
Type Classes with Functional Dependencies?

Appears in Proceedings of the 9th European Symposium on Programming,
ESOP 2000, Berlin, Germany, March 2000, Springer-Verlag LNCS 1782.

Mark P. Jones

Department of Computer Science and Engineering
Oregon Graduate Institute of Science and Technology

Beaverton, Oregon, USA
mpj@cse.ogi.edu

Abstract. Type classes in Haskell allow programmers to define func-
tions that can be used on a set of different types, with a potentially dif-
ferent implementation in each case. For example, type classes are used to
support equality and numeric types, and for monadic programming. A
commonly requested extension to support ‘multiple parameters’ allows a
more general interpretation of classes as relations on types, and has many
potentially useful applications. Unfortunately, many of these examples
do not work well in practice, leading to ambiguities and inaccuracies in
inferred types and delaying the detection of type errors.

This paper illustrates the kind of problems that can occur with multi-
ple parameter type classes, and explains how they can be resolved by
allowing programmers to specify explicit dependencies between the pa-
rameters. A particular novelty of this paper is the application of ideas
from the theory of relational databases to the design of type systems.

1 Introduction

Type classes in Haskell [11] allow programmers to define functions that can be
used on a set of different types, with a potentially different implementation in
each case. Each class represents a set of types, and is associated with a particular
set of member functions. For example, the type class Eq represents the set of all
equality types, which is precisely the set of types on which the (==) operator
can be used. Similarly, the type class Num represents the set of all numeric
types—including Int , Float , complex and rational numbers—on which standard
arithmetic operations like (+) and (−) can be used. These and several other
classes are defined in the standard Haskell prelude and libraries [11, 12]. The
language also allows programmers to define new classes or to extend existing
classes to include new, user-defined datatypes. As such, type classes play an
important role in many Haskell programs, both directly through uses of the
member functions associated with a particular class, and indirectly in the use of
various language constructs including a special syntax for monadic programming
(the do-notation).

? The research reported in this paper was supported by the USAF Air Materiel Com-
mand, contract # F19628-96-C-0161.

The use of type classes is reflected by allowing types to include predicates.
For example, the type of the equality operator is written:

(==) :: Eq a ⇒ a → a → Bool

The type variable a used here represents an arbitrary type (bound by an implicit
universal quantifier), but the predicate Eq a then restricts the possible choices
for a to types that are in Eq . More generally, functions in Haskell have types of
the form P ⇒ τ , where P is some list of predicates and τ is a monotype. If P
is empty, then we usually abbreviate P ⇒ τ as τ . In most implementations, the
presence of a predicate in a function’s type indicates that an implicit parameter
will be added to pass some appropriate evidence for that predicate at run-time.
For example, we might use an implementation of equality on values of type a as
evidence for a predicate of the form Eq a. Details of this implementation scheme
may be found elsewhere [14].

In a predicate such as Eq a, we refer to Eq as the class name, and to a as the
class parameter. Were it not for the use of a restricted character set, constraints
like this might instead have been written in the form a ∈ Eq , reflecting an intu-
ition that Eq represents a set of types of which a is expected to be a member.
The Haskell syntax, however, which looks more like a curried function applica-
tion, suggests that it might be possible to allow classes to have more than one
parameter. For example, what might a predicate of the form R a b mean, where
two parameters a and b have been provided? The obvious answer is to interpret
R as a two-place relation between types, and to read R a b as the assertion that
a and b are related by R. This is a natural generalization of the one parameter
case because sets are just one-place relations. More generally, we can interpret
an n parameter class by an n-place relation on types.

One potential application for multiple parameter type classes was suggested
(but not pursued) by Wadler and Blott in the paper where type classes were first
described [14]. The essence of their example was to use a two parameter class
Coerce to describe a subtyping relation, with an associated coercion operator:

coerce :: Coerce a b ⇒ a → b.

In the decade since that paper was published, many other applications for multi-
ple parameter type classes have been discovered [13]; we will see some of these in
later sections of the current paper. The technical foundations for multiple param-
eter classes have also been worked out during that time, and support for multiple
parameter type classes is now included in some of the currently available Haskell
implementations. So it is perhaps surprising that support for multiple parameter
type classes is still not included in the Haskell standard, even in the most recent
revision [11]. One explanation for this reticence is that some of the proposed
applications have not worked particularly well in practice. These problems often
occur because the relations on types that we can specify using simple extensions
of Haskell are too general for practical applications. In particular, they fail to
capture important dependencies between parameters. More concretely, the use
of multiple parameter classes can often result in ambiguities and inaccuracies in
inferred types, and in delayed detection of type errors.

In this paper, we show that many of these problems can be avoided by giv-
ing programmers an opportunity to specify the desired relations on types more
precisely. The key idea is to allow the definitions of type classes to be annotated
with functional dependencies—an idea that originates in the theory of relational
databases. In Section 2, we describe the key features of Haskell type classes that
will be needed to understand the contributions of this paper. In Section 3, we
use the design of a simple library of collection types to illustrate the problems
that can occur with multiple parameter classes, and to motivate the introduction
of functional dependencies. Further examples are provided in Section 4. Basic
elements of the theory of functional dependencies are presented in Section 5, and
are used to explain their role during type inference in Section 6. In Section 7,
we describe some further opportunities for using dependency information, and
then we conclude with some pointers to future work in Section 8.

2 Preliminaries: Type Classes in Haskell

This section describes the class declarations that are used to introduce new (sin-
gle parameter) type classes in Haskell, and the instance declarations that are used
to populate them. Readers who are already familiar with these aspects of Haskell
should probably skip ahead to the next section. Those requiring more than the
brief overview given here should refer to the Haskell report [11] or to the various
tutorials and references listed on the Haskell website at http://haskell.org.

Class Declarations: A class declaration specifies the name for a class and lists
the member functions that each type in the class is expected to support. The
actual types in each class—which are normally referred to as the instances of the
class—are described using separate declarations, as will be described below. For
example, an Eq class, representing the set of equality types, might be introduced
by the following declaration:

class Eq a where
(==) :: a → a → Bool

The type variable a that appears in both lines here represents an arbitrary in-
stance of the class. The intended reading of the declaration is that, if a is a par-
ticular instance of Eq , then we can use the (==) operator at type a → a → Bool
to compare values of type a.

Qualified Types: As we have already indicated, the restriction on the use of the
equality operator is reflected in the type that is assigned to it:

(==) :: Eq a ⇒ a → a → Bool

Types that are restricted by a predicate like this are referred to as qualified
types [4]. Such types will be assigned to any function that makes either direct

or indirect use of the member functions of a class at some unspecified type. For
example, the functions:

member x xs = any (x ==) xs
subset xs ys = all (\x → member x ys) xs

will be assigned types:

member :: Eq a ⇒ a → [a] → Bool
subset :: Eq a ⇒ [a] → [a] → Bool .

Superclasses: Classes may be arranged in a hierarchy, and may have multiple
member functions. The following example illustrates both with a declaration of
the Ord class, which contains the types whose elements can be ordered using
strict (<) and non-strict (<=) comparison operators:

class Eq a ⇒ Ord a where
(<), (<=) :: a → a → Bool

In this particular context, the ⇒ symbol should not be read as implication; in
fact reverse implication would be a more accurate reading, the intention being
that every instance of Ord is also an instance of Eq . Thus Eq plays the role of a
superclass of Ord . This mechanism allows the programmer to specify an expected
relationship between classes: it is the compiler’s responsibility to ensure that this
property is satisfied, or to produce an error diagnostic if it is not.

Instance Declarations: The instances of any given class are described by a collec-
tion of instance declarations. For example, the following declarations show how
one might define equality for booleans, and for pairs:

instance Eq Bool where
x == y = if x then y else not y

instance (Eq a, Eq b) ⇒ Eq (a, b) where
(x , y) == (u, v) = (x == u && y == v)

The first line of the second instance declaration tells us that an equality on values
of types a and b is needed to provide an equality on pairs of type (a, b). No such
preconditions are need for the definition of equality on booleans. Even with just
these two declarations, we have already specified an equality operation on the
infinite family of types that can be constructed from Bool by repeated uses of
pairing. Additional declarations, which may be distributed over many modules,
can be used to extend the class to include other datatypes.

3 Example: Building a Library of Collection Types

One of the most commonly suggested applications for multiple parameter type
classes is to provide uniform interfaces to a wide range of collection types [10].

Such types might be expected to offer ways to construct empty collections, to in-
sert values, to test for membership, and so on. The following declaration, greatly
simplified for the purposes of presentation, introduces a two parameter class
Collects that could be used as the starting point for such a project:

class Collects e ce where
empty :: ce
insert :: e → ce → ce
member :: e → ce → Bool

The type variable e used here represents the element type, while ce is the type
of the collection itself. Within this framework, we might want to define instances
of this class for lists or characteristic functions (both of which can be used to
represent collections of any equality type), bit sets (which can be used to rep-
resent collections of characters), or hash tables (which can be used to represent
any collection whose elements have a hash function). Omitting standard imple-
mentation details, this would lead to the following declarations:

instance Eq e ⇒ Collects e [e] where . . .
instance Eq e ⇒ Collects e (e → Bool) where . . .
instance Collects Char BitSet where . . .
instance (Hashable e, Collects e ce)

⇒ Collects e (Array Int ce) where . . .

All this looks quite promising; we have a class and a range of interesting im-
plementations. Unfortunately, there are some serious problems with the class
declaration. First, the empty function has an ambiguous type:

empty :: Collects e ce ⇒ ce.

By ‘ambiguous’ we mean that there is a type variable e that appears on the left
of the ⇒ symbol, but not on the right. The problem with this is that, according
to the theoretical foundations of Haskell overloading, we cannot guarantee a well-
defined semantics for any term with an ambiguous type [2, 4]. For this reason,
a Haskell system will reject any attempt to define or use such terms.

We can sidestep this specific problem by removing the empty member from
the class declaration. However, although the remaining members, insert and
member , do not have ambiguous types, we still run into problems when we try
to use them. For example, consider the following two functions:

f x y coll = insert x (insert y coll)
g coll = f True ′a ′ coll

for which Hugs infers the following types:

f :: (Collects a c, Collects b c) ⇒ a → b → c → c
g :: (Collects Bool c, Collects Char c) ⇒ c → c.

Notice that the type for f allows the parameters x and y to be assigned different
types, even though it attempts to insert each of the two values, one after the

other, into the same collection, coll . If we hope to model collections that contain
only one type of value, then this is clearly an inaccurate type. Worse still, the
definition for g is accepted, without causing a type error. Thus the error in this
code will not be detected at the point of definition, but only at the point of
use, which might not even be in the same module. Obviously, we would prefer
to avoid these problems, eliminating ambiguities, inferring more accurate types,
and providing earlier detection of type errors.

3.1 An attempt to use constructor classes

Faced with the problems described above, some Haskell programmers might be
tempted to use something like the following version of the class declaration:

class Collects e c where
empty :: c e
insert :: e → c e → c e
member :: e → c e → Bool

In fact this is precisely the approach taken by Okasaki [9], and by Peyton
Jones [10], in more realistic attempts to build this kind of library. The key dif-
ference here is that we abstract over the type constructor c that is used to form
the collection type c e, and not over that collection type itself, represented by
ce in the original class declaration. Thus Collects is an example of a constructor
class [6] in which the second parameter is a unary type constructor, replacing the
nullary type parameter ce that was used in the original definition. This change
avoids the immediate problems that we mentioned above:

– The empty operator has type Collects e c ⇒ c e, which is not ambiguous
because both e and c appear on the right of the ⇒ symbol.

– The function f is assigned a more accurate type:

f :: (Collects e c) ⇒ e → e → c e → c e.

– The function g is now rejected, as required, with a type error because the
type of f does not allow the two arguments to have different types.

This, then, is an example of a multiple parameter class that does actually work
quite well in practice, without ambiguity problems. The reason that it works,
at least intuitively, is that its two parameters are essentially independent of
one another and so there is a good fit with the interpretation of Collects as a
relatively unconstrained relation between types e and type constructors c.

Unfortunately, this version of the Collects class is not as general as the orig-
inal class seemed to be. Only one of the four instances listed in Section 3 can
be used with this version of Collects because only one of them—the instance
for lists—has a collection type that can be written in the form c e, for some
type constructor c, and element type e. Some of the remaining instances can be

reworked to fit the constructor class framework by introducing dummy type and
value constructors, as in the following example:

newtype CharFun e = MkCharFun (e → Bool)
instance Eq e ⇒ Collects e CharFun where . . .

This approach, however, is not particularly attractive. It clutters up programs
with the artificial type constructor CharFun, and with uses of the value construc-
tor MkCharFun to convert between the two distinct but equivalent representa-
tions of characteristic functions. The workaround is also limited, and cannot, in
general, deal with cases like the BitSet example, where the element type is fixed
and not a variable e that we can abstract over.

3.2 Using Parametric Type Classes

Another alternative is to use parametric type classes [3] (PTC), with predicates
of the form ce ∈ Collects e, meaning that ce is a member of the class Collects e.
Intuitively, there is one type class Collects e for each choice of the e parameter.
The definition of a parametric Collects class looks much like the original:

class ce ∈ Collects e where
empty :: ce
insert :: e → ce → ce
member :: e → ce → Bool

All of the instances declarations that we gave for the original Collects class in
Section 3 can be adapted to the syntax of PTC, without introducing artificial
type constructors. What makes it different from the two parameter class in Sec-
tion 3 is the implied assumption that the element type e is uniquely determined
by the collection type ce. A compiler that supports PTC must ensure that the
declared instances of Collects do not violate this property. In return, it can use
this information to avoid ambiguity and to infer more accurate types. For ex-
ample, the type of empty is now ∀e, ce.(ce ∈ Collects e) ⇒ ce, and we do not
need to treat this as being ambiguous because the unknown element type e is
uniquely determined by ce.

Thus, PTC provides exactly the tools that we need to define and work with
a library of collection classes. In our opinion, the original work on PTC has not
received the attention that it deserves. In part, this may be because it was seen,
incorrectly, as an alternative to constructor classes and not, more accurately,
as an orthogonal extension. In addition, there has never been even a prototype
implementation for potential users to experiment with.

3.3 Using Functional Dependencies

In this paper, we describe a generalization of parametric type classes that allows
programmers to declare explicit functional dependencies between the parameters
of a predicate. For example, we can achieve the same effects as PTC, with no

further changes in notation, by annotating the original class definition with a
dependency ce ; e, to be read as “ce uniquely determines e.”

class Collects e ce | ce ; e where
empty :: ce
insert :: e → ce → ce
member :: e → ce → Bool

More generally, we allow class declarations to be annotated with (zero or more)
dependencies of the form (x1, . . . , xn) ; (y1, . . . , ym), where x1, . . . , xn , and y1,
. . . , ym are type variables and m,n > 01. Such a dependency is interpreted as an
assertion that the y parameters are uniquely determined by the x parameters.
Dependencies appear only in class declarations, and not in any other part of the
language: the syntax for instance declarations, class constraints, and types is
completely unchanged. For convenience, we allow the parentheses around a list
of type variables in a dependency to be omitted if only a single variable is used.

This approach is strictly more general than PTC because it allows us to
express a larger class of dependencies, including mutual dependencies such as
{a ; b, b ; a}. It is also easier to integrate with the existing syntax of Haskell
because it does not require any changes to the syntax of predicates.

By including dependency information, programmers can specify multiple pa-
rameter classes more precisely. To illustrate this, consider the following examples:

class C a b where . . .
class D a b | a ; b where . . .
class E a b | a ; b, b ; a where . . .

From the first declaration, we can tell only that C is a binary relation. The
dependency a ; b in the second declaration tells us that D is not just a rela-
tion, but actually a (partial) function. From the two dependencies in the last
declaration, we can see that E represents a (partial) one-one mapping.

The compiler is responsible for ensuring that the instances in scope at any
given point are consistent with any declared dependencies2. For example, the fol-
lowing declarations cannot appear together because they violate the dependency
for D , even though either one on its own would be acceptable:

instance D Bool Int where . . .
instance D Bool Char where . . .

Note also that the following declaration is not allowed, even by itself:

instance D [a] b where . . .

The problem here is that this instance would allow one particular choice of [a]
to be associated with more than one choice for b, which contradicts the depen-
dency specified in the definition of D . More generally, this means that, in any
1 For practical reasons, a slightly different syntax is used for dependencies in the

current prototype implementation, details of which are included in the distribution.
2 Superclass declarations are handled in a similar way, leaving the compiler to ensure

that every instance of a given class is also an instance of any superclasses.

declaration of the form instance . . . ⇒ D t s where . . ., for some particular
types t and s, the only variables that can appear in s are the ones that appear
in t , and hence, if the type t is known, then s will be uniquely determined.

4 Further Examples

This section presents two additional examples to show how the use of functional
dependencies can allow us to give more accurate specifications and to make more
practical use of multiple parameter type classes.

Arithmetic Operations The Haskell prelude treats arithmetic functions like
addition (+) and multiplication (∗) as functions of type Num a ⇒ a → a → a,
which means that the result will always be of the same type as the arguments.
A more flexible approach would allow different argument types so that we could
add two Int values to get an Int result, or add an Int to a Float to get a Float
result. This more flexible approach can be coded as follows:

class Add a b c | (a, b) ; c where (+) :: a → b → c
class Mul a b c | (a, b) ; c where (∗) :: a → b → c

instance Mul Int Int Int where . . .
instance Mul Int Float Float where . . .
instance Mul Float Int Float where . . .
instance Mul Float Float Float where . . .

In a separate linear algebra package, we might further extend our classes with
arithmetic operations on vectors and matrices:

instance Mul a b c ⇒ Mul a (Vec b) (Vec c) where . . .
instance Mul a b c ⇒ Mul a (Mat b) (Mat c) where . . .
instance (Mul a b c, Add c c d)

⇒ Mul (Mat a) (Mat b) (Mat d) where . . .

Without dependency information, we quickly run into problems with ambiguity.
For example, even simple expressions like (1 ∗ 2) ∗ 3 have ambiguous types:

(1 ∗ 2) ∗ 3 :: (Mul Int Int a, Mul a Int b) ⇒ b.

Using the dependencies, however, we can determine that a = Int , and then that
b = Int , and so deduce that the expression has type Int . This example shows
that it can be useful to allow multiple types on the left hand side of a dependency.

Finite Maps A finite map is an indexed collection of elements that provides
operations to lookup the value associated with a particular index, or to add a
new binding. This can be described by a class:

class FiniteMap i e fm | fm ; (i , e) where
emptyFM :: fm
lookup :: i → fm → Maybe e
extend :: i → e → fm → fm

Here, fm is the finite map type, which uniquely determines both the index type
i and the element type e. Association lists, functions, and arrays all fit naturally
into this framework. We can also use a bit set as an indexed collection of booleans:

instance (Eq i) ⇒ FiniteMap i e [(i , e)] where . . .
instance (Eq i) ⇒ FiniteMap i e (i → e) where . . .
instance (Ix i) ⇒ FiniteMap i e (Array i e) where . . .
instance FiniteMap Int Bool BitSet where . . .

This is a variation on the treatment of collection types in Section 3, and, if the
dependency is omitted, then we quickly run into very similar kinds of problem.
We have included this example here to show that it can be useful to allow
multiple types on the right hand side of a dependency.

5 Relations and Functional Dependencies

In this section, we provide a brief primer on the theory of relations and func-
tional dependencies, as well as a summary of our notation. These ideas were
originally developed as a foundation for relational database design [1]. They are
well-established, and more detailed presentations of the theory, and of useful
algorithms for working with them in practical settings, can be found in standard
textbooks on the theory of databases [8]. A novelty of the current paper is in
applying them to the design of a type system.

5.1 Relations

Following standard terminology, a relation R over an indexed family of sets
{Di}i∈I is just a set of tuples, each of which is an indexed family of values
{ti}i∈I such that ti ∈ Di for each i ∈ I . More formally, R is just a subset of
Πi ∈ I .Di , where a tuple t ∈ (Πi ∈ I .Di) is a function that maps each index
value i ∈ I to a value ti ∈ Di called the ith component of t . In the special case
where I = {1, . . . ,n}, this reduces to the familiar special case where tuples are
values (t1, . . . , tn) ∈ D1× . . .×Dn . If X ⊆ I , then we write tX , pronounced “t at
X ”, for the restriction of a tuple t to X . Intuitively, tX just picks out the values
of t for the indices appearing in X , and discards any remaining components.

5.2 Functional Dependencies

In the context of an index set I , a functional dependency is a term of the form
X ; Y , read as “X determines Y ,” where X and Y are both subsets of I . If a
relation satisfies a functional dependency X ; Y , then the values of any tuple
at Y are uniquely determined by the values of that tuple at X . For example,
taking I = {1, 2}, relations satisfying {{1} ; {2}} are just partial functions
from D1 to D2, while relations satisfying {{1} ; {2}, {2} ; {1}} are partial,
injective functions from D1 to D2.

If F is a set of functional dependencies, and J ⊆ I is a set of indices, then
the closure of J with respect to F , written J+

F is the smallest set such that
J ⊆ J+

F , and that, if (X ; Y) ∈ F , and X ⊆ J+
F , then Y ⊆ J+

F . For example, if
I = {1, 2}, and F = {{1} ; {2}}, then {1}+

F = I , and {2}+
F = {2}. Intuitively,

the closure J+
F is the set of indices that are uniquely determined, either directly

or indirectly, by the indices in J and the dependencies in F . Closures like this
are easy to compute using a simple fixed point iteration.

6 Typing with Functional Dependencies

This section explains how to extend an implementation of Haskell to deal with
functional dependencies. In fact the tools that we need are obtained as a special
case of improvement for qualified types [5]. We will describe this briefly here;
space restrictions prevent a more detailed overview. To simplify the presentation,
we will assume that there is a set of indices (i.e., parameter names), written IC ,
and a corresponding set of functional dependencies, written FC , for each class
name C . We will also assume that all predicates are written in the form C t ,
where t is a tuple of types indexed by IC . This allows us to abstract away from
the order in which the components are written in a particular implementation.

The type system of Haskell can be described using judgements of the form
P | A ` E :τ . Each such judgement represents an assertion that an expression E
can be assigned a type τ , using the assumptions in A to type any free variables,
and providing that the predicates in P are satisfied. When we say that a set of
predicates is satisfied, we mean that they are all implied by the class and instance
declarations that are in scope at the corresponding point in the program. For a
given A and E , the goal of type inference is to find the most general choices for
P and τ such that P | A ` E : τ . If successful, we can infer a principal type for
E by forming the qualified type P ⇒ τ—without looking at the predicates in
P—and then quantifying over all variables that appear in P ⇒ τ but not in A.

One of the main results of the theory of improvement is that we can apply
improving substitutions to the predicate set P at any point during type inference
(and as often as we like), without compromising on a useful notion of principal
types. Intuitively, an improving substitution is just a substitution that can be
applied to a particular set of predicates without changing its satisfiability prop-
erties. To make this more precise, we will write bPc for the set of satisfiable
instances of P , which is defined by:

bPc = {SP | S is a substitution and the predicates in SP are satisfied }.

In this setting, we say that S is an improving substition for P if bPc = bSPc,
and if the only variables involved in S that do not also appear in P are ‘new’ or
‘fresh’ type variables. From a practical perspective, this simply means that the
subsitution will not change the set of environments or the set of types at which
a given value can be used. The restriction to new variables is necessary to avoid
conflicts with other type variables that might already be in use.

Improvement cannot play a useful role in a standard Haskell type system:
The language does not restrict the choice of instances for any given type class,
and hence the only improving substitions that we can obtain are equivalent to an
identity substitution. With the introduction of functional dependencies, however,
we do restrict the set of instances that can be defined, and this leads to oppor-
tunities for improvment. For example, by prohibiting the definition of instances
of the form Collects a [b] where a 6= b, we know that we can use an improving
substitution [a/b] and map any such predicate into the form Collects a [a].

6.1 Ensuring that Dependencies are Valid

Our first task is to ensure that all declared instances for a class C are consistent
with the functional dependencies in FC . For example, suppose that we have an
instance declaration for C of the form:

instance . . . ⇒ C t where . . .

Now, for each (X ; Y) ∈ FC , we must ensure that TV (tY) ⊆ TV (tX) or
otherwise the elements of tY might not be uniquely determined by the elements
of tX . (The notation TV (X) refers to the set of type variables appearing free in
the object X .) A further restriction is needed to ensure pairwise compatibility
between instance declarations for C . For example, if we have a second instance:

instance . . . ⇒ C s where . . . ,

and a dependency (X ; Y) ∈ FC , then we must ensure that tY = sY whenever
tX = sX . In fact, on the assumption that the two instances will normally contain
type variables—which could later be instantiated to more specific types—we
will actually need to check that: for all (kind-preserving) substitutions S , if
StX = SsX , then StY = SsY . It is easy to see that this test can be reduced to
checking that, if tX and sX have a most general unifier U , then UtY = UsY . This
is enough to guarantee that the declared dependencies are satisfied. For example,
the instance declarations in Section 3 are consistent with the dependency ce ; e.

6.2 Improving Inferred Types

There are two ways that a dependency (X ; Y) ∈ FC for a class C can be used
to help infer more accurate types:

– If we have predicates (C t) and (C s) with tX = sX , then tY and sY must
be equal.

– Suppose that we have an inferred predicate C t , and an instance:
instance . . . ⇒ C t ′ where . . .

If tX = St ′X , for some substitution S (which could be calculated by one-way
matching), then tY and St ′Y must be equal.

In both cases, we can use unification to ensure that the equalities are satisfied,
and to calculate a suitable improving substitution [5]. If unification fails, then
we have detected a type error. Note that we will, in general, need to iterate this
process until no further opportunities for improvement can be found.

6.3 Detecting Ambiguity

As mentioned in Section 3, we cannot guarantee a well-defined semantics for any
function that has an ambiguous type. With the standard definition, a type of
the form (∀a1. . . .∀an .P ⇒ τ) is ambiguous if ({a1, . . . , an}∩TV (P)) 6⊆ TV (τ),
indicating that one of the quantified variables ai appears in TV (P) but not in
TV (τ). Our intuition is that, if there is no reference to ai in the body of the type,
then there will be no way to determine how it should be bound when the type is
instantiated. However, in the presence of functional dependencies, there might
be another way to find the required instantiation of ai . We need not insist that
every a ∈ TV (P) is mentioned explicitly in τ , so long as they are all uniquely
determined by the variables in TV (τ).

The first step to formalizing this idea is to note that every set of predicates
P induces a set of functional dependencies FP on the type variables in TV (P):

FP = {TV (tX) ; TV (tY) | (C t) ∈ P , (X ; Y) ∈ FC }.

This has a fairly straightforward reading: if all of the variables in tX are known,
and if X ; Y , then the components of t at X are also known, and hence so are
the components, and thus the type variables, in t at Y .

To determine if a type (∀a1. . . .∀an .P ⇒ τ) is ambiguous, we calculate the
set of dependencies FP , and then take the closure of TV (τ) with respect to FP to
obtain the set of variables that are determined by τ . The type is ambiguous only
if there are variables ai in P that are not included in this closure. More concisely,
the type is ambiguous if, and only if ({a1, . . . , an} ∩ TV (P)) 6⊆ (TV (τ))+FP

.
On a related point, we note that current implementations of Haskell are re-

quired to check that, in any declaration of the form instance P ⇒ C t where . . .,
only the variables appearing in t can be used in P (i.e., we must ensure that
TV (P) ⊆ TV (t)). In light of the observations that have been made in this sec-
tion, we can relax this to require only that TV (P) ⊆ (TV (t))+FP

. Thus P may
contain variables that are not explicitly mentioned in t , provided that they are
still determined by the variables in t .

6.4 Generalizing Inferred Types

In a standard Hindley-Milner type system, principal types are computed using
a process of generalization. Given an inferred but unquantified type P ⇒ τ , we
would normally just calculate the set of type variables T = TV (P ⇒ τ), over
which we might want to quantify, and the set of variables V = TV (A) that are
fixed in the current assumptions A, and then quantify over any variables in the
difference, T \V . In the presence of functional dependencies, however, we must
be a little more careful: a variable a that appears in T but not in V may still
need to be treated as a fixed variable if it is determined by V . To account for
this, we should only quantify over the variables in T \V +

FP
.

7 Putting a Name to Functional Dependencies

The approach described in this paper provides a way for programmers to indicate
that there are dependencies between the parameters of a type class, but stops
short of giving those dependencies a name. To illustrate this point, consider the
following pair of class declarations:

class U a b | a ; b where . . .
class U a b ⇒ V a b where . . .

From the first declaration, we know that there is a dependency between the
parameters of U ; should there not also be a dependency between the parameters
of V , inherited from its superclass U ? Such a dependency could be added by
changing the second declaration to:

class U a b ⇒ V a b | a ; b where . . .

but this tells only part of the story. For example, given two predicates U a b
and V a c, nothing in the rules from Section 6 will allow us to infer that b = c.
Let us return to the dependency on U and give a name to it by writing u for
the function that maps each a to the b that it determines. This might even be
made explicit in the syntax of the language by changing the declaration to read:

class U a b | u :: a ; b where . . .

Now we can change the declaration of V again to indicate that it inherits the
same dependency u:

class U a b ⇒ V a b | u :: a ; b where . . .

Now, given the predicates U a b and V a c, we can infer that b = u a = c,
as expected. It is not yet clear how useful this particular feature might be, or
whether it might be better to leave the type checker to infer inherited depen-
dencies automatically, without requiring the programmer to provide names for
them. The current prototype includes an experimental implementation of this
idea (without making dependency names explicit), but the interactions with
other language features, particularly overlapping instances, are not yet fully un-
derstood. Careful exploration of these issues is therefore a topic for future work.
However, the example does show that there are further opportunities to exploit
dependency information that go beyond the ideas described in Section 6.

8 Conclusions and Future Work

The ideas described in this paper have been implemented in the latest version
of the Hugs interpreter [7], and seem to work well in practice. Pleasingly, some
early users have already found new applications for this extension in their own
work, allowing them to overcome problems that they had previously been unable
to fix. Others have provided feedback that enabled us to discover places where
further use of dependency information might be used, as described in Section 7.

In constructing this system, we have used ideas from the theory of relational
databases. One further interesting area for future work would be to see if other
ideas developed there could also be exploited in the design of programming lan-
guage type systems. Users of functional languages are, of course, accustomed to
working with parameterized datatypes. Functional dependencies provide a way
to express similar relationships between types, without being quite so specific.
For example, perhaps similar ideas could be used in conjunction with existential
types to capture dependencies between types whose identities have been hidden?

Acknowledgments

I would like to thank my colleagues at OGI for their interest in this work. Partic-
ular thanks go to Jeff Lewis for both insight and patches, and to Lois Delcambre
for explaining the role that functional dependencies play in database theory.

References

[1] W. W. Armstrong. Dependency structures of data base relationships. In IFIP
Cong., Geneva, Switzerland, 1974.

[2] S. M. Blott. An approach to overloading with polymorphism. PhD thesis, Depart-
ment of Computing Science, University of Glasgow, September 1991.

[3] K. Chen, P. Hudak, and M. Odersky. Parametric type classes (extended abstract).
In ACM conference on LISP and Functional Programming, San Francisco, CA,
June 1992.

[4] M. P. Jones. Qualified Types: Theory and Practice. PhD thesis, Programming
Research Group, Oxford University Computing Laboratory, July 1992. Published
by Cambridge University Press, November 1994.

[5] M. P. Jones. Simplifying and improving qualified types. In International Con-
ference on Functional Programming Languages and Computer Architecture, pages
160–169, June 1995.

[6] M. P. Jones. A system of constructor classes: overloading and implicit higher-order
polymorphism. Journal of Functional Programming, 5(1), January 1995.

[7] M. P. Jones and J. C. Peterson. Hugs 98 User Manual, September 1999.
[8] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
[9] C. Okasaki. Edison User’s Guide, May 1999.

[10] S. Peyton Jones. Bulk types with class. In Proceedings of the Second Haskell
Workshop, Amsterdam, June 1997.

[11] S. Peyton Jones and J. Hughes, editors. Report on the Programming Language
Haskell 98, A Non-strict Purely Functional Language, February 1999.

[12] S. Peyton Jones and J. Hughes (editors). Standard libraries for the Haskell 98
programming language, February 1999.

[13] S. Peyton Jones, M. Jones, and E. Meijer. Type classes: Exploring the design
space. In Proceedings of the Second Haskell Workshop, Amsterdam, June 1997.

[14] P. Wadler and S. Blott. How to make ad hoc polymorphism less ad hoc. In
Proceedings of 16th ACM Symposium on Principles of Programming Languages,
pages 60–76, Jan 1989.

