
866 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

whereM is the set of all nodesIMj excluding those fulfilling property
3. The larger the cost of a vectorv is, the less test vectors can be pro-
duced by the grouping ifv is selected.

The cost of a faultf , with Vf denoting the set of its test vectors, is
then estimated as

FaultCost(f) =
v2V

WeightVector(v):

A larger fault cost indicates that it is harder for the algorithm to
cover it.

REFERENCES

[1] M. Abramovici, M. A. Breuer, and A. D. Friedman,Digital Systems
Testing and Testable Design. New York: Computer Science Press,
1990.

[2] P. H. Bardell, W. H. McAnney, and J. Savir,Built-In Test for VLSI:
Pseudo-Random Techniques. New York: Wiley, 1987.

[3] V. Agrawal, C. Kime, and K. Saluja, “A tutorial on built-in self-test part
1: Principles,”IEEE Design Test Computers, pp. 73–82, Mar. 1993.

[4] H.-J. Wunderlich, “BIST for systems-on-a-chip,”Integration, VLSI J.,
vol. 26, no. 1-2, pp. 55–78, Dec. 1998.

[5] M. Bushnell and V. Agrawal,Essentials of Electronic Testing: Kluwer,
2000.

[6] K.-T. Chen and C.-J. Lin, “Timing driven test point insertion for full-scan
and partial-scan BIST,” inProc. Int. Test Conf., 1995, pp. 506–514.

[7] A. Stroele and H.-J. Wunderlich, “TESTCHIP: A chip for weighted
random pattern generation, evaluation, and test control,”IEEE J. Solid-
State Circuits, vol. 26, pp. 1056–1063, July 1991.

[8] S. Hellebrand, J. Rajski, S. Tarnick, S. Venkataraman, and B. Courtois,
“Built-in test for circuits with scan based on reseeding of multiple-poly-
nomial linear feedback shift registers,”IEEE Trans. Comput., vol. 44,
pp. 223–233, Feb. 1995.

[9] H.-J. Wunderlich and G. Kiefer, “Bit-flipping BIST,” inProc. Int. Conf.
Computer-Aided Design, 1996, pp. 337–343.

[10] S. Hellebrand, H.-G. Liang, and H.-J. Wunderlich, “A mixed mode BIST
scheme based on reseeding of folding counters,” inProc. Int. Test Conf.,
2000, pp. 778–784.

[11] N. A. Touba and E. J. McCluskey, “Bit-fixing in pseudorandom se-
quences for scan BIST,”IEEE Trans. Computer-Aided Design, vol. 20,
pp. 545–555, Apr. 2001.

[12] K. Chakrabarty, B. T. Murray, and V. Iyengar, “Built-in test pattern gen-
eration for high-performance circuits using twisted-ring counters,” in
Proc. IEEE VLSI Test Symp., 1999, pp. 22–27.

[13] N. A. Touba and E. J. McCluskey, “Test point insertion based on path
tracing,” inProc. VLSI Test Symp., 1996, pp. 2–8.

[14] J. Hartmann and G. Kemnitz, “How to do weighted random testing for
BIST,” in Proc. Int. Conf. Computer-Aided Design, 1993, pp. 568–571.

[15] C. Okmen, M. Keim, R. Krieger, and B. Becker, “On optimizing BIST-
architecture by using OBDD-based approaches and genetic algorithms,”
in Proc. VLSI Test Symp., 1997, pp. 426–431.

[16] C.-A. Chen and S. K. Gupta, “A methodology to design efficient BIST
test pattern generators,” inProc. Int. Test Conf., 1995, pp. 814–823.

[17] , “Efficient BIST TPG design and test set compaction via input
reduction,”IEEE Trans. Computer-Aided Design, vol. 17, pp. 692–705,
Aug. 1998.

[18] K. Chakrabarty, B. Murray, J. Liu, and M. Zhu, “Test width compression
for built-in self test,” inProc. Int. Test. Conf., 1997, pp. 327–337.

[19] I. Hamzaoglu and J. Patel, “Reducing test application time for built-in-
self-test test pattern generators,” inProc. VLSI Test Symp., 2000, pp.
369–375.

[20] N. A. Touba and E. J. McCluskey, “Synthesis of mapping logic for gen-
erating transformed pseudo-random patterns for BIST,” inProc. Int. Test
Conf., 1995, pp. 674–682.

[21] M. F. Alshaibi and C. R. Kime, “MFBIST: A BIST method for random
pattern resistant circuits,” inProc. Int. Test Conf., 1996, pp. 176–185.

[22] C. Fagot, P. Girard, and C. Landrault, “On using machine learning for
logic BIST,” in Proc. Int. Test Conf., 1997, pp. 338–346.

[23] L. R. Huang, J. Y. Jou, and S. Y. Kuo, “Gauss-elimination-based gener-
ation of multiple seed-polynomial pairs for LFSR,”IEEE Trans. Com-
puter-Aided Design, vol. 16, pp. 1015–1024, Sept. 1997.

[24] S. Chiusano, P. Prinetto, and H. J. Wunderlich, “Non-intrusive BIST for
systems-on-a-chip,” inProc. Int. Test Conf., 2000, pp. 644–651.

BDS: A BDD-Based Logic Optimization System

Congguang Yang and Maciej Ciesielski

Abstract—This paper describes a novel logic decomposition theory
and a practical logic synthesis system,BDS. It is based on a new binary
decision diagrams (BDD) decomposition technique which supports all
types of decomposition structures, includingAND, OR, XOR, and complex
MUX , both algebraic and Boolean. As a result, the method is very
efficient in synthesizing both AND/OR and XOR-intensive functions. It
also has a capability to handle very large circuits, as it employs the
BDD decomposition in the partitioned Boolean network environment.
The experimental results show that BDD-based logic decomposition is
a promising alternative to the existing logic optimization approaches.
In particular, it offers a superior runtime advantage over traditional
logic synthesis systems.

Index Terms—BDD, logic optimization, synthesis.

I. INTRODUCTION

Traditional logic optimization methodology, based on algebraic
factorization [1], [2], has gained tremendous success and emerged as
a dominant method in logic synthesis. However, while near optimal
results can be obtained forAND/OR-intensive functions of control
and random logic, results are far from satisfactory for arithmetic
and XOR-intensive logic functions, which can be more compactly
represented as a combination ofAND/OR and XOR expressions.
Although logic optimization methods based on Boolean factorization
can potentially offer better results than algebraic methods, they failed
to compete with algebraic techniques due to their high computational
complexity. We believe that this failure of Boolean optimization
techniques is caused by inappropriate data structure used to represent
Boolean functions. The predominant cube representation used by
those techniques naturally favors algebraic-based methods and is not
suitable for Boolean operations. Consequently, Boolean operations
such asMUX and XOR received less attention from the onset of
logic synthesis research.

We believe that logic synthesis methods will keep evolving with
the emergence of newer and more efficient logic representations, and
in particular with the accumulation of expertise in binary decision
diagrams (BDDs). This paper presents the first results of research
that address this new opportunity. It presents a novel theory and a
set of efficient techniques for logic decomposition based on BDD
representation. We show that logic optimization can be efficiently
carried out through an iterative BDD decomposition and manipulation.
Our approach proves to be very efficient for bothAND/OR- and
XOR-intensive functions. To the best of our knowledge, this is the first
unified logic optimization methodology that allows one to optimize
such diverse classes of logic functions. We also present a practical
and complete BDD-based logic optimization system,BDS, that can
handle arbitrarily large circuits. It employs the BDD decomposition
techniques in the partitioned Boolean network environment.

Manuscript received July 13, 2001. This work was supported in part by the
National Science Foundation under Contract CCR-9901254. This paper was rec-
ommended by Associate Editor E. Macii.

C. Yang is with Chameleon Systems, Inc., San Jose, CA 95134 USA (e-mail:
cyang@chameleonsystems.com).

M. Ciesielski is with the Department of Electrical and Computer Engi-
neering, University of Massachusetts at Amherst, Amherst, MA 01003-4410
USA (e-mail: ciesiel@ecs.umass.edu).

Publisher Item Identifier S 0278-0070(02)05630-0.

0278-0070/02$17.00 © 2002 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 867

Fig. 1. Ashenhurst decomposition using BDD: (a) decomposition chart, (b) disjoint decomposition of the BDD, and (c) block diagram.

II. BACKGROUND AND PREVIOUS WORK

A. Boolean Functions and BDDs

It is assumed that the reader is familiar with basic concepts of
Boolean functions, Boolean networks, and BDDs. This section reviews
basic terms used throughout the paper.

A completely specifiedBoolean function withn-inputs and one
output is a mappingf :Bn

�! B, whereB = f0; 1g. Such a function
can be uniquely defined by itsonset,ON(f) = fx: f(x) = 1g, and its
offset, OFF(f) = fx: f(x) = 0g. For completely specified Boolean
functionsf andg, f coversg, denoted asf � g, if ON(f) � ON(g).
An incompletely specifiedBoolean function withn inputs and one
output is a mappingff :Bn �! Y , whereY = f0; 1; �g, and� stands
for don’t care. Thedon’t care set(dc-set) of an incompletely specified
Boolean functionf(x) is defined asDC(f) = fx: f(x) = �g. A
coverF of an incompletely specified Boolean functionf satisfies the
conditionON(f) � F � ON(f) [DC(f). Thesupportof Boolean
function F , denotedsupp(F), is defined as the set of variables on
whichF depends. In the context of this work, we are only concerned
with completely specified Boolean functions. In the sequel, the term
Boolean functionis used for a completely specified Boolean function.

The concept of BDDs was first proposed by Lee [3] in 1959. It was
then developed into a useful data structure by Akers [4] and subse-
quently by Bryant [5], who introduced a concept ofreduced, ordered
BDDs (ROBDDs), along with a set of efficient operators for their ma-
nipulation, and proved the canonicity property of ROBDDs. The size
of a BDD can be further reduced by introducingcomplement edges,
[4], [6]. Basically, a complement edge (c-edge), points to the comple-
mentary form of the function (BDD node). To maintain canonicity, it is
assumed that a complement edge can only be assigned to the 0-edge. In
the rest of the paper, BDD refers to a reduced ordered BDD (ROBDD).
In the drawings, the positive cofactor will be represented by a solid
1-edge, and the negative cofactor by a dashed0-edge.

Multilevel circuits are typically represented as aBoolean network,
a directed acyclic graph (DAG) whose nodes represent Boolean func-
tions. Various Boolean network presentations differ mainly in the way
they representlocal functions, pertaining to individual nodes. The func-
tionality of a Boolean node can be represented as a set of product terms
(as in SIS [2]), or as a BDD, in a form known as alocal BDD represen-
tation. A Boolean network can be also represented in aglobal form,
by collapsing the entire Boolean network into a single node for each
primary output. In this representation each global node is represented
as a single monolithic BDD.

B. Functional Decomposition

The first systematic approach to functional decomposition was
proposed by Ashenhurst [7] and Curtis [8]. According to this

decomposition, a Boolean functionf(X) can be expressed as:
f(X) = F (G1(Y); G2(Y); . . . ; Gk(Y); Z), whereY [Z = X.
HereY is referred to as abound setandZ is a free set. The original
Ashenhurst decomposition calls for the two sets to be disjoint,
Y \ Z = ; (the disjoint decomposition)1 and having a single
predecessor blockG, with k = 1 (called thesimpledecomposition);
see Fig. 1(c). Under such a decomposition Boolean function can be
represented by adecomposition chart, with the variables inY and
Z corresponding to the column and row indexes, respectively, as
shown in Fig. 1(a). A disjoint decompositionf(X) = F (G(Y); Z)
exists if the number of distinct columns of the decomposition chart, or
column multiplicity, is � = 2. Roth and Karp [9] extended this result
to nondisjoint decomposition, withY \ Z = X, and withk > 1
predecessor blocksGi. The functional decomposition methods based
on the decomposition charts are computationally inefficient because
the number of columns in the chart grows exponentially with the
number of bound set variables, and testing decomposition with each
bound set is possible only after constructing its decomposition chart.

C. Previous Work in BDD Decomposition

This section reviews a number of BDD-based logic decomposition
methods developed over the last decade. These methods can be divided
into two major classes: 1) methods that follow the traditional func-
tional decomposition of Ashenhurst–Curtis, but rely on BDDs as an
efficient data structure for the implementation of their algorithms and
2) methods that use thestructureof a BDD to identify good decompo-
sitions and more efficiently utilize the expressive power of BDDs. The
method described in this paper belongs to the latter category.

The BDD decomposition methods from the first class employ
BDDs as a platform to carry out traditional functional decomposition
of Ashenhurst [7] and Roth–Karp [9]. Laiet al. [10] demonstrated that
the structure of a BDD is implicitly related to the decomposition chart
and hence can be used to perform the functional decomposition. Given
an ordered BDD, acut setis selected that partitions the variables into
a bound setand afree set; see Fig. 1(b). Each node in the cut set
corresponds to a unique column of the decomposition chart, Fig. 1(a).
The decomposition exists if the size of the cut setm satisfies the
conditionm � 2k, wherek is the number of outputs of function
block G. The implementation of the decomposed functions,F and
G, is accomplished by encoding the BDD nodes in the cut set, as
shown in Fig. 1(b). The described cut-based approach has served as
a basis for several logic decomposition methods [10]–[13]. They are
particularly applicable to FPGA designs; in this case the cut is selected
based on the number of inputs to the look-up-table (LUT) blocks. The

1The disjoint and nondisjoint decompositions refer to the interaction of the
variables in the support of the function. They should not be confused with dis-
junctive (OR) and conjunctive (AND) decompositions, described in Section III-B.

868 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

method of Laiet al. [10] has been extended also to the decomposi-
tion of multiple-output functions in [14]. Here the multiple-output
Boolean function is first converted into an integer-valued function and
represented as anedge-valued BDD(EVBDD); the EVBDD is then
decomposed using method similar to [10] and the result converted
back into a multiple-output function. A serious limitation of all those
methods is that they require finding a cut which separates the bound
variables from the free variables.

An important group of methods in the same category is that ofbide-
compositions, introduced by Bochmanet al. [15]. Bidecompositions
are functional decompositions of the typeF (X; Y; Z) = G(X; Y)�
H(Y;Z), where� stands for any binary Boolean operation. For purely
algebraicdecomposition,Y = ;, and fornonalgebraicdecomposition
Y 6= ; (the overlap set). If the support ofG (orH) is identical to that
of F , the bidecomposition is calledweak; otherwise, it is calledstrong.

A class of quasialgebraic decomposition, i.e., bidecompositions
where the setY is fixed, has been introduced by Stanion and Sechen
in [16]. They give the necessary and sufficient conditions for a
function to have a quasi-algebraic decomposition for a given choice
of X;Y; Z. This is a special case of Roth–Karp decomposition with
k = 1 predecessor block. This method also requires that the variable
partitioning into subsetsX;Y; Z be consistent with the ordering of
variables in the BDD.

The BDD-based logic synthesis continues to be an active research
area. Recently, Mishchenkoet al. [17] suggested a method to perform
bidecomposition using formulas with quantifiers evaluated with the
help of BDDs. A work of Files and Perkowski [18] applies multivalued
decision diagrams, MDDs, to perform multivalued functional decom-
position.

The second class of methods relies on thestructure of BDD to
identify good decompositions and guide directly the decomposition
process. The first known work in this class, and the one that inspired
our research, is that of Karplus [19]. Karplus introduced the concept
of a 1- and 0-dominatorand showed their relationship toalgebraic
AND/OR decomposition, illustrated in Fig. 2. In a BDD without the
complement edges, a 1-dominator (0-dominator) is a node which
belongs to every path from the root to terminal node 1 (0).

There have been several other attempts to perform multilevel logic
optimization directly on a BDD. Bertacco and Damiani [20] proposed
a method which performs recursive decomposition directly on a BDD.
Their method basically annotates disjoint decomposition inherent in the
BDD structure. It is fast and for some circuits generates much better
results than SIS [2]. However, it can only detect simple disjoint de-
compositions. Stanion and Sechen [21] proposed a Boolean division
and factorization method using a specialized BDD operator, calledin-
terval cofactor. An important contribution of this work is its capability
to extractXORs using a BDD decomposition technique similar to that
described in Section III-D. However, due to a lack of efficient way to
generate good Boolean divisors, the improvement offered by such a
Boolean division over SIS is marginal.

It should be noted that the BDD-based decomposition techniques
mentioned here can only detect bidecompositions for a variable order
consistent with their partitioning into the bound set and the free set.
Otherwise, none of these methods can detect algebraic or quasi-alge-
braic decomposition and require reordering of variables. The method
described in this paper attempts to remedy this problem. We demon-
strate that the structure of a well-ordered BDD can be useddirectly to
identify functional decomposition of the underlying function, leading
to efficient multilevel logic implementations. The described method
can detect algebraic as well as Boolean decompositions even for the
variable order that is inconsistent with the variable partitioning. The
theory of such a decomposition is the subject of Section III.

(a)

(b)

Fig. 2. Algebraic decompositions of Karplus: (a) conjunction decomposition,
F = (a+ b)(c+ d), based on 1-dominator and (b) disjunctive decomposition,
F = ab + cd, based on 0-dominator.

III. T HEORY OFBDD DECOMPOSITION

A. Terminology and Fundamentals

Definition 1 (BDD): A BDD is a DAG representing a Boolean func-
tion. It can be uniquely defined as a tuple,BDD = (�; V; E; f0; 1g),
where� is the function node (root), V is the set of nodes,E is a set of
edges, and 0 and 1 are the terminal nodes.

Definition 2 (Leaf Edges):Theleaf edgeis an edgee 2 E which is
directly connected to a terminal node of the BDD. The set of leaf edges,
denoted�, can be partitioned into�0, the set of leaf edges connected
to 0, and�1, the set of leaf edges connected to 1. All the other edges
of the BDD are calledinternal.

Definition 3 (Paths): A path from root to terminal node 0(1) is
called a0-path(1-path). �0 is the set of all 0-paths, and�1 is the set
of all 1-paths.� = �0 �1 is the set of all paths of the BDD.

Theorem 1: Every internal edgee 2 (E � �) belongs to at least
one pathp1 2 �1 and to one pathp0 2 �0.

Proof: The theorem is proved by contradiction. Since BDD is a
connected graph, every edge must belong to�0 or �1. Assume that
e 2 E � � belongs to�1 only. Then all the nodes belowe can be
collapsed into 1, so thate 2 �1. Hence, the contradiction. Same rea-
soning applies to the case of�0.

Definition 4 (Cut): Thecut in a BDD is a set of edges which parti-
tions its nodesV into two disjoint subsets,D and(V -D), such thatroot
2 D and terminals0; 1 2 (V -D)). A horizontal cutis a cut in which
the support ofD and(V -D) in terms of the associated variables, are
disjoint.

We now provide a theoretical basis for two fundamental BDD de-
compositions, namely the conjunctive and disjunctive Boolean decom-
positions.

Definition 5 (Conjunctive Decomposition):Boolean functionF
has theconjunctive (AND) decompositionif it can be represented as
F = D � Q. FunctionD is called the Booleandivisor andQ is the
quotientof F under this decomposition.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 869

Definition 6 (Disjunctive Decomposition) :Boolean functionF has
the disjunctive (OR) decompositionif it can be represented asF =

G+H .
The decomposition isalgebraicif the supports ofQ andD (G and

H) are disjoint; otherwise, the decomposition isBoolean. In contrast to
quasi-algebraic methods [16], we do not make any assumption whether
the decomposition is algebraic or Boolean; nor do we require any ex-
plicit declaration of the number of the overlapping variables. Instead,
we develop a general decomposition method for the conjunctive (dis-
junctive) decomposition, common to both types.

We now state two well-known theorems that form a basis of our BDD
decomposition technique. The proofs can be found in any textbook on
logic synthesis, such as [22].

Theorem 2: Boolean functionF has a conjunctive Boolean decom-
positionF = D � Q if and only if F � D. For a given choice ofD,
the quotientQ must satisfyF � Q � F +D.

We use this theorem to generate the Boolean divisor and the quotient
directly from the BDD. Our procedure will first generate divisorD and
then compute quotientQ fromF using the offset ofD as don’t care.

Theorem 3: Boolean functionF has a disjunctive Boolean decom-
positionF = G+H if and only ifF � G. Then, for a given choice of
G, the disjunctive termH must satisfy the conditionF � H � F+G.

This theorem forms the basis for our disjunctive decomposition; we
will first generateG and then computeH fromF using an onset ofG
as don’t care.

B. And/Or Decomposition

Definition 7 (Generalized Dominator) :Consider a cut partitioning
the set of BDD nodes of functionF intoD and (V -VD). The portion of
the BDD defined by nodesVD is copied to form a separate graph, where
an edgee is connected to 0 ife 2 �0(F), and it is connected to 1 ife 2
�1(F). All the internal edgese 2 (E � �) are left dangling; they are
referred to asfreeedges. The resulting graph is called thegeneralized
dominatorof F with respect to the given cut, denotedGD(F).

Example 1: Fig. 3(a) and (b) shows the construction of a general-
ized dominator. First, a cut is applied to the BDD ofF in Fig. 3(a).
Then the portion above the cut is copied to form a separate graph, with
�(F) edges connected to the corresponding terminals 0 or 1, shown in
Fig. 3(b).

The following theorem shows how to obtain a Boolean divisor and
perform the conjunctive Boolean decomposition of the BDD ofF by
redirecting the free edges ofGD(F) to terminal node 1.

Lemma 1: Given a generalized dominatorGD(F) of functionF ,
the Boolean divisorD is obtained fromGD(F) by redirecting its free
edges to 1. The quotientQ is obtained fromF by redirecting the�0(D)
edges inF to don’t care nodes.

Proof: First we shall show thatD satisfies the condition of The-
orem 2 , that isD � F . By construction,�0(D) � �0(F), and
�0(D) � �0(F), that isD � F , or equivalently,D � F . In Fig. 3,
D = f�e �dg � F = f�e �d; �ed�bg. Alternatively, it can be argued that all
1-paths ofD are either identical to or subsume those ofF . This is be-
cause, by Theorem 1, every internal edge ofF is on some 1-path. By
construction, this is also true for the free edges ofGD(F). By redi-
recting the free edges ofGD(F) to 1, the BDD ofD covers all 1-paths
of F , that isD � F .

It remains to be shown that, for such constructedD, the BDD ofQ
satisfies the condition for the quotient:F � Q � F +D. This follows
directly from the construction ofQ; we start withQ = F , identify the
offset ofD as 0-paths in the BDD ofD, and redirect the corresponding
0-paths inF to don’t care (DC) nodes. By construction, each 0-path in
D, p0(D), has an equivalent 0-path inF , p0(F); that is, the nodes of
p0(D) are in one-to-one correspondence with the nodes ofp0(F). For

Fig. 3. A simple example of conjunctive Boolean decomposition.

example, see the 0-path (�e �d) in the BDD ofD in Fig. 3(d) and the iden-
tical one inF in Fig. 3(a). Replacing the node 0 with DC on such a path
in Q = F will never decrease the onset of the resultingQ compared
to F [it may only increase it by making some nodes redundant, as in
Fig. 3(e) and (f)]. HenceQ � F . Finally, we claim that redirecting the
�0(D) edges to DC is equivalent to adding the offset ofD as a don’t
care set toF . This is true, because replacing node 0 by DC at the end of
the pathp0(F) amounts to adding an offset cube ofD associated with
p0(D) to the BDD ofF . This is done for allp0(D) 2 �0(D). Hence
such constructedQ satisfiesQ � F +D.

Example 2: Fig. 3 is used again to illustrate Lemma 1 for function
F = e + bd. The free edge (d) of GD(F) in Fig. 3(b) is redirected
to constant 1, as shown in Fig. 3(c). The Boolean divisorD is readily
evaluated asD = e + d, shown in Fig. 3(d). The quotientQ for this
divisor is obtained fromF by using the offset ofD (cube�e �d) as don’t
care; see Fig. 3(e). The minimization ofF with respect to this don’t care
givesQ = e+b, as shown in Fig. 3(f). Notice that(D = e+d) � (F =
e+ bd), and(Q = e+ b) satisfies the conditionF � Q � F + �e �d.

Example 3: A complete conjunctive (AND) decomposition is shown
in Fig. 4. First, a cut is performed on the BDD in Fig. 4(a), and the
generalized-dominatorGD(F) is built. Then, the Boolean divisorD
is constructed fromGD(F) by redirecting the free edges to 1. The
reduction of this BDD givesD = (af + b + c), shown in Fig. 4(b).
The quotientQ is obtained fromF by minimizing it with the offset of
D (i.e.,D = fa �f�b�c; �a�b�cg) as don’t care, givingQ = (ag + d + e);
see Fig. 4(c). As a result,F = (af + b + c)(ag + d + e) with only
eight literals. This is the best know decomposition for this function.

Disjunctive (OR) decomposition is dual to the conjunctive decom-
position. The following is the fundamental theorem for disjunctive de-
composition.

Lemma 2: Consider a disjunctive Boolean decompositionF = G+
H . Given a generalized dominatorGD(F) of functionF , the Boolean
termG can be obtained by redirecting the free edges ofGD(F) to
0. The Boolean termH is obtained fromF by redirecting the�1(G)
edges inF to don’t care nodes.

Proof: We must show that such constructedG andH satisfy the
conditions of Theorem 3 . First, notice that by redirecting the free edges
of GD(F) to 0, the offset of the resulting Boolean functionG covers
the offset ofF , that is,G � F , henceG � F . The rest of the proof is
dual to that of Lemma 1 . In this case, each 1-pathp1(G) has its coun-
terpart inF ; see for example the pathfabg in Fig. 5(d) ofD and the
one in Fig. 5(a) ofF . Redirecting the�1(G) edges to DC is equivalent
to replacing the onset ofG as don’t care inF in the construction ofH .

Example 4: Fig. 5 illustrates Lemma 2 for functionF = ab + bc.
The free edges ofGD(F) in Fig. 5(b) are redirected to constant 0,

870 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

Fig. 4. Conjunctive BDD decomposition: (a) original functionF , (b) generalized dominator and Boolean divisorD, and (c) computing quotientQ fromF .

Fig. 5. A simple example of disjunctive Boolean decomposition.

resulting inG = ab, as shown in Fig. 5(c) and (d). The termH of this
decomposition is obtained fromF by setting the onset ofG, fabg, as
don’t care; see Fig. 5(e). The minimization ofF with respect to this
don’t care givesH = bc, orH = �b+ �c, as shown in Fig. 5(f). Notice
thatG = ab � F , andF � H � (F + ab).

The conjunctive and disjunctive decompositions described in this
section are, in general,Booleandecompositions. This is because, by
construction, the functionsD andQ (orG andH) share their support
variables; whilesupp(D) contains only the variables above the cut,
supp(Q)� supp(F) becauseQ is derived fromF . That is, using the
terminology of [15], the resulting bidecomposition may be weak. If the
minimization ofQ removes all variables insupp(D) from supp(Q),
leading to disjoint supports ofD andQ, the resulting decomposition
is algebraic. In this case, our generalized dominator reduces to a 1- or
0-dominator of Karplus [19], discussed in Section II-C. The same ar-
gument applies to the disjunctive decomposition,F = G+H .

In contrast to quasi-algebraic methods of [16], our method can find
decomposition for the variable order not necessarily consistent with
the partitioning of variables into setsX; Y; Z. Consider, for example,
functionF = (ab + c)(ad + e). This decomposition can be readily
obtained with our method. The algorithm of [16] can find this decom-
position only when variablea separates the sets(b; c) and(d; e) in the
variable order. However, the best variable order,(a; b; c; d; e), which
gives the BDD of minimum size (eight nodes), violates this condition,
making it impossible to obtain this decomposition.

Finally, we should comment on the minimization of the BDD with
don’t cares which is an essential part of our decomposition procedures

(refer to proofs of Lemma 1 and 2). This problem has been shown to be
NP-complete [23], [24], and only a few heuristics are available today to
solve it. The exact method described in [24] can only be used for small
functions. We use the heuristics based on the RESTRICT operator of
Coudert and Madre [25].

C. Identifying Useful Cuts

The number of possible cuts that should be examined in the search
for an optimalAND/OR decomposition can be prohibitively large even
for a moderately sized BDD. Therefore, a mechanism to reduce the
number of candidate cuts has been developed, rendering some cuts in-
valid or redundant.

It can be shown that only cuts which contain at least one leaf edge
e 2 � can lead to nontrivial Boolean decomposition [26]. We refer
to them asvalid cuts. All terminal edges of a generalized dominator
generated from other cuts are free; when redirected to 1 (0), they create
trivial Boolean divisors(D = 1), or trivial disjunctive Boolean terms
(H = 0). To further limit the number of cuts, they can be grouped into
equivalence classes as follows.

Definition 8 (Equivalent cuts): Two cuts are0-equivalentif they
contain the same set of�0 edges. Similarly, two cuts are1-equivalent
if they contain the same set of�1 edges.

Theorem 4: All Boolean divisors of a conjunctive decomposition,
obtained from 0-equivalent cuts, are identical. Similarly, all Boolean
terms of a disjunctive decomposition, obtained from 1-equivalent cuts,
are identical.

Proof: Consider two 0-equivalent cuts. In each of the Boolean
divisors generated by those cuts, edgese 2 �0 are connected to 0; all
other edges are connected to 1. Hence, both Boolean divisors have the
same set of 1-paths�1 (onset) and the same 0-paths�0 (offset). Hence,
they are identical. Similar argument applies to 1-equivalent cuts.

Fig. 6(a) shows a BDD with several possible cuts. Cuts 2 and 3 are
0-equivalent, hence they lead to identical Boolean divisors, as illus-
trated in Fig. 6(b) and (c). Additional properties, such astransitive cut
property[26], can further reduce the number of valid cuts to be consid-
ered. In our approach we limit our attention tohorizontal cuts. While
it is obvious that nonhorizontal cuts can help identify other useful de-
compositions, possibly leading to better results, the inclusion of those
cuts would significantly increase the computational complexity. In the
worst case, the total number of horizontal cuts isjV j, whereV is the
number of variables (levels of a BDD). In practice, the total number of
valid horizontal cuts is much smaller because many cuts are either 1-
or 0-equivalent.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 871

Fig. 6. (a) Various cuts on a BDD. (b), (c) Equivalent cuts.

D. XOR Decomposition

The BDD decomposition based on generalized dominators, de-
scribed in the previous section, relies on the leaf edges,�. While
BDDs of random logicAND/OR-intensive functions tend to have many
� edges,XOR-intensive and arithmetic functions have very few or no
� edges. It is apparent that the decomposition which relies on� edges
will fail on a BDD with few� edges.

This section addresses this issue by developing the techniques tar-
getingXOR-type decomposition on a BDD. We observed that anXOR

decomposition is associated with the presence ofcomplement edges
(c-edges) in the BDD. For this reason, we use a BDD representation
with c-edges to detect such decompositions. Recall that in order to
maintain canonicity, only the negative edges can be complemented.
They will be represented in this paper as dotted edges with a bubble. In
the sequel, we will useXNOR (�) instead ofXOR, as it is more straight-
forward to develop.

We shall first consider analgebraic XNOR decomposition,
F = G�H , with disjoint supports ofG andH . Let functionF be
represented by a BDD with complement edges. We define anx-domi-
nator in such a BDD to help identify an algebraicXOR decomposition.

Definition 9 (x-Dominator): Nodev 2 V which is contained in
every pathp 2 � is called anx-dominator.

The definition ofx-dominatorimplies that there must exist at least
one complement edge above it; otherwise, all the BDD nodes abovev

will collapse intov.
Theorem 5: Let v be anx-dominator in the BDD of Boolean func-

tion F . The BDD of F can be algebraically decomposed asF =

G�H , whereG is a BDD rooted atv; BDD of H is obtained from
F by redirecting the regular edges pointing to nodev to terminal 1 and
the complement edges pointing to nodev to terminal 0.

Proof: Fig. 7(a) shows a generic BDD with anx-dominatorv.
The BDD ofG rooted atv is copied with negative polarity (G) so that
the complement edges pointing toG can be transformed into negative
edges pointing toG, as shown in Fig. 7(b). The BDD ofF can now be
represented as a disjunction of two parts, one withG replaced by node
0, and the other withG replaced by node 0, as shown in Fig. 7(c). Note
thatG andG are 1-dominators in their respective BDDs. By definingH

to be a Boolean function derived fromF by redirecting all the edges
pointing toG to node 1, and all the edges pointing toG to 0, as in
Fig. 7(c), functionF can be represented asF = G�H+G�H = G�H .

Fig. 7. AlgebraicXNOR decomposition based onx-dominator.

Fig. 8. Anx-dominatorleading to algebraicXNOR decomposition,F = (x+
y)�(�u + �r + q).

Notice that 1-paths ofF that pass through nodev1 are alwayscom-
plementarywith respect to (w.r.t.) those passing through nodev2, hence
the portions of BDD above the two nodes areH andH, respectively.

Example 5: Fig. 8(a) shows a BDD with c-edges for Boolean func-
tion F = f(�u + �r + q)(x + y) + ur�q�x�yg. An x-dominator can be
identified at nodev (variablex); the function rooted atv isG = x+y.
By expressing the c-edge coming intov as a negative edge, the BDD
can be represented as a BDD with regular edges in Fig. 8(b). Here node
v is split intov1, associated withG = x + y, and nodev2, associated
with G = �x�y. In this BDD all 1-paths pass either through nodev1 or
through nodev2. Therefore,F = (x+ y)�(�u+ �r+ q), see Fig. 8(c).

872 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

Fig. 9. BooleanXNOR decomposition of functionrnd4-1, F = (x �x)�(x (x + x x)).

The algebraicXOR decomposition defined here is essentially iden-
tical to that of [21].

We shall now considerBooleanXNOR decomposition,F = G�H ,
with no constraints imposed on the supports ofG andH . While func-
tion F may not have an algebraicXOR decomposition, it has many
BooleanXOR decompositions, as expressed by the following theorem.

Theorem 6: For a Boolean functionF and an arbitrary Boolean
functionG, there always exists a Boolean functionH , such thatF =
G�H .

Proof: The proof is based on the Boolean transformation:F =
G� (G�F) = G�H , whereG is an arbitrary Boolean function, and
H = G�F .

This theorem points out that a BooleanXOR decomposition is not
unique, in fact it has infinitely many decompositions, each associated
with an arbitrary Boolean functionG. While exhaustive search for all
combinations ofG;H that minimizeF is clearly prohibitive, a set of
good candidates forG can be detected directly from the BDD by iden-
tifying a generalized x-dominator, defined below.

Definition 10 (Generalizedx-dominator): Nodev 2 V which is
pointed to by at least one complement and one regular (positive or neg-
ative) edge is called thegeneralizedx-dominator.

Once a generalized x-dominatorG is identified in the BDD,
H = G�F is computed using a standard apply operator from a BDD
package.

Example 6: Fig. 9(a) shows the BDD for circuit rnd4–1 from the
MCNC benchmark suite. There are two generalized x-dominators,
namelyx1, andx4. We illustrate anXNOR decomposition based onx1.
First we createG = x1�x4, as a function rooted atx1; see Fig. 9(b).
The BDD ofH is derived fromG andF by computingH = G�F ,
as shown in Fig. 9(b). We show it also without the c-edges in Fig. 9(c)
to point out that it exposes a 1-dominatorx3, so it can be further
algebraically decomposed asH = x2(x3 + x1x4). This results in the
final decomposition:F = (x1�x4)�(x2(x3 + x1x4)).

E. Mux Decomposition

Each node of a BDD can be viewed as a multiplexor (MUX), leading
to asimple MUX decomposition. Such a decomposition can be gener-
alized to a more effectivefunctional MUX decomposition, where the
control signal is a function, instead of a single input variable. Such a
decomposition often leads to concise multilevel implementations.

Theorem 7: Consider a BDD structure, in which two nodes,u andv,
cover all pathsp 2 �. The BDD can then be decomposed asF = hf+
�hg, wheref andg are functions rooted at nodesu andv, respectively,
andh is obtained from the BDD ofF by redirecting nodeu to 1, and
nodev to 0.

Proof: The proof is similar to that of Theorem 5; see Fig. 10.
Example 7: Fig. 11 shows an example of a functionalMUX decom-

position forF = (zw + �z �w)�x + (z �w + �zw)x, shown in Fig. 1(b).

Fig. 10. FunctionalMUX decomposition:F = hf + �hg.

Fig. 11. Example of functionalMUX decomposition:F = g�x + �gy, where
g = zw + �z �w.

Two “articulation” nodes,x andy, of this BDD cover all pathsp 2 �.
Subsequently, the function can be represented asF = g�x+ �gy, where
g = zw + �z �w serves as a control signal for theMUX.

We should recall that Theorem 7 applies only to BDDs without com-
plement edges aboveu and v. One should note the resemblance of
the functionalMUX decomposition with the functional decomposition
of Ashenhurst (cf. Section II-C). Specifically, theMUX decomposition
with a single control function is identical to a simple disjoint decom-
position of Ashenhurst with column multiplicity of two; in general, the
column multiplicity corresponds to the number of the “articulation”
nodes (u; v) in Theorem 7, as illustrated by the above example.

IV. BDS SYSTEM—IMPLEMENTATION

This section briefly reviews the implementation of a complete logic
optimization system, BDS. In order to handle arbitrarily large circuits it
operates in thepartitionedBoolean network environment. The details
of the initial implementation of the system are presented in [26] and
[27].

A. Synthesis Flow

BDS adopts a general synthesis flow of SIS, as shown in Fig. 12.
The similarity between BDS and SIS is obvious. The fundamental dif-
ference between the two systems is in the way they represent Boolean

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 873

Fig. 12. Synthesis flows of SIS and BDS.

nodes and carry out the individual optimization procedures. SIS works
on an algebraic representation of the entire Boolean network, iteratively
factoring out algebraic expressions and performing node collapsing and
logic simplification. BDS first partitions the network into a set of nodes,
represents each as alocal BDD, and then performs BDD decompo-
sition. All the subsequent procedures are carried out on local BDDs,
using the decomposition algorithms especially tailored for BDDs.

The first step in the employed synthesis flow is the removal of initial
redundancy from the Boolean network using procedure sweep. While
there is no real logic optimization involved in this procedure, it plays
an important role in preparing the network for a subsequent decom-
position. In addition to removing constant and single-variable nodes,
all functionally equivalent nodes are also identified and removed from
the Boolean network. Removal of functionally duplicated nodes at this
initial stage significantly improves runtime complexity ofBDSover
traditional approaches.

B. Network Partitioning By Node Elimination

Applying logic optimization to the entire Boolean network using
global BDD representation may not be practical for large designs. On
the other hand, applying logic optimization to a completelylocal rep-
resentation may not work either, as it may leave a significant amount
of redundancy in the network. A reasonable tradeoff can be achieved
by partially collapsing the Boolean network into a set ofsupernodes.
Each supernode can then be represented as a local BDD and synthe-
sized. Partial collapsing is critical to a logic synthesis system; it helps
to remove logic redundancy, caused, for example, by localreconver-
gence, often present in a multilevel network.

Partial collapsing can be implemented with a help of theeliminate

procedure, which attempts to maintain the right granularity of the
Boolean network. A properly designedeliminate scheme provides a
good starting point for logic optimization algorithms. Two approaches
have been proposed in the literature for theeliminate procedure using
BDDs. The first one is based onprogressive elimination[28], where

BDDs are constructed from primary inputs to primary outputs. At any
point, if the size of a BDD is larger than a predefined fixed threshold,
an intermediate variable is introduced. This approach, however,
ignores a specific structure of the Boolean network. As a result, the
elimination often stops at boundaries which are not natural for a given
logic network; this approach may also cause memory explosion. The
second approach is based oniterative elimination[29] and is quite
similar to theeliminate procedure of SIS [2].BDSadopts a similar
approach, except that it uses the number of BDD nodes as the cost
function to guide the elimination, instead of the literal count.

In practice, a straightforward implementation of theeliminate pro-
cedure is complicated by the BDD variable reordering. When local
BDDs are constructed for a Boolean network, an intermediate variable
is created for each Boolean node. Therefore, in addition to all primary
inputs, a BDD manager also contains all intermediate variables. The
number of such variables could be very large even for a medium-sized
circuit, and reordering a BDD manager with all the variables will se-
verely degrade the overall runtime performance. Furthermore, the re-
moval of one node from the Boolean network corresponds to the demise
of one variable in the BDD manager; such a variable becomesunused.
After several iterations and the removal of many Boolean nodes the
BDD manager contains a large number of unused variables. It has been
found that in the entire ISCAS benchmark set about 63% of variables in
the BDD manager become unused just after first iteration. Obviously,
performing variable reordering in a BDD manager with such a large
number of unused variables is highly inefficient. In our system, instead
of reordering the BDD manager with all the variables, a new BDD man-
ager, containing only theusedvariables, is initialized. Each BDD is
then transferred into the new BDD manager using our proprietary bd-
dPool mechanism, described in [27]. During this process, variables are
substituted according to a mapping functionM, which maps the vari-
ables from the old BDD manager onto the new one. When all BDDs
are reconstructed in the new BDD manager, a set of BDDs which are
isomorphic to the original ones, but much more compact in the range of
indexes, is obtained. This process is referred to as aBDD mapping[27].
Thanks to an efficient implementation of BDD mapping oureliminate

874 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

Fig. 13. Sharing extraction on the factoring trees: (a) original BDD, (b) factoring trees after BDD decomposition, and (c) factoring trees after sharing extraction
(^ = XOR; @ = XNOR; dotted oval= complemented gate).

Fig. 14. Decomposition and extraction sharing on the factoring trees ofg andh.

procedure is on average 85 times faster than that of [29]. The runtime
advantage ofBDSbecomes even more pronounced for larger circuits.

C. The BDD Decomposition Engine

In our system, a BDD is first subjected to a variable reordering [30].
This serves as a means to achieve an initial logic simplification, a good
starting point for further logic decomposition. The decomposition of
the ordered BDD consists of two major parts: 1) aniterative BDD
decomposition, where a large BDD is recursively decomposed into
smaller parts, and 2) a construction and processing of thefactoring
trees. Factoring trees are constructed along with the BDD decompo-
sition as a means to record the result of the decomposition.

The iterative BDD decomposition is a search process for the most ef-
ficient decomposition. The BDD dominators, introduced in Section III
are empirically ordered in terms of the resulting decomposition effi-
ciency as follows: 1) simple dominators (1-, 0- andx-dominator); 2)
functionalMUX; 3) generalized dominator; and 4) generalizedx-dom-
inator. If all searches fail, the BDD is decomposed using a simple co-
factor (simpleMUX) w.r.t. a top variable in the BDD. In practice, this
last step is rarely reached; it is kept to ensure that the BDD will still be
decomposed when all other attempts fail.

A BDD decomposition process begins with the BDD structural scan
in which the structural information of a BDD needed to guide the var-
ious decomposition types is obtained. The result of BDD decompo-
sition for each output is stored in afactoring tree. Subsequently,logic
sharingbetween different factoring trees is detected to further optimize
the synthesis results. For this purpose, BDDs are constructed for all
factoring trees in a bottom-up fashion, and the canonicity property of a
BDD is used to identify functionally equivalent subtrees. Fig. 13 shows
an example of sharing extraction for circuitb1.blif from the MCNC
benchmark set.

Example 8: Consider a two-output function,fg; hg, with global
BDD representations shown in Fig. 14(a). The BDDs are decomposed

independently of each other, one usingx-dominator and the other using
functionalMUX decomposition. The factoring trees are constructed for
each function, resulting in the structure shown in Fig. 14(b). Finally, the
logic shared between the two factoring trees is extracted and shared in
the final network, as shown in Fig. 14(c).

Finally, we should comment on difference between our approach to
the the decomposition of multiple-output functions and the one based
on EVBDDs, described in [14]. An EVBDD-based method requires
that all outputs share the same bound set to be decomposable. Our ap-
proach, which decomposed each output independently, offers freedom
to select each “bound set” individually, potentially leading to better re-
sults.

V. EXPERIMENTAL RESULTS

The experiments have been conducted on a Pentium-III/500 ma-
chine running Linux. They cover all nontrivial combinational circuits
from the MCNC benchmark set. The test circuits were divided into
two groups: 1)AND/OR-intensive (random logic) functions, and 2)
XOR-intensive, arithmetic functions. All the circuits were synthesized
by both BDS and by SIS usingscript.rugged[2] and mapped onto
mcnc.genlib. Both a tree-based mapper of SIS and a mapper based on
Boolean matching,ceres[31], were used in the experiment.

The results for small and medium size circuits, which can be
modeled as a global BDD, were presented and analyzed in [32]. For
AND/OR-intensive (random logic) circuits, BDS uses on average 4%
fewer gates but requires 5% more area than SIS. At the same time,
BDS outperforms SIS by 37% in CPU time for this class of circuits.
The slight increase in area is due to the higher cost ofXOR gates
assigned by the mapper. For the class of arithmetic functions and
XOR-intensive logic, BDS outperforms SIS in all aspects: the number
of literals (on average by 40%), gate count (by 23%), gate area (by
14%), and CPU time (by 84%). A tree-based SIS mapper was used

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002 875

TABLE I
COMPARISONBETWEEN BDS AND SIS

TABLE II
RESULTS OFBDS AND SISFOR LARGE ARITHMETIC CIRCUITS

in this experiment sincecereswas not stable on this set of circuits.
As a result only 33% ofXORs were preserved by the mapper. As
demonstrated in [32], the performance of BDS in terms of the number
of gates compares favorably with the technique of Tsaiet al. [33],
developed specifically for arithmetic functions.

Table I summarizes a set of larger experimental results from the
LGSynth91test case suite, showing the circuit delay and memory usage
by both systems. The circuits were mapped by the SIS mapper. The gate
area of circuits synthesized by BDS is consistently larger than SIS, in
this set by about 11% on average. The delay is on average 6% smaller
than that of SIS. The amount of memory required by BDS is on average
82% lower. In terms of the CPU performance, BDS demonstrates sig-
nificant advantage over SIS; on average it is more than eight times faster
on this set of circuits. The results for two test cases,daluandvda, merit
additional explanation; they are inferior to SIS both in circuit area and
delay. This can be explained by the fact that BDS does not perform node
simplification with local and satisfiability don’t cares derived from the
network, as it is done infull simplifyof SIS. A specialized BDD-based
Boolean network optimization with don’t cares would be a desirable
feature in order to improve these results.

To prove the potential of BDS to optimize large circuits, where net-
work partitioning into local BDDs is necessary, we tested our system
on a set of arithmetic circuits generated by a proprietary HDL-to-blif
translator. The results are shown in Table II. On average, BDS is over

100 times faster than SIS. The overall runtime complexity of BDS is
significantly lower than that of SIS.

Notice that circuit area synthesized withBDSis only slightly (on av-
erage 3%) larger than that obtained with SIS. There are two reasons
for that. First, sinceBDShas a capability to performXOR andMUX de-
compositions, theXOR and MUX structures are representedexplicitly
in the factoring trees and in the finalblif files. However, only a small
fraction ofXORs andMUXs are actually mapped toXOR andMUX gates;
this is a known weakness of the tree-based technology mapper of SIS
used in our experiment. Secondly, currently BDS does not have the
capability to performsatisfiability don’t careminimization. If the re-
dundancy cannot be removed by theeliminate eliminate procedure, it
will most likely remain in the final synthesized circuit.

All the results produced by BDS, except for C6288, were indepen-
dently verified w.r.t. the original specification by our internal verifier
(BDS with option-verify) and by SIS. Since both tools build global
BDDs to perform verification, they could not verify the C6288 mul-
tiplier. However, since we verify each step of the elimination process
(when building local BDDs) we believe the result to be correct too.

VI. CONCLUSION

The experimental results show that BDD-based logic optimization is
a promising alternative to the existing logic optimization approaches. In

876 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 7, JULY 2002

particular, it offers a superior runtime advantage over traditional logic
synthesis techniques based on algebraic transformations. It can also be
useful as a tool for fast and reliable estimation of logic optimization.
An up-to-date version of the BDS software can be downloaded from
[34].

The capability of current BDD-based methodology can be further
enhanced by incorporating the following future work.

1) While BDS offers great runtime improvement, especially for
arithmetic circuits, it cannot successfully compete in terms of
gate area with highly tuned and perfected algebraic methods for
random logic circuits. BDD-based logic minimization with sat-
isfiability don’t cares, similar tofull-simplify of SIS, should be
developed to improve the area performance of BDS.

2) The minimization of BDDs with don’t care nodes (Section III-B)
remains an open and difficult problem requiring more research.
Improving this procedure could significantly improve the results.

3) One of the current weaknesses of BDS is its inability to properly
balance the factoring tree, which is crucial for the delay mini-
mization. This can be overcome by selecting, among several can-
didate dominators, the ones closest to the middle of the tree. This
requires further tuning of the cost function.

4) Recently, we found that BDS is also amenable to FPGA syn-
thesis. In-depth analysis of the underlying algorithms for BDD
decomposition should be performed to fully understand the
reason for its applicability to FPGAs. Very encouraging initial
results, showing over 30% improvement in the LUT count, have
already been obtained [35].

5) The common logic extraction performed on the factored trees
is currently limited to completely specified functions of the tree
nodes. The caching technique recently proposed in [17] can be
readily used used to remedy this problem.

Compared with the state-of-the-art logic synthesis methodology,
which has evolved from continuous research and development during
the past 20 years, the presented BDD-based logic optimization
technique is very young and much less mature. Extensive research
must be performed to make this approach a truly successful synthesis
method. We hope that this work will initiate a new round of research
in logic synthesis area in the years to come.

ACKNOWLEDGMENT

The authors are indebted to A. Mishchenko for illuminating discus-
sions on the BDD-based logic decomposition methods and for his help
in providing a reliable methodology to verify the synthesis results. They
would also like to thank the reviewers for providing insightful com-
ments about the paper.

REFERENCES

[1] R. K. Brayton, G. D. Hachtel, and A. Sangiovanni-Vincentelli, “Multi-
level logic synthesis,”Proc. IEEE, pp. 264–300, Feb 1990.

[2] E. Sentovichet al., “SIS: A System for Sequential Circuit Synthesis,”
ERL, Dept. EECS, Univ. California, Berkeley, UCB/ERL M92/41, 1992.

[3] C. Y. Lee, “Representation of switching circuits by binary decision pro-
grams,”Bell System Techn. J., vol. 38, no. 4, pp. 985–999, June 1959.

[4] S. B. Akers, “Functional testing with binary decision diagrams,” in
Eighth Annual Conf. Fault-Tolerant Computing, 1978, pp. 75–82.

[5] R. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Computers, vol. 35, pp. 677–691, Aug. 1986.

[6] K. Brace, R. Rudell, and R. Bryant, “Efficient implementation of a BDD
package,” inProc. Design Automation Conf., 1990, pp. 40–45.

[7] R. L. Ashenhurst, “The decomposition of switching functions,” inProc.
Int. Symp. Theory of Switching, vol. XXIX, Ann. Computation Lab. Har-
vard Univ., Cambridge, MA, 1959, pp. 74–116.

[8] H. A. Curtis, A New Approach to the Design of Switching Cir-
cuits. Boston, MA: D. Van Nostrand, 1962.

[9] J. P. Roth and R. M. Karp, “Minimization over boolean graphs,”IBM J.
Res. Dev., pp. 227–238, Apr. 1962.

[10] Y-T. Lai, M. Pedram, and S. Vrudhula, “Bdd based decomposition of
logic for functions with applications to FPGA synthesis,” inProc. De-
sign Automation Conf., 1993, pp. 642–647.

[11] T. Sasao,FPGA Design by Generalized Functional Decomposition, in
Logic Synthesis and Optimization. Boston, MA: Kluwer, 1993.

[12] Y.-T. Lai, K.-R. Pan, and M. Pedram, “OBDD-based function decompo-
sition: Algorithms and implementattion,”IEEE Trans. Computer-Aided
Design, vol. 15, pp. 977–990, Aug. 1996.

[13] S.-C. Chang, M. Marek-Sadowska, and T. Hwang, “Technology map-
ping for TLI FPGA’s based on decomposition of binary decision dia-
grams,”IEEE Trans. Computer-Aided Design, vol. 15, pp. 1226–1235,
Oct. 1996.

[14] Y.-T. Lai, M. Pedram, and S. Vrudhula, “Evbdd-based algorithms for
integer linear programming, spectracl transformation, and function
decomposition,” IEEE Trans. Computer-Aided Design, vol. 8, pp.
959–974, Aug. 1994.

[15] D. Bochman, F. Dresig, and B. Steinbach, “A new decomposition
method for multilevel circuit design,” inProc. Eur. DAC, 1991, pp.
374–377.

[16] T. Stanion and C. Sechen, “Quasialgebraic decomposition of switching
functions,” inAdvanced Res. VLSI, 1995.

[17] A. Mishchenko, B. Steinbach, and M. Perkowski, “An algorithm for
bi-decomposition of logic functions,” inProc. Design Automation Conf.,
2001, pp. 103–108.

[18] C. Files and M. Perkowski, “New multi-valued functional decomposi-
tion algorithms based on MDD’s,”IEEE Trans. Computer-Aided De-
sign, vol. 19, pp. 1081–1086, Sept. 2000.

[19] K. Karplus, “Using if-then-else DAG’s for multi-level logic minimiza-
tion,” Univ. California, Santa Cruz, UCSC-CRL-88-29, 1988.

[20] V. Bertacco and M. Damiani, “The disjunctive decomposition of logic
functions,” inIEEE Int. Conf. Computer-Aided Design, 1997, pp. 78–82.

[21] T. Stanion and C. Sechen, “Boolean division and factorization using bi-
nary decision diagrams,”IEEE Trans. Computer-Aided Design, vol. 13,
pp. 1179–1184, Sept. 1994.

[22] G. D. Hachtel and F. Somenzi,Logic Synthesis and Verification Algo-
rithms. Boston, MA: Kluwer, 1996.

[23] M. Sauerhoff and I. Wegener, “On the complexity of minimizing the
OBDD size for incompletely specified functions,”IEEE Trans. Com-
puter-Aided Design, vol. 15, pp. 1435–1437, Nov. 1996.

[24] A. L. Oliveira, L. Carloni, T. Villa, and A. L. Sangiovanni-Vincentelli,
“Exact minimization of binary decision diagrams using implicit tech-
niques,”IEEE Trans. Computers, vol. 47, pp. 1282–1296, Nov. 1998.

[25] O. Coudert and J. C. Madre, “A unified framework for the formal veri-
fication of sequential circuits,” inProc. ICCAD, 1990, pp. 126–129.

[26] C. Yang and M. Ciesielski, “BDS: BDD-Based logic optimization
system,” Dept. Electrical and Computer Engineering, Univ. Massachu-
setts Amherst, TR-CSE-00-01, 2000.

[27] , “BDS: A BDD-based logic optimization system,” inProc. Design
Automation Conf., 2000, pp. 92–97.

[28] P. Buch, A. Narayan, R. Newton, and A. Sangiovanni-Vincentelli, “On
synthesizing pass transistor logic,” inIntl. Workshop Logic Synthesis,
1997.

[29] R. Chaudhry, T. Liu, A. Aziz, and J. Burns, “Area-oriented synthesis
for pass-transistor logic,” inInt. Conf. Computer Design, 1998, pp.
160–167.

[30] R. Rudell, “Dynamic variable ordering for ordered binary decision dia-
grams,” inIEEE Int. Conf. Computer-Aided Design, 1993, pp. 42–47.

[31] F. Mailhot and G. D. Micheli, “Algorithms for technology mapping
based on binary decision diagrams and on boolean operations,”IEEE
Trans. Computer-Aided Design, vol. 12, pp. 599–620, May 1993.

[32] C. Yang, V. Singhal, and M. Ciesielski, “BDD decomposition for
efficient logic synthesis,” inInt. Conf. Computer Design, 1999, pp.
626–631.

[33] C. Tsai and M. Marek-Sadowska, “Multilevel logic synthesis for arith-
metic functions,” inProc. Design Automation Conf., 1996, pp. 242–247.

[34] BDS system [Online]. Available: http://www.ecs.umass.edu/ece/labs/vl-
sicad/ciesielski.html

[35] N. Vemuri, “BDD-Based logic synthesis for LUT-based FPGA’s,”
Masters, Dept. Electrical Computer Engineering, Univ. Massachusetts
Amherst, 2001.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

