
A Generalization of the Deutsch-Jozsa Algorithm to
Multi-Valued Quantum Logic

Yale Fan
The Catlin Gabel School
8825 SW Barnes Road

Portland, OR 97225-6599, USA
yalefan@gmail.com

Abstract

We generalize the binary Deutsch-Jozsa algorithm to n-
valued logic using the quantum Fourier transform. Our
algorithm is not only able to distinguish between constant
and balanced Boolean functions in a single query, but can
also find closed expressions for classes of affine functions in
quantum oracles, accurate to a constant term.

1 Introduction

The original binary Deutsch-Jozsa algorithm [1] consid-
ers a Boolean function of the form f : {0, 1}r → {0, 1}
implemented in a black box circuit, or oracle, Uf . Input
states are put in a quantum superposition as query (x) and
answer (y) registers so that their state vectors are expressed
in terms of the dual basis [3]

|0′〉 =
1√
2
(|0〉+ |1〉) and |1′〉 =

1√
2
(|0〉 − |1〉)

The oracle is defined by its action on the registers Uf |xy〉 =
|x〉|y⊕f(x)〉, where the |x〉 register is the tensor product of
input states |x1〉 · · · |xr〉. When it is promised that the func-
tion in question is either constant (returning a fixed value)
or balanced (returning outputs equally among 0 and 1), the
algorithm decides deterministically which type it is with a
single oracle query as opposed to the 2r−1 + 1 required
classically. The corresponding circuit is shown below (/r

denotes r wires in parallel).
In this paper, we prove an extension of the Deutsch-

Jozsa algorithm to arbitrary radices of multi-valued quan-
tum logic. We denote addition over the additive group Zn

by the operator ⊕ and the Kronecker tensor product by ⊗.
The Hadamard transform is a special case of the quantum

Fourier transform (QFT) in Hilbert space Hn. The well-
known Chrestenson gate for ternary quantum computing is

x : |0〉 /r
H⊗r

Uf

x
H⊗r FE

y : |1〉 H
y⊕f(x)

H |1〉

↑ |ψ1〉 ↑ |ψ2〉 ↑ |ψ3〉 ↑ |ψ4〉

Figure 1. The Deutsch-Jozsa circuit

also equivalent to the Fourier transform over Z3. Cereceda
[2] has generalized the Deutsch algorithm using two qudits
for d-dimensional quantum systems where d = 2k. How-
ever, placing no restrictions on the number of computational
basis states n leads to a far more versatile characterization
of the Deutsch-Jozsa algorithm. The Fourier matrix of or-
der n over the primitive nth roots of unity ωk = ei2πk/n is
given in Figure 2.

Fn =
1√
n



1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

1 ω3 ω6 · · · ω3(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)



Figure 2. The QFT as a matrix

Definition 1 The action of the quantum Fourier transform

is described by QFTn : |j〉 → 1√
n

n−1∑
k=0

ei2πjk/n|k〉 for j ∈

Zn [3]. For ease of computation, the QFT can be expressed

1

as

Fn =
1√
n

n−1∑
j=0

n−1∑
k=0

ei2πjk/n|j〉〈k|

The n-ary quantum Fourier transform gives n normal-
ized rotations of a vector, producing superpositions that dif-
fer only in phase. This leads to a redefinition of the dual
basis for Hn as

{|0′〉, |1′〉, . . . , |n− 1′〉} ={
1√
n

n−1∑
x=0

|x〉, 1√
n

n−1∑
x=0

ωx|x〉, . . . , 1√
n

n−1∑
x=0

ω(n−1)x|x〉

}

2 The n-ary Deutsch-Jozsa Algorithm and
Affine Functions

We will implement the QFT as a generalization of the
Hadamard transform in the multi-valued equivalent of the
Deutsch-Jozsa algorithm. First, we cover some extensions
by definition.

Definition 2 An r-qudit multi-valued function of the form
f : {0, 1, . . . , n−1}r → {0, 1, . . . , n−1} is constant when
f(x) = f(y) ∀x, y ∈ {0, 1, . . . , n − 1}r and is balanced
when an equal number of the nr domain values, namely
nr−1, is mapped to each of the n elements in the codomain.

In multi-valued logic, there are n constant functions
mapping each element in Zn to a fixed element and n!
balanced permutative (bijective) mappings of single-qudit
inputs. For functions on r qudits, there are accordingly
nr!/nr−1!n balanced (surjective) mappings.

Theorem 1 All affine functions defined as f(x1, . . . , xr) =
A0 ⊕A1x1 ⊕ · · · ⊕Arxr with A0, . . . , Ar ∈ Zn are either
constant or balanced functions of r qudits.

Proof. Those affine functions for which all coefficients
Ai 6=0 = 0 are constant. For affine functions with at least
one nonzero coefficient of xi, each element in the domain
{0, 1, . . . , n − 1}r = {0, 1, . . . , nr − 1} is reducible mod-
ulo n to a unique element m of Zn because the domain is
equivalent to the set {m,n−m, 2n−m, . . . , nr−n+m} of
size nr−1, all of whose members are congruent to m mod-
ulo n for every m ∈ {0, 1, . . . , n − 1}, a set of size n.
Since f(p) = f(q) if p ≡ q (mod n), every element in the
codomain {0, 1, . . . , n− 1} is assigned to exactly nr−1 dif-
ferent elements in the domain. Such affine functions satisfy
the definition of a balanced function.

The proof of the n-ary Deutsch-Jozsa algorithm will be
aided by a trivial lemma:

Lemma 1 Primitive nth roots of unity satisfy
n−1∑
k=0

ωαk = 0

for nonzero integers α.

Proof. Consider the polynomial zn − 1 = 0, of which ωα

is a root. 1 being a real root for all integers n, this can be
factorized as (z−1)(zn−1+zn−2+· · ·+1) = 0. Therefore,∑n−1

k=0 z
k = 0 for z = ωα where z 6= ω0 = 1.

This leads to our main result.

Theorem 2 The n-ary Deutsch-Jozsa algorithm applied to
multi-valued functions of r qudits can both distinguish be-
tween constant and balanced functions with a single oracle
query and determine a closed expression for an affine func-
tion in Uf , excepting the constant term, as follows:

1. The constant term A0 is preserved in the phase of the
x-register at output (ω−A0), which is lost during measure-
ment.

2. The coefficients A1, . . . , Ar are determined by the
state of the x-register at output, |A1, . . . , Ar〉.

x : |0〉 /r F⊗r
n

Uf

F⊗r
n FE

y : |1〉 Fn Fn |n− 1〉

↑ |ψ1〉 ↑ |ψ2〉 ↑ |ψ3〉 ↑ |ψ4〉

Figure 3. Circuit for the n-ary Deutsch-Jozsa
algorithm

In practice, the y-register would not be measured, but
we follow through with the calculations for it to demon-
strate that its state at the output is constant, regardless of
the function in the oracle. The x- and y-registers are writ-
ten separately as factors of the entire tensored state of the
circuit at each step |ψi〉.

First, we consider the case in which the function f(x)
hidden in the oracle is constant:

|ψ1〉 = |0〉⊗r|1〉

F⊗r+1
n−−−−→ |ψ2〉 =

1√
nr

nr−1∑
x=0

|x〉 ⊗ 1√
n

n−1∑
y=0

ei2πy/n|y〉

Uf−→ |ψ3〉 =
1√
nr

nr−1∑
x=0

|x〉 ⊗ 1√
n

n−1∑
y=0

ei2πy/n|y ⊕ f(x)〉

2

At this point, we can transfer the action of Uf from the basis
states themselves onto their phases by observing that if a
basis vector |j ⊕ k〉 is appended with the phase φj , then |j〉
itself must have phase φj−k by definition. This yields:

|ψ3〉 =
1√
nr

nr−1∑
x=0

|x〉 ⊗ 1√
n

n−1∑
y=0

ei2π[y−f(x)]/n|y〉

=
1√
nr
e−i2πf(x)/n

nr−1∑
x=0

|x〉 ⊗ 1√
n

n−1∑
y=0

ei2πy/n|y〉

Because we assume our function to be constant, e−i2πf(x)/n

can be regarded as a global phase factor. Subsequently, the
QFT on the x-register can be computed explicitly:

Fn
⊗r =

1√
n

nr−1∑
j=0

nr−1∑
k=0

ei2πjk/n|j〉〈k|, giving

F⊗r+1
n−−−−→ |ψ4〉 =

1
nr
e−i2πf(x)/n

nr−1∑
j=0

nr−1∑
k=0

nr−1∑
x=0

ei2πjk/n|j〉〈k|x〉 ⊗

1
n

n−1∑
j=0

n−1∑
k=0

n−1∑
y=0

ei2π(jk⊕y)/n|j〉〈k|y〉

In the standard basis, 〈k|z〉 = 0 when k 6= z, while
〈k|z〉 = 1 otherwise. We can hence reduce the above to:

|ψ4〉 =
1
nr
e−i2πf(x)/n

nr−1∑
j=0

nr−1∑
k=0

ei2πjk/n|j〉 ⊗

1
n

n−1∑
j=0

n−1∑
k=0

ei2π(j⊕1)k/n|j〉

By lemma 1, all basis states |j〉 in the x-register will have
null amplitudes for j 6= 0. Similarly, all basis states |j〉 in
the y-register will have null amplitudes for j 6= n − 1. It
follows that

|ψ4〉 = |0〉⊗r|n− 1〉

with a phase factor of e−i2πf(x)/n for all constant functions
f(x).

The balanced case is similar. After initializing and su-
perposing our states as above, we obtain:

|ψ3〉 =
1√
nr

nr−1∑
x=0

e−i2πf(x)/n|x〉 ⊗ 1√
n

n−1∑
y=0

ei2πy/n|y〉

In this case, the phase factor e−i2πf(x)/n cannot be assumed
to be global because its value is dependent upon x. The

output of the y-register will be the same as in the constant
case, so we need only to proceed with the state of the x-
register. After applying the second QFT:

|ψ3〉
F⊗r

n−−−→ |ψ4〉

=
1
nr

nr−1∑
j=0

nr−1∑
k=0

nr−1∑
x=0

ei2πjk/ne−i2πf(x)/n|j〉〈k|x〉

=
1
nr

nr−1∑
j=0

nr−1∑
x=0

ei2π[jx−f(x)]/n|j〉

It is now necessary to show that jx−f(x) = some constant
C, or f(x) = jx − C, for a fixed value of j 6= 0 and all x
in domain {0, 1, . . . , nr−1}. This would allow ei2πC/n, or
ωC , to be the phase factor of some basis state |j〉 other than
|0〉⊗r as in the constant case, with a deterministic probabil-
ity of measurement. Equivalently, since addition and multi-
plication are modular, f(x1, . . . , xr) = −C ⊕ j1x1⊕ · · ·⊕
jrxr must hold for some j ∈ {1, ..., nr − 1}, ji represent-
ing the ith digit of j. This is the definition of a non-constant
affine function, so j exists only when the hidden function in
the oracle is affine. The x-register is therefore measured to
be:

|ψ4〉 = ei2π[jx−f(x)]/n|j〉 = ωC |j〉,

f(x) being balanced for j 6= 0 and constant otherwise.
In consequence, the Deutsch-Jozsa algorithm gives a deter-
ministic output only when f(x) is restricted to being either
constant or balanced, and affine (we will give an example
of the algorithm for a non-affine function below). However,
observe that the state |0〉⊗r will have a zero probability of
measurement for all balanced functions, whether affine or
not, because its amplitude is

1
nr

nr−1∑
x=0

ei2πf(x)/n ≡ nr−1

nr

n−1∑
x=0

ei2πf(x)/n

≡ 1
n

n−1∑
x=0

ei2πx/n = 0

by definition 2 and lemma 1. Thus, the algorithm is still
deterministic in the sense that it can always distinguish
between constant and either affine or non-affine balanced
functions, although with no fixed output in the latter case.

Finally, the generalized Deutsch-Jozsa algorithm has
a useful property that becomes apparent in multi-valued
logic; it can not only distinguish between constant and bal-
anced functions, but can determine explicitly the function
f(x1, . . . , xr) = A0⊕A1x1⊕· · ·⊕Arxr implemented by
the oracle excepting the constant term A0, given that it is

3

affine. As calculated above, the constant term A0 of such a
function is encoded in the phase of the x-register at output
(A0 = −C, where the phase is ωC), while the respective
coefficients A1, . . . , Ar of x are determined by the basis
vector |j〉 = |A1, . . . , Ar〉. Since the phase of the x-register
is lost at measurement, only A0 cannot be retrieved. We re-
gard affine functions that differ only in the constant term as
a ”class.”

In some variations of the Deutsch-Jozsa algorithm [5],
the y-register is unnecessary if the oracle, corresponding to
the diagonal operator

Uf =
nr−1∑
x=0

e−i2πf(x)/n|x〉〈x|,

directly encodes the action of f(x) into the phase of the x-
register. We use this scheme below.

Example 1 (Deutsch-Jozsa for an affine function)
Uf contains the following balanced function defined on

two qutrits |AB〉:

@@

2
1
0

0 1 2
1

1
1

2
0

0

2
0
2

B
A

We begin at |ψ3〉, after the states have been initialized.

|ψ3〉 =
1
3


ω2 0 0 0 0 0 0 0 0
0 ω 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 ω2 0 0 0 0
0 0 0 0 0 ω 0 0 0
0 0 0 0 0 0 ω 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 ω2




1
1
1
1
1
1
1
1
1

 =
1
3


ω2

ω
1
1

ω2

ω
ω
1

ω2


Lemma 1 is used for simplification (1 + ω + ω2 = 0):

F⊗2
n |ψ3〉 =

1
9


1 1 1 1 1 1 1 1 1
1 ω ω2 1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω 1 ω2 ω
1 1 1 ω ω ω ω2 ω2 ω2

1 ω ω2 ω ω2 1 ω2 1 ω
1 ω2 ω ω 1 ω2 ω2 ω 1
1 1 1 ω2 ω2 ω2 ω ω ω
1 ω ω2 ω2 1 ω ω ω2 1
1 ω2 ω ω2 ω 1 ω 1 ω2




ω2

ω
1
1

ω2

ω
ω
1

ω2

 =


0
0
0
0
0
0
0

ω2

0


⇒ |ψ4〉 = ω2|21〉,

from which we derive a closed expression for the affine
function f(x1, x2) = A0 ⊕ A1x1 ⊕ A2x2 in Uf , save for
the constant term, by taking {2, 1} as the respective coef-
ficients A1 and A2 (although theoretically, A0 should be
(−2) mod 3 = 1):

f(x1, x2) = (Constant)⊕ 2x1 ⊕ x2

Example 2 (Deutsch-Jozsa for a non-affine function)
Uf contains the following balanced function defined on

two qutrits |AB〉:

@@

2
1
0

0 1 2
0

0
1

2
1

1

2
0
2

B
A

Again beginning at |ψ3〉:

|ψ3〉 =
1
3


1 0 0 0 0 0 0 0 0
0 ω 0 0 0 0 0 0 0
0 0 ω2 0 0 0 0 0 0
0 0 0 ω2 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 ω 0 0 0
0 0 0 0 0 0 ω 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 ω2




1
1
1
1
1
1
1
1
1

 =
1
3


1
ω
ω2

ω2

1
ω
ω
1

ω2


⇒ F⊗2

n |ψ3〉 =

1
9


1 1 1 1 1 1 1 1 1
1 ω ω2 1 ω ω2 1 ω ω2

1 ω2 ω 1 ω2 ω 1 ω2 ω
1 1 1 ω ω ω ω2 ω2 ω2

1 ω ω2 ω ω2 1 ω2 1 ω
1 ω2 ω ω 1 ω2 ω2 ω 1
1 1 1 ω2 ω2 ω2 ω ω ω
1 ω ω2 ω2 1 ω ω ω2 1
1 ω2 ω ω2 ω 1 ω 1 ω2




1
ω
ω2

ω2

1
ω
ω
1

ω2

=



0
ω/3

(1+ω2)/3
0

1/3
2/3
0

ω2/3
(1+ω)/3



⇒ |ψ4〉 =
ω

3
|01〉+

1 + ω2

3
|02〉+

1
3
|11〉+

2
3
|12〉+

ω2

3
|21〉+

1 + ω

3
|22〉

The basis state |12〉 hence has a 4/9 probability of measure-
ment, with all others having 1/9 probability. To determine
that this balanced function is non-affine, enough measure-
ments of the x-register are required so as to obtain differ-
ent states. Furthermore, observe that if the function is not
affine, there is still a relatively high probability of measur-
ing the output state of the algorithm that would be associ-
ated with a similar affine function. For example, compare
the Marquand chart of the non-affine function in Uf above
with that of the affine function f(x1, x2) = x1 ⊕ 2x2 asso-
ciated with the output state |12〉:

@@

2
1
0

0 1 2
0

0
0

2
1

1

2
1
2

x2

x1

Because an affine multi-valued function in our context is
defined in terms of the modulo-additive operator ⊕, any ar-
bitrary function is affine iff it satisfies the cyclic group prop-
erty (this is easy to determine when the outputs are plotted

4

in a Marquand chart as above, which requires that rows and
columns be successive cyclic shifts of each other), and the
state after Uf is factorable - e.g., entanglement does not oc-
cur in the Deutsch-Jozsa circuit.

Our extended Deutsch-Jozsa algorithm requires only one
measurement to deterministically distinguish an expression
for an affine function of radix n and r inputs up to the accu-
racy of a constant, given that it is affine.

3 Conclusion

Although the original Deutsch-Jozsa algorithm is mainly
of theoretical interest, its multi-valued extension could po-
tentially find application in image processing to distinguish
between maps of texture images encoded by affine functions
in a Marquand chart, with the number of colors correspond-
ing to the size of the radix.

Acknowledgements

The author gratefully acknowledges Professor Marek
Perkowski of Portland State University Department of Elec-
trical and Computer Engineering for his guidance and Jacob
Biamonte of D-Wave Systems, as well as the members of
the Portland Quantum Logic Group for their support.

Appendix

For radices higher than 2 in which Uf is merely r + 1
wires in parallel (implementing the constant function f :
{0, 1}r → 0), the initialized state |0〉⊗r|1〉 is mapped to
a different output |0〉⊗r|n − 1〉. Practically, this makes no
difference because the output of the y-register is discarded.
However, theorem 3 makes clear why this is so.

Theorem 3 Four iterations of the QFT gives an identity
mapping (the binary Hadamard gate is a special case that
is also self-inverse).

Proof. Let [Fn]pq denote the p, q entry in Fn. Row p and
column q of Fn are given by

〈p| = 1√
n

n−1∑
k=0

ωk(p−1)〈k| and |q〉 =
1√
n

n−1∑
k=0

ωk(q−1)|k〉,

respectively. [F2
n]pq = 〈p|q〉 = 1

n

∑n−1
k=0 ω

k(p+q−2); p+q−
2 is some integer α that is nonzero when (p+q) mod n 6= 2,
so by lemma 1, [F2

n]pq = 1 if (p + q) mod n = 2 and
[F2

n]pq = 0 otherwise. By definition, all such indices p, q ∈
{1, 2, . . . , n} for which [F2

n]pq = 1 satisfy p+q = C0n+2
for someC0 ∈ Zn. C0 is further restricted to {0, 1} because
any larger values of C0n+ 2 exceed the maximum value of

p+ q, or 2n. Therefore, either p+ q = 2 or p+ q = n+ 2,
giving the solution sets

p = q = 1 or {p, q} = {n−m+ 1,m+ 1}

for m ∈ {1, 2, . . . , n− 1}, which correspond to the permu-
tation matrix

F2
n =

n−1∑
m=0

|n−m〉〈m|, |n〉 taken modulo to mean |0〉

Thus, (z∗ denoting the complex conjugate)

F3
n =

1√
n

n−1∑
j=0

n−1∑
k=0

n−1∑
m=0

ei2πjk/n|n−m〉〈m|j〉〈k|

=
1√
n

n−1∑
j=0

n−1∑
k=0

ei2πjk/n|n− j〉〈k|

=
1√
n

n−1∑
j=0

n−1∑
k=0

(ei2πjk/n)∗|j〉〈k|

= F†
n

by our previous arguments, and given that Fn is unitary,

F4
n = FnF†

n = In

is immediate. This is a property that the QFT shares with
the continuous Fourier transform.

References

[1] Deutsch, D. and Jozsa, R. (1992). Rapid solutions of
problems by quantum computation. Proc. Roy. Soc.
Lond. A 439, 553-558.

[2] Cereceda, J. L. (2004). Generalization of the Deutsch
algorithm using two qudits. Available at quant-
ph/0407253.

[3] Jozsa, R. (1997). Quantum algorithms and the Fourier
transform. Proc. Roy. Soc. Lond. A 454, 323-337.

[4] Perkowski, M. (2005). Lecture notes. Available at

http://web.cecs.pdx.edu/∼mperkows/seminar.html.

[5] Gruska, J. (1999). Quantum computing. Berkshire,
UK: McGraw-Hill.

[6] Perry, R. T. (2006). The temple of quantum computing,
version 1.1. Available at http://www.toqc.com/.

5

