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Abstract

We generalize the binary Deutsch-Jozsa algorithm to n-
valued logic using the quantum Fourier transform. QOur
algorithm is not only able to distinguish between constant
and balanced Boolean functions in a single query, but can
also find closed expressions for classes of affine functions in
quantum oracles, accurate to a constant term.

1 Introduction

The original binary Deutsch-Jozsa algorithm [1] consid-
ers a Boolean function of the form f : {0,1}" — {0,1}
implemented in a black box circuit, or oracle, Uy. Input
states are put in a quantum superposition as query (x) and
answer (y) registers so that their state vectors are expressed
in terms of the dual basis [3]
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The oracle is defined by its action on the registers U |zy) =
|x)|y ® f(x)), where the |x) register is the tensor product of
input states |x1) - - - |z,). When it is promised that the func-
tion in question is either constant (returning a fixed value)
or balanced (returning outputs equally among 0 and 1), the
algorithm decides deterministically which type it is with a
single oracle query as opposed to the 2"~! 4 1 required
classically. The corresponding circuit is shown below (/"
denotes r wires in parallel).

In this paper, we prove an extension of the Deutsch-
Jozsa algorithm to arbitrary radices of multi-valued quan-
tum logic. We denote addition over the additive group Z,,
by the operator @ and the Kronecker tensor product by ®.

The Hadamard transform is a special case of the quantum
Fourier transform (QFT) in Hilbert space H,. The well-
known Chrestenson gate for ternary quantum computing is
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Figure 1. The Deutsch-Jozsa circuit

also equivalent to the Fourier transform over Z3. Cereceda
[2] has generalized the Deutsch algorithm using two qudits
for d-dimensional quantum systems where d = 2*. How-
ever, placing no restrictions on the number of computational
basis states n leads to a far more versatile characterization
of the Deutsch-Jozsa algorithm. The Fourier matrix of or-
der n over the primitive n'" roots of unity w* = e?275/" jg
given in Figure 2.
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Figure 2. The QFT as a matrix

Definition 1 The action of the quantum Fourier transform
. . R I = .
is described by QFT,, : |j) — 7 ];)eﬂ’” ™Mk for j €

Z,, [3]. For ease of computation, the @F T can be expressed
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The n-ary quantum Fourier transform gives n normal-
ized rotations of a vector, producing superpositions that dif-
fer only in phase. This leads to a redefinition of the dual
basis for H,, as
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2 The n-ary Deutsch-Jozsa Algorithm and
Affine Functions

We will implement the QFT as a generalization of the
Hadamard transform in the multi-valued equivalent of the
Deutsch-Jozsa algorithm. First, we cover some extensions
by definition.

Definition 2 An r-qudit multi-valued function of the form
f:40,1,...,n—1}" = {0,1,...,n—1} is constant when
f(z) = fly)Vz,y € {0,1,...,n — 1}" and is balanced
when an equal number of the n” domain values, namely
n"~1, is mapped to each of the n elements in the codomain.

In multi-valued logic, there are n constant functions
mapping each element in Z,, to a fixed element and n!
balanced permutative (bijective) mappings of single-qudit
inputs. For functions on r qudits, there are accordingly
n"!/n"~11" balanced (surjective) mappings.

Theorem 1 All affine functions defined as f(x1,...,2x,) =
Ay A1x1 ®--- D Apx, with Ag, ..., A, € Z,, are either
constant or balanced functions of r qudits.

Proof. Those affine functions for which all coefficients
Ajzo = 0 are constant. For affine functions with at least
one nonzero coefficient of x;, each element in the domain
{0,1,...,n—1}" ={0,1,...,n" — 1} is reducible mod-
ulo n to a unique element m of Z,, because the domain is
equivalent to the set {m,n—m,2n—m, ..., n" —n+m} of
size n"~ 1L, all of whose members are congruent to m mod-
ulo n for every m € {0,1,...,n — 1}, a set of size n.
Since f(p) = f(q) if p = ¢ (mod n), every element in the
codomain {0, 1,...,n — 1} is assigned to exactly n"~* dif-
ferent elements in the domain. Such affine functions satisfy
the definition of a balanced function.

The proof of the n-ary Deutsch-Jozsa algorithm will be
aided by a trivial lemma:

n—1
Lemma 1 Primitive n'® roots of unity satisfy Z w =0

k=0
for nonzero integers .

Proof. Consider the polynomial 2™ — 1 = 0, of which w®
is a root. 1 being a real root for all integers n, this can be
factorized as (z—1) (2" 1 +2"72+...+1) = 0. Therefore,
S o2k = 0for 2 = w* where z # W0 = 1.

This leads to our main result.

Theorem 2 The n-ary Deutsch-Jozsa algorithm applied to
multi-valued functions of r qudits can both distinguish be-
tween constant and balanced functions with a single oracle
query and determine a closed expression for an affine func-
tion in Uy, excepting the constant term, as follows:

1. The constant term A is preserved in the phase of the
x-register at output (w=°), which is lost during measure-
ment.

2. The coefficients Aq, ..
state of the x-register at output,

., A, are determined by the
Ap, .. A
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Figure 3. Circuit for the n-ary Deutsch-Jozsa
algorithm

In practice, the y-register would not be measured, but
we follow through with the calculations for it to demon-
strate that its state at the output is constant, regardless of
the function in the oracle. The z- and y-registers are writ-
ten separately as factors of the entire tensored state of the
circuit at each step [1);).

First, we consider the case in which the function f(x)
hidden in the oracle is constant:

1) = 10)¥"[1)
FOrHL 1 n"—1 1 n—1 .
i) = —= Y |r)@ —= > PTy)
PSP

n"—1

Uy 1 1 = 2ny/n
— |is) = [7) @ —= ) ey f(x))




At this point, we can transfer the action of Uy from the basis
states themselves onto their phases by observing that if a
basis vector |j @ k) is appended with the phase ¢/, then |;)
itself must have phase ¢/ ~* by definition. This yields:
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Because we assume our function to be constant, e~ %27 (@)/n
can be regarded as a global phase factor. Subsequently, the
QFT on the x-register can be computed explicitly:

n"—1n"—1

r 1 i2mik/ml . .
Fa®r = = 3737 e k), giving

n"—1n"—1n"-1

7,7 7127rf(:z: /n Z Z Z 127rjk/n|J k\m}

j=0 k=0 =x=0

nlnlnl

ST S ey )

7=0 k=0 y=0

In the standard basis, (k|z) = 0 when k& # z, while
(k|z) = 1 otherwise. We can hence reduce the above to:
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By lemma 1, all basis states |j) in the z-register will have
null amplitudes for j # 0. Similarly, all basis states |j) in
the y-register will have null amplitudes for j # n — 1. It
follows that

[Ya) = |0)*"n — 1)
with a phase factor of e ~%27/(*)/ for all constant functions

f(@).
The balanced case is similar. After initializing and su-
perposing our states as above, we obtain:
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In this case, the phase factor e~ 27 (@)/7 cannot be assumed
to be global because its value is dependent upon x. The

output of the y-register will be the same as in the constant
case, so we need only to proceed with the state of the x-
register. After applying the second QFT:
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It is now necessary to show that jx — f(x) = some constant
C, or f(x) = jx — C, for a fixed value of j # 0 and all
in domain {0, 1,...,n" — 1}. This would allow ¢?7/™ or
wY, to be the phase factor of some basis state |;) other than
|0)®" as in the constant case, with a deterministic probabil-
ity of measurement. Equivalently, since addition and multi-
plication are modular, f(z1,...,2,) = —-C®jix1H--- &
jr2, must hold for some j € {1,...,n" — 1}, j; represent-
ing the 7*" digit of j. This is the definition of a non-constant
affine function, so j exists only when the hidden function in
the oracle is affine. The z-register is therefore measured to
be:
[ha) = 2TV ) = WO,

f(z) being balanced for j # 0 and constant otherwise.
In consequence, the Deutsch-Jozsa algorithm gives a deter-
ministic output only when f(z) is restricted to being either
constant or balanced, and affine (we will give an example
of the algorithm for a non-affine function below). However,
observe that the state |0)®” will have a zero probability of
measurement for all balanced functions, whether affine or
not, because its amplitude is
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by definition 2 and lemma 1. Thus, the algorithm is still
deterministic in the sense that it can always distinguish
between constant and either affine or non-affine balanced
functions, although with no fixed output in the latter case.

Finally, the generalized Deutsch-Jozsa algorithm has
a useful property that becomes apparent in multi-valued
logic; it can not only distinguish between constant and bal-
anced functions, but can determine explicitly the function
flay,...,z.) = Ag® Ar121 @ - - - @ Az, implemented by
the oracle excepting the constant term A, given that it is



affine. As calculated above, the constant term Aq of such a
function is encoded in the phase of the x-register at output
(Ag = —C, where the phase is w®), while the respective
coefficients Ay,..., A, of x are determined by the basis
vector |j) = |41,..., A,). Since the phase of the z-register
is lost at measurement, only A, cannot be retrieved. We re-
gard affine functions that differ only in the constant term as
a ’class.”

In some variations of the Deutsch-Jozsa algorithm [5],
the y-register is unnecessary if the oracle, corresponding to
the diagonal operator
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directly encodes the action of f(z) into the phase of the -
register. We use this scheme below.

Example 1 (Deutsch-Jozsa for an affine function)
Uy contains the following balanced function defined on
two qutrits |AB):
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We begin at [t)3), after the states have been initialized.
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Lemma 1 is used for simplification (1 + w + w? = 0):
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from which we derive a closed expression for the affine
function f(z1,2z2) = Ao & A1z1 @ Aszs in Uy, save for
the constant term, by taking {2,1} as the respective coef-
ficients A; and A, (although theoretically, Ay should be
(=2) mod 3 =1):

f(x1,22) = (Constant) ® 2z1 @ x2

Example 2 (Deutsch-Jozsa for a non-affine function)
Uy contains the following balanced function defined on
two qutrits |AB):
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The basis state |12) hence has a 4/9 probability of measure-
ment, with all others having 1/9 probability. To determine
that this balanced function is non-affine, enough measure-
ments of the z-register are required so as to obtain differ-
ent states. Furthermore, observe that if the function is not
affine, there is still a relatively high probability of measur-
ing the output state of the algorithm that would be associ-
ated with a similar affine function. For example, compare
the Marquand chart of the non-affine function in Uy above
with that of the affine function f(z1,z2) = z1 ® 225 asso-
ciated with the output state |12):
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Because an affine multi-valued function in our context is
defined in terms of the modulo-additive operator &, any ar-
bitrary function is affine iff it satisfies the cyclic group prop-
erty (this is easy to determine when the outputs are plotted



in a Marquand chart as above, which requires that rows and
columns be successive cyclic shifts of each other), and the
state after Uy is factorable - e.g., entanglement does not oc-
cur in the Deutsch-Jozsa circuit.

Our extended Deutsch-Jozsa algorithm requires only one
measurement to deterministically distinguish an expression
for an affine function of radix n and r inputs up to the accu-
racy of a constant, given that it is affine.

3 Conclusion

Although the original Deutsch-Jozsa algorithm is mainly
of theoretical interest, its multi-valued extension could po-
tentially find application in image processing to distinguish
between maps of texture images encoded by affine functions
in a Marquand chart, with the number of colors correspond-
ing to the size of the radix.
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Appendix

For radices higher than 2 in which Uy is merely r + 1
wires in parallel (implementing the constant function f :
{0,1}" — 0), the initialized state [0)®"|1) is mapped to
a different output |0)®"|n — 1). Practically, this makes no
difference because the output of the y-register is discarded.
However, theorem 3 makes clear why this is so.

Theorem 3 Four iterations of the QFT gives an identity
mapping (the binary Hadamard gate is a special case that
is also self-inverse).

Proof. Let [F,]pq denote the p, g entry in F,,. Row p and
column q of F,, are given by

(p| = wa P=D (k| and |q) = Z

(¢— 1)|]€

respectively. [F2], = (plg) = £ Y32y P+ ptg—
2 is some integer « that is nonzero when (p+¢q) mod n # 2,
so by lemma 1, [F2],, = 1if (p + ¢) modn = 2 and
[F2],q = 0 otherwise. By definition, all such indices p, g €
{1,2,...,n} for which [F2],, = 1satisfy p+q = Con+2
for some Cyy € Z,,. Cy is further restricted to {0, 1} because
any larger values of Cyn + 2 exceed the maximum value of

p + q, or 2n. Therefore, eitherp+q¢=20rp+q¢=n+2,
giving the solution sets

p=q=1lor{p,q} ={n—m+1,m+1}

forme {1,2,...,n
tation matrix

— 1}, which correspond to the permu-

. iiji_ &2 — ) ) (K]

by our previous arguments, and given that F,, is unitary,
Fo=FuF =1,
is immediate. This is a property that the QFT shares with

the continuous Fourier transform.
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