unCh n f (f x ))

with the System F implementation:

succ = λn :Church.
Λa.λf : (a → a).λx :a.n a f (f x ).

Note also that the use of constructors and selectors in
FCP provides enough additional type information to
avoid the need for the type annotations on λ-bound
variables in System F.

In the remainder of this section we show that any
System F program can be expressed in FCP, essentially
by replacing type abstractions and applications with
constructors and selectors. A complication occurs be-
cause some System F types can be represented in several
different ways in FCP, but we deal with this by defining
a family of conversions that allow us to switch between
different representations of any given type.

For reference, we summarize the type language, term
language, and typing rules of System F in Figure 11.

3S ≈ RT means that the substitutions S and RT are equal, ig-

noring ‘new’ variables introduced during type checking.
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(var)W
(x :∀α.τ) ∈ A β new

A `Wx : [β/α]τ mod V

(→E )W TA `WE : τ mod V T ′TA `WF : τ ′ mod V T ′τ U∼ τ ′ → α mod V α new
UT ′TA `WEF : Uα mod V

(→I )W
T (Ax , x :α) `WE : τ mod V α new

TA `Wλx .E : Tα → τ mod V

(let)W
TA `WE : τ mod V σ = Gen(TA, τ) T ′(TAx , x :σ) `WF : τ ′ mod V

T ′TA `W(let x = E in F ) : τ ′

(make)W
σK = ∀γ. (∀α.∃β.τ) → τ ′ α, β, γ new TA `WE : ν mod V ν

U∼ τ mod V ∪ {α} α 6∈ TV (UTA)

UTA `W(K E ) : U τ ′ mod V

(break)W
σK = ∀γ. (∀α.∃β.τ) → τ ′ α, β, γ new T (Ax , x :τ) `WE : ν mod V ∪ {β} β 6∈ TV (TA, ν,Tα)

TA `W(λ(K x ).E ) : T τ → ν mod V

Figure 10: Type inference algorithm W.

6.1 System F types to FCP

We begin by defining a mapping that associates each
System F type σ with an FCP type σ∗. The mapping
requires the definition of a family of datatypes, one for
each type of the form ∀t .σ:

data T∀t.σ α1 . . . αn = Mk∀t.σ σ∗.

The parameters α1, . . . , αn used here are the free vari-
ables of ∀t .σ. Obviously, the set of type constructors
T∀t.σ is infinite, but only finitely many will be required
in the translation of a given program. The required
mapping can now be defined:

t∗ = t
(σ1 → σ2)∗ = σ∗1 → σ∗2
(∀t .σ)∗ = T∀t.σ α1 . . . αn

(Again, the parameters α1, . . . , αn in the last line are
the free variables of ∀t .σ.) It is easy to verify that this
mapping takes the standard System F encodings of the
boolean, number and list types to the corresponding
FCP versions given in previous sections:

(∀α.α → α → α)∗ = Boolean
(∀α.(α → α) → α → α)∗ = Church
(∀β.(α → β → β) → β → β)∗ = List α

For each constructor function Mk∀t.σ, we can define a
selector function:

Mk−1
∀t.σ :: ∀α1 . . . ∀αn .∀t .(∀t .σ)∗ → σ∗

Mk−1
∀t.σ (Mk∀t.σ x ) = x

The superscript on the selector is intended to empha-
size a view of the constructor and selector as mutual
inverses in an isomorphism that describes the packag-
ing and unpackaging of polymorphic values. Of course,
the choice of names for the type and value constructors
and for the selectors is fairly arbitrary; in specific cases,
we can adopt more intuitive naming schemes.

6.2 Conversion between FCP types

There are often several ways to represent a System F
type in FCP, and the mapping described above gives
us only one of several alternatives. For example, the
encoding of σ1 = ∀t .(t → Int) is σ∗1 = S where:

data S = D (t → Int).

Another way to obtain an encoding for σ1 is to start
with the more general type, σ2 = ∀t .(t → s) with an
encoding σ∗2 = T s where:

data T s = C (t → s)

and to note that σ1 = [Int/s]σ2. Thus System F values
of type σ1 could be represented as FCP values of type S ,
or of type T Int . Fortunately, although the two types
are not equal, it is easy to repackage a value of either
type as a value of the other by using an appropriate
combination of constructors and selectors. The follow-
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Type Language:

σ ::= t type variables
| σ → σ function types
| ∀t .σ polymorphic types

Term Language:

E ::= x variables
| E E application
| λx :σ.E abstraction
| E σ type application
| Λt .E type abstraction

Typing Rules:

(var)
(x :σ) ∈ A

A ` x : σ

(→E ) A ` E : σ′ → σ A ` E ′ : σ′

A ` E E ′ : σ

(→I )
Ax , x :σ′ ` E : σ

A ` λx :σ.E : σ′ → σ

(∀E ) A ` E : ∀t .σ
A ` E σ′ : [σ′/t ]σ

(∀I )
A ` E : σ t 6∈ TV (A)

A ` Λt .E : ∀t .σ

Figure 11: System F

ing typing derivations show the steps that are needed:

A ` E : T Int
A ` C−1 E : t → Int
A ` D (C−1 E ) : S

A ` E : S
A ` D−1 E : t → Int

A ` C (D−1 E ) : T Int

In fact, we can generalize this construction to deal with
any pair of System F types in which one is obtained
from the other by substituting for a free variable:

Theorem 3 For any System F types σ1 and σ2, any
type variable t, and any FCP derivations:

A ` E : ([σ1/t ]σ2)∗ A ` E ′ : [σ∗1/t ]σ∗2

there is an effective algorithm for constructing FCP terms
C and C ′ such that:

A ` C : [σ∗1/t ]σ∗2 A ` C ′ : ([σ1/t ]σ2)∗

and Erase(C ) =βη Erase(E ), Erase(C ′) =βη Erase(E ′).

We refer to the terms C and C ′ as conversions of E and
E ′, respectively. The notation Erase(E ) denotes the λ-
term obtained from the FCP term E by deleting any
occurrences of constructor or selector function symbols;
this provides a semantics for E in some underlying λ-
calculus (as in Milner’s work [19]) where constructors
and selectors for T∀t.σ types are interpreted as identi-
ties. The significance of the theorem is that it allows
us to turn a derivation for a term of type [σ∗1/t ]σ∗2 into
a derivation for a semantically equivalent term of type
([σ1/t ]σ2)∗. The proof, a construction of the conver-
sions C and C ′, is a straightforward induction on σ2.
However, it is worth mentioning that the existence of
conversions in both directions between the two types
[σ∗1/t ]σ∗2 and ([σ1/t ]σ2)∗ is essential because it allows
us to deal with the anti-monotonicity in the first argu-
ment of the function type constructor.

6.3 System F terms to FCP

It remains to show how arbitrary System F programs
can be converted to equivalent programs in FCP. Given
a System F term E with type σ under the assumptions
A, our goal is to find a corresponding FCP term E∗

with type σ∗ under the assumptions in A∗, where:

A∗ = { (x :σ∗) | (x :σ) ∈ A }.
The existence of suitable translations is guaranteed by
the following result:

Theorem 4 For any System F derivation A ` E : σ,
there is an FCP term E∗ with EraseF(E ) =βη Erase(E∗)
such that A∗ ` E∗ : σ∗.

The notation EraseF(E ) used here denotes the System F
erasure of E , which is the λ-term obtained from E by
deleting any uses of type abstraction or application.
The proof of the theorem is by structural induction.
Most of the cases are straightforward, but conversions
are needed to deal with derivations involving the rule
(∀E ). To see this, consider a System F derivation that
ends with the instantiation of a polymorphic type:

...
A ` E : ∀t .σ

A ` E σ′ : [σ′/t ]σ

It follows by induction that A∗ ` E∗ : (∀t .σ)∗ and hence
that A∗ ` Mk−1

∀t.σ E∗ : [σ′∗/t ]σ∗; now we can take a
conversion to obtain the required typing.

We have now shown that arbitrary System F pro-
grams can be expressed in FCP. For example, the imple-
mentations of booleans, numbers and lists in previous
sections can all be obtained in this way. The general
encoding that we have used in this section can be a lit-
tle awkward to use; for example, it treats each universal

11



quantifier separately. But this will not cause problems
in practice because programmers can make direct use
of FCP and need not be restricted to the T∀t.σ family
of datatypes.

7 Conclusion and Discussion

We have described a modest extension of the Hindley-
Milner type system that offers both the convenience of
type inference and the expressiveness of first-class poly-
morphism. The conventional Hindley-Milner type sys-
tem is already powerful enough for many programming
tasks, but FCP provides an extra degree of flexibility
that is useful in particular situations, without compro-
mising the benefits of simple type inference. A proto-
type type-checker for FCP has been implemented as an
extension of the Hugs implementation of Haskell. This
has been used to test the programs included in the body
of the paper, and seems to work well in practice.

7.1 Three dimensions of type inference

In general terms, the work described in this paper con-
tinues a program of research to explore extensions of
the Hindley-Milner type system [6, 19]. Figure 12 illus-
trates three, largely orthogonal dimensions of the design
space that we have explored in work to date: overload-
ing, higher-order polymorphism, and, the main subject
of the current paper, first-class polymorphism.
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Figure 12: Extensions of Hindley-Milner typing

Type class overloading, in the form described by
Kaes [13], and Wadler and Blott [33], was probably
the first of these three extensions to be incorporated

in a widely used programming language. The seman-
tics of the system of type classes in the paper by Wadler
and Blott was explained by a type-directed, source level
translation into the Hindley-Milner type system; extra
dictionary parameters were introduced to specify the
meaning of overloaded operators at particular types. As
such, type class overloading provides a convenient form
of implicit parameterization. This has proved to be par-
ticularly useful for dealing with equality and arithmetic
operations in the presence of a polymorphic type sys-
tem.

Type classes were adopted as part of the design for
Haskell [9], but the early proposals were extended in
subtle ways to allow class definitions like the following:

class Foo a where
bar :: a -> b -> [b]

The variable b in the type of the bar member is bound
by an implicit universal quantifier, and suggests an im-
plementation in which dictionary components can have
polymorphic types. So, while Haskell type classes can
be explained by a translation into FCP, they cannot,
in general, be implemented by a translation into the
standard Hindley-Milner type system. Implementors of
Haskell side-stepped the problems of augmenting the
language with general FCP-like constructs by choosing
either a more powerful language like System F [5], or a
simple untyped language [10] as a target for the trans-
lation of source programs.

The introduction of constructor classes [11] lead to
the discovery of several new uses for overloading. Some
of the best known applications—for example, using func-
tors or monads—were inspired by work in category the-
ory [2, 18]. As a simple example, a class of functors
might be defined as follows:

class Functor f where
map :: (a -> b) -> (f a -> f b)

The system of constructor classes was described as a
combination of overloading and higher-order polymor-
phism, the latter referring to the ability to use vari-
ables ranging over different kinds of type constructors—
like f in the example above. It is surprisingly easy to
generalize the standard results for type inference in a
Hindley-Milner framework to the higher-order case, so
long as the language of type constructors is restricted to
avoid problems with undecidable, higher-order unifica-
tion. But, by itself, the resulting system is not particu-
larly useful; in practice, just as there are no interesting
terms of type ∀α.∀β.α → β, there are also no interesting
terms of type ∀α.∀f .α → f α. With hindsight, we can
see that the expressiveness of constructor classes actu-
ally comes from the combination of higher-order poly-
morphism and hidden uses of first-class polymorphism.
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For example, the map function described above would
not be useful without the implicit universal quantifica-
tion over the variables a and b. With observations like
this, we are now in a better position to distinguish be-
tween the syntactic convenience of overloading and the
expressiveness of first-class polymorphism.

7.2 Areas for future work

There is still much work to be done:

• Further dimensions: It is clear that there are many
more dimensions to type inference than the three
that we have focused on here, an observation that
is supported by the extensive literature on the sub-
ject. For example, we consider the problems of
tackling various notions of extensibility to be a par-
ticularly interesting direction for future work.

• Language design problems: For example, there is
a significant overlap in the facilities for defining
datatypes in FCP, classes in Haskell, and modules
in Standard ML. This might prompt a search for
more orthogonal language mechanisms supporting
the same features.

• Technical problems: For example, we have not
fully addressed the problems of integrating FCP
with type class overloading to allow datatypes with
components whose types are qualified by class con-
straints. To the best of our knowledge, only the
special case of datatypes with existentially quan-
tified components has been considered in work to
date [15].

Type inference can be thought of as a compromise
between the convenience of programming without type
annotations and the expressiveness of explicitly-typed
languages. Practical systems include elements of both
extremes; for example, while languages like Standard
ML and Haskell do not require type information for
each λ-bound variable, the types assigned to constants
and constructor functions play a critical role in the type
inference process. Perhaps the most important aspect of
the FCP type system introduced in this paper is the new
perspective that it provides in helping us to understand
a small part of the design space. However, we hope that
it will also play a useful role in practical programming
language designs.

Acknowledgements

Thanks to my friends and colleagues in the functional
programming group at Nottingham for their valuable
input to the development of the work described in this

paper. A particular thank you to Benedict R. Gaster for
his help in preparing the object example in Section 3.

References

[1] H.-J. Boehm. Partial polymorphic type inference
is undecidable. In 26th Annual Symposium on
Foundations of Computer Science, pages 339–345.
IEEE, October 1985.

[2] L. Duponcheel and E. Meijer. On the expressive
power of constructor classes. In Proceedings of the
1994 Glasgow Functional Programming Workshop,
Ayr, September 1994.

[3] A. Gill, J. Launchbury, and S. L. Peyton Jones.
A short cut to deforestation. In FPCA ’93:
Conference on Functional Programming Languages
and Computer Architecture, Copenhagen, Den-
mark, New York, June 1993. ACM Press.

[4] J.-Y. Girard. Une extension de l’interprétation de
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