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1 Introduction 

1.1 A Research Agenda: Functional Biomimesis 
 
Animals execute locomotor behaviors and more with ease. They have evolved these 
breath-taking abilities over millions of years. Cheetahs can run, dolphins can swim and 
flies can fly like no artificial technology can. It is often argued that if human technology 
could mimic nature, then biological-like performance would follow. Unfortunately, the 
blind copying or mimicking of a part of nature [Ritzmann et al., 2000] does not often lead 
to the best design for a variety of reasons [Vogel, 1998]. Evolution works on the "just 
good enough" principle. Optimal designs are not the necessary end product of evolution. 
Multiple satisfactory solutions can result in similar performances. Animals do bring to 
our attention amazing designs, but these designs carry with them the baggage of their 
history. Moreover, natural design is constrained by factors that may have no relationship 
to human engineered designs. Animals must be able to grow over time, but still function 
along the way. Finally, animals are complex and their parts serve multiple functions, not 
simply the one we happen to examine.  In short, in their daunting complexity and 
integrated function, understanding animal behaviors remains as intractable as their 
capabilities are tantalizing. 
 
"Functional biomimesis" describes a design methodology embraced within our 
Computational Neuromechanics Project (CNM) [Koditschek, 1999] inspired by, but not 
slavishly yoked to, biological example. The trick in deriving practicable engineering 
design from biological understanding is to develop analogies at the appropriate level of 
abstraction. Biological materials are vastly different from any available to current 
engineering practice. Biological constraints on computation and signal processing are 
quite distinct from those facing contemporary control engineers. But the problems of 
performing work upon a dynamical environment are common, and even the simplest 
animals are masters at the kind of multi-functional capabilities yet absent from the 
horizon of contemporary robotics. These considerations have focused our attention on the 
mechanical end of the animal behavioral spectrum where the biology is most constrained 
by the physical world. By this approach, the engineering benefit should be maximized 
with the result of high performance machines. At the same time, we anticipate a 
substantial benefit to pure science arising from the ability to leverage necessary 
conditions resulting from these physical constraints. 

1.2  Functional Biomimesis at Work: the RHex Robot 



 
RHex, our recently prototyped autonomous hexapod robot [Buehler, Saranli and 
Koditschek, 2000], depicted in Figure 1, represents a significant success for functional 
biomimesis. Weighing 7 kg and roughly the size of a shoebox (about 50 cm x 30 cm), 
this machine aims toward autonomous function in the rubble and debris caused by 
disasters such as earthquakes, fires and bombings. Despite its distinctly unnatural 
appearance and apparent kinematic simplicity, RHex is designed to mimic certain 
functions exhibited by sprawled posture, many-legged runners such as the cockroach 
species Blaberus discoidalis. 
 
[Place Figure 1 Approximately Here] 
 
Decades of accumulating evidence from biomechanics suggest that running animals – 
whether bipeds, quadrupeds, hexapods, or myriapods – perform work on their center of 
mass so as to exhibit the dynamics of a pogo stick in the sagittal plane [Full and Farley, 
1999]. Their muscles are tuned and postures are selected so as to engage the ground in a 
compliant manner and bounce from stride to stride. Along with this general strategy, 
cockroaches and other sprawled posture animals – arguably among most the successful 
runners  – combine an apparent commitment to compliant operation in the horizontal 
plane, simplifying significantly problems of pitch and yaw stabilization. Inspired by the 
cockroach example, we have designed RHex as a sprawled posture mechanism with 
passively compliant legs.  
 
Recent studies [Kubow et al., 1999] underscore dramatically the previously reported 
[Delcomyn, 1985] evidence for highly stereotyped cockroach limb motion, quantifying 
the very few degrees of freedom actually used in steady state running (notwithstanding 
the potential for complex high dimensional motions afforded by these animals’ many 
muscle groups and joints). Since the power densities of commercial electro-mechanical 
actuators are so limited, RHex borrows from considerations of biological function on this 
count as well replacing all but one degree of freedom per leg with a fixed (compliant) 
shape, locating just one actuator, a 20 W brushless DC servo motor at each of the 
machine’s six “hips.” 
 
Accumulating empirical evidence confirms that the functional aspects of fast cockroach 
locomotion we have identified above do indeed appear to confer a high level of 
performance, morphological and even kinematic details notwithstanding. In a recently 
reported set of experiments [Buehler, Saranli and Koditschek, 2000], RHex negotiates 
widely varied and dramatically adversarial terrain at speeds exceeding one body length 
per second. Moreover, initial runs over a force platform bear out the presumption that 
RHex’s controller may be tuned so that leg coordination patterns supporting center of 
mass trajectories indistinguishable from a pogo stick in the sagittal plane [Full et al., 
2000] result. 

1.3 From Work to Tasks: Coordination Control as Phase 
Regulation 

 



In running insects, the leg patterns that support the pogo stick template take the form of 
an alternating tripod gait wherein the first and third ipsi-lateral legs move in phase with 
the contralateral middle leg, all three anti-phase to the opposite tripod. In this fashion, a 
tripod acts as a virtual single leg, and the tripod pair is coordinated in the manner of a 
virtual biped [Full and Tu, 1990]. The simplest biologically plausible model of how the 
cockroach generates the alternating tripod running gait takes the form of a “CPG” 
hypothesis wherein the legs simply track a properly shaped feedforward periodic 
reference signal. In fact, animals do in general match this model with the very regular 
stereotyped pattern of their steady state limb motions. They tend to have the shortest 
swing period possible and as speed increases swing period changes little and stance 
period decreases. In this view of the animal’s coordination control, the pogo stick 
template [Full and Koditschek, 1999] emerges as an immediate mechanical response, or 
“preflex”, before any classical reflexes contribute [Loeb and Brown, 2000]. 
 
Naïve though it may seem, such a clock driven preflex-stabilized mechanism is exactly 
the coordination controller presently employed in RHex. As depicted in Figure 2, a two-
phase periodic signal describes the conceptual operation of a wheel borne on a single 
spoke. The two phases are determined by a speed profile (elaborated in Figure 6) 
intended to match the physical state of a leg. A slow speed phase corresponds to the 
contact (“retraction”) state of a leg during which it acts like the spoke of a wheel to 
propel the axle forward. The much faster phase corresponds to the recovery 
(“protraction”) state of a leg, during which the spoke must cover a much greater arc in a 
comparable amount of time as it swings around over the axle to return for its next 
contact. This idealized signal functions as a reference trajectory tracked by a 
proportional-derivative (PD) controller driving the hip motor at each leg. Leg 
coordination is simply imposed by delivering identical copies of the clock reference to 
the participating motors, respectively in the phase and anti-phase tripods, as depicted in 
Figure 2 (We defer to the discussion in Section 2.2.1 regarding oscillator models depicted 
in Figure 5: the explanation for the single and double circle icons used in Figure 2.) 
 
[Place Figure 2 Approximately here] 
 
Our initial performance studies of RHex [Buehler, Saranli and Koditschek, 2000] 
document that clock-driven preflex-stabilized coordination works quite well when in a 
steady state mode of operation. There is apparently significant “mechanical intelligence” 
exhibited by the variously coupled analogue computers that coordinate the intermittent 
application of ground reaction forces to the robot’s body by virtue of its clock excited leg 
spring compliance. Yet, however capable, this intelligence is surely very local in nature. 
It seems intuitively clear that some additional feedback from the leg to its controller and 
then on to its neighbors should confer substantial benefits in the face of significant 
perturbations, rapid maneuvers, and, in general, operation away from steady state. Of 
course, the imperatives of autonomous operation in highly unpredictable environments 
demand exactly this sort of general operational capability. Thus, the question arises as to 
how to build a “reflex” layer over the existing preflex controller that takes advantage of 
and extends the mechanical intelligence rather than fighting it. 
 



In the specific context of RHex’s laboratory development, this issue emerges most 
sharply as we take the first steps toward improving and effectively utilizing the robot's 
sensory suite. The current implementation does not afford any task level perception 
whatsoever. However, future versions will employ a broad array of sensors proposed to 
increase RHex’s energy efficiency and afford autonomous locomotion without a human 
operator. Clarifying the role of feedback and feedforward in simulation studies and RHex 
experiments will lead to the development of sufficient mathematical conditions for the 
stable coordination of dynamically effective gaits. Such formal results should stimulate 
novel refutable hypotheses for biology. 

1.4 Two Models for Comparing and Challenging Control 
Architectures 

 
At the present time a significant gap in our understanding of animal and machine 
locomotion surrounds the issue of sensor recruitment for coordination. As the central goal 
of the simulation study presented in this paper, we wish to understand controller 
capability along two architectural dimensions that appear to loom hugely for any complex 
system designed to perform work within and upon its environment. First, we seek to 
understand the manner and extent to which sensory data about the environment should be 
used to control actuators along an axis that might be termed "clock" vs. "reflex."  Second, 
along an axis that might be termed “central” vs. “peripheral,” we seek to understand the 
advantages and disadvantages of distributed coordination. The present paper explores the 
first of these axes in some depth, touching upon the second only in some speculative 
concluding remarks. 
 
To this end we introduce two simple mathematical models of locomotion that we have 
endowed, in simulation, with various coordination controllers. The first model, depicted 
in Figure 3, is a bipedal bead on a rail (BBR) and the second, depicted in Figure 4, is a 
bipedal spring loaded inverted pendulum (BSLIP) similar to a pogo stick, but with two 
alternating legs. 
 
[Place Figure 3 Approximately here] 
 
The BBR model consists of a bead on a rail pulled by springy legs whose toes are 
alternatively fixed (“retraction” phase) or allowed to slide freely (“protraction” phase) on 
parallel rails. The mechanism propels its “body” directly through the work of its 
alternating leg springs when they are fixed to the parallel “ground” rails as we detail 
mathematically in the appendix. The only losses occur due to friction between the bead 
and the rail. This simple (essentially one degree of freedom) model eliminates the issues 
of posture, and almost all other extraneous degrees of freedom, focusing, thereby, on the 
role of coordination for the underlying task of moving around a body. In contrast, the 
BSLIP model consists of a mass affixed to two spring-loaded legs that may rotate around 
the mass. The mass is constrained to lie in the sagittal plane and is acted on by gravity. It 
is an extension of the spring loaded inverted pendulum model (SLIP) that has been 
proposed as a model for the motion of the center of mass of an animal (or robot) while 
running.  



 
[Place Figure 4 Approximately here] 
 
We will use the BBR model to illustrate comparisons - points of similarity and difference 
between various control architectures. We will use more realistic BSLIP model to 
illustrate challenges – aspects of the locomotion task that will defeat control architectures 
inadequately informed about the physical world.  
 
For both models, the ground reaction forces imparted to their bodies by their legs 
determine center of mass acceleration. In turn, the body’s twice-integrated position 
(together with a leg coordination strategy) determines the degree to which the leg springs 
are compressed while in retraction. The BBR model has only one body degree of 
freedom: fore-aft progress along the uniform rail. Hence, absolute position has no 
consequence. Since the exchange of body kinetic energy with leg spring potential energy 
does not play an important role in body translation, this model operates effectively in the 
quasi-static regime. In contrast, adding a vertical degree of freedom in the BSLIP model 
introduces the key interchange of kinetic and gravitational potential energy: in the BSLIP 
model, the body, operating in a true dynamical regime, can be tripped by poorly executed 
leg behaviors. A coordination controller for BSLIP must therefore work in harmony with 
a body stabilization controller, which is not the case for the BBR model. 

2 Review: General Models of Mechanism and 
Environment 

2.1 Mechanism: Design Along the Feedforward/Feedback and 
Centralized/Decentralized Axes of Control Architecture 

 
Two distinct schemes for coordination have generated significant discussion in the 
animal motion control literature. The first is coordination due to a central pattern 
generator (CPG) wherein the state of an actuator, independent of its environment, 
follows a pattern produced by some centralized, oscillatory mechanism. The second is 
reflex driven coordination wherein the state of an actuator is a function of its 
environment, which may include the surface of the ground or the states of other actuators. 
In the engineering control literature, these notions correspond roughly to feedforward or 
open loop and feedback or closed loop operation, referring to the flow of information 
between the animal or robot and its environment. 
 
The biological reality of pattern generators – units of identified neural tissue that exhibit 
fictive locomotion in isolation; excite true motor activity in more intact animals; but 
cannot sustain the oscillation upon further subdivision – has been established [Orlovsky, 
Deliagina and Grillner, 1999; Pearson, 1976]. Beginning with the seminal work of 
[Cohen, Holmes and Rand, 1981/82] and continuing through more elaborated refinements 
[Cohen, Rossignol and Grillner, 1988; Cohen et al., 1992; Kopell, 1995; Kopell, 2000], a 
flourishing applied mathematical literature has employed the language and methods of 
dynamical systems theory to model the nature of such feedforward motor control signals. 



In the robotics literature, purely feedforward driven control schemes have been examined 
by a small, but growing, community as well [Berkemeier and Desai, 1999; Swanson, 
Burridge and Koditschek, 1995; Ringrose, 1997; Komsuoglu and Koditschek, 2000]. 
 
In parallel, a long history of behavioral animal science has resulted in an equally large 
literature concerned with the role of reflexes in motor coordination. In his seminal 
analysis of insect leg coordination, Wilson [Wilson, 1966] proposed simple local rules 
capable of generating a great diversity of steady state insect gaits. Some of the most 
compelling recent work within this tradition is reported by Cruse [Cruse, 1990] 
respecting the disturbance recovery properties of stick insect locomotion. Cruse and his 
colleagues have discovered several mechanisms that, in a kinematic model of the stick 
insect, Obrimus asperrimus  [Cruse et al., 1998], reproduce the gaits and recovery 
characteristics exhibited by the animal. These models, emphasizing the role of reflex, 
represent a feedback-based approach to coordinated locomotion. Research by Beer and 
colleagues [Chiel, 1992] has successfully demonstrated that such reflex generated 
coordination mechanisms can elicit robust locomotion in hexapod robotic platforms 
operating in the quasi-static regime. 
 
Feedback coordination schemes not necessarily inspired by the natural world have, of 
course, been employed in robot control as well. For example, the “virtual model 
controllers” of Pratt and colleagues [Pratt, Dilworth and Pratt, 1997] impose joint torques 
on their walking machines’ limbs in such a fashion that the center of mass exhibits the 
compliance of some desired quasi-static template – typically, an overdamped spring. The 
juggling machines built by the last author and his former students [Buehler, Koditschek 
and Kindlmann, 1994; Rizzi, Whitcomb and Koditschek, 1992; Rizzi and Koditschek, 
1996] constitute another such class of purely reflex controlled robots.  In the work on 
juggling, there is an explicitly dynamical (one degree of freedom) template – a mass 
bouncing on an active vertical post – designed to self-excite stable periodic motion at a 
prescribed recurrent height. A different one degree of freedom dynamical template, the 
hanging pendulum, is used in [Nakanishi, Fukuda and Koditschek, 2000] to elicit stable 
locomotion in a brachiating robot, again by self-excitation to a prescribed total (i.e., 
kinetic plus potential) energy. 
 
The design axis we call centralized versus decentralized is less well understood and we 
only comment on it briefly, leaving further exploration as future work. On one hand, 
decentralization of control may be a matter of implementation convenience and on the 
other, a matter of computational necessity. The reflex control model for the stick insect, 
proposed in [Cruse, 1990], is completely decentralized, for example. There is no central 
processing unit that collects the state of the constituent limbs and redirects their actuation 
relative to some global prescription. Individual actuators are allowed very limited 
information concerning the state of their neighbors and the body’s coordinated gait 
emerges from their mutual interaction via the body and ground. In contrast, the reflex 
schemes described in the previous paragraph presume the availability of a global view of 
limb and body state that can be accessed freely by the constituent actuators in making 
their contribution toward the global reference template. This same distinction between 
centralized and decentralized architectures can be made in the context of purely 



feedforward control schemes. For example, RHex’s feedforward controller presents a 
completely centralized architecture, as clearly depicted in Figure 2. In contrast, lamprey 
locomotion models of the kind championed by Cohen and colleagues [Cohen et al., 1992] 
have the form of coupled peripheral pattern generators. Recent research [Cohen and 
Boothe, 2000; Lewis et al., 2000] suggests that similar completely local feedforward 
coordination can yield robust legged robot locomotion in the quasi-static regime. The 
challenge is to understand whether and how such an approach might be used more 
generally – for example, in the dynamical regime.  
 
In this paper we concentrate on the feedback/feedforward axis, developing a framework 
for thinking about coordination control that permits an integration of the two extremes in 
both the robotics and the animal motion control literature. We will do so by re-
interpreting the reflex model in a form that promotes its incorporation within the more 
traditional mathematical framework of coupled oscillators.  

2.2 Environment: Phase Regulation Mechanisms for Dynamical 
vs. Quasi-static Tasks 

2.2.1 Oscillatory Systems that Perform Work Can Only Regulate 
Phase by Adjusting Energy 

 
We depict in Figure 5 two oscillator models commonly encountered in the literature on 
biological motor control but whose crucial differences represent a significant obstacle to 
the kind of unified perspective we hope to form. A mass whose position (length l in the 
figure) describes a periodic function of time may be considered an oscillator possessed of 
a “phase” variable that measures the percentage a given cycle has completed relative to 
some agreed upon fixed reference such as its point of maximal extension along the line. 
Continuous signals cannot be both periodic and non-reversing (i.e., exhibiting 
nonnegative speed) unless they lie on a circle. This motivates the terminology “clock,” as 
suggested by the icons appearing in the right hand column of the figure. Quasi-static 
models are characterized by masses whose velocities can be altered directly by applied 
forces as depicted in Figure 5(a). First order systems (i.e., their state is one dimensional), 
cannot be made to oscillate unless some regulatory switch is used to mediate the reversal 
of applied force as a function of extension relative to some reference lengths (that we 
simply denote by l+ and l- for now).  The resulting hybrid (i.e. mixed continuous and 
discrete state) system exhibits immediately an exactly periodic oscillation. Such models 
yield intrinsically stable clocks that may be instantaneously reset and which are tuned by 
position variables, the reference lengths, l+ or l-.  
 
[Place Figure 5 Approximately here] 
 
In contrast, models suitable for studying mechanical work have state defined by their 
velocities as well as the positions of their masses. Applied forces alter the acceleration of 
the body and, hence, can only affect position via a cumulative integrated effect.  In the 
presence of positive stiffness potential forces such as the Hooke’s law spring depicted in 
Figure 5(b), such systems oscillate with an intrinsically (neutrally) stable phase velocity 



determined by their energy level. When they perform work upon a lossy environment (as 
in this study: recall that the leg springs of the BBR and BSLIP models are subject to 
viscous damping) then their energy gradually leaks out and the phase velocity decays to 
zero – effectively stopping the clock. There is no other way to maintain a lossy 
mechanical oscillator other than by pumping in energy, for example, as depicted here, by 
tuning the potential energy stiffness, k, or by adjusting the reference lengths l+ and/or l-. 
However, because phase results from the integrated effects of these energy changes, the 
resulting lag can destabilize the clock if the regulatory policy is not carefully applied. 

2.2.2 Example: The Reflex as a Quasi-static Mechanism for Feedback 
Based Phase Regulation  

 
A major objective of this paper is to recast a class of reflex models introduced by Cruse 
and colleagues [Cruse, 1990] in a form amenable to regulating the exchange of total 
energy rather than merely prescribing kinematic relationships between limb positions and 
velocities. In Cruse’s model, each leg alternates between protraction (swinging the leg 
forward) to an anterior extreme position (AEP) and retraction to a posterior extreme 
position (PEP). Each leg receives a combination of signals, which we describe in more 
detail in the next section, from certain neighboring legs, which alters the PEP of the leg. 
Changing PEP effectively changes the period of the leg, synchronizing it in or out of 
phase with its neighboring legs. For example, in one mechanism, a leg in protraction 
signals the next rostral, ipsilateral leg to decrease its PEP thus causing the receiving leg 
to retract further. The combination of mechanisms operating in parallel according to an 
experimentally observed connection scheme, results in a decentralized controller model. 
 
Beer and his group [Chiel et al., 1992] have successfully used three of Cruse’s 
mechanisms to control the gait of a hexapod robot operating in the quasi-static regime. 
Furthermore, Beer and Calvitti [Calvitti and Beer, 1999] have begun to show analytically 
how these mechanisms might operate in a model that is, roughly speaking, a logical 
abstraction of the kinematics presented by our BBR model. In particular, they examine a 
two-leg arrangement wherein one leg (the master) influences the other (the slave) via one 
of the three mechanisms. There is no reciprocal coupling. The legs are not attached to a 
body nor do they ever touch the ground, providing no means of mechanical, or 
environmental, coupling.  
 
The authors are able to prove that each mechanism results in a neutrally stable, attracting 
region of phase relationships centered near 180° out of phase. That is, any phase 
relationship in a certain range is possible, phase relationships outside the range are 
pushed into the stable region, but no particular phase relationship within the stable range 
is preferred. Such neutral stability is consistent with the hypothesis in [Wilson 1966] that 
one gait may smoothly transfer to another, although other mechanisms may produce this 
behavior as well. It remains to analyze situations where legs are mutually coupled, 
coupled with more than one of the mechanisms Cruse describes, or where there are more 
than two legs. Furthermore, a model that includes the body of the insect coupled with its 
environment warrants analysis to relate the stability of body attitude and velocity to the 
stability of gait. 



2.2.3 Example: The CPG as a Dynamical Mechanism for Feedforward 
Based Phase Regulation 

 
For the purposes of this paper, a “CPG” is an internally generated periodic signal used to 
produce a motor reference trajectory that is tracked by the actuators of the robot. 
Coordination results in a manner similar to that of a conductor leading an orchestra.  In 
the control of RHex, we have chosen to realize this reference generator by passing a 
“clock” – a constant speed periodic signal source - through a monotone output function 
that “shapes” the commanded speed profile as depicted in the upper portion of Figure 5. 
The speed profile presently used in RHex is graphed in Figure 6 
 
[Place Figure 6 Approximately here] 
 
We model the clock as a harmonic oscillator, denoting its phase byφ . The CPG thus 
effectively introduces an additional state whose dynamics is governed by the differential 
equation  

cT
πφ 2=& , 

where the parameter cT  represents the period of the CPG, and the “shape” of the speed 
profile is set by adjusting such constants as those depicted in Figure 6 used in RHex.  
 
Notice that the period of the harmonic oscillator essentially corresponds with its energy. 
Thus, we must explicitly manipulate the parameter cT  in order to change the phase 
velocity of the clock. In other words, clocks effectively show up as first order (a single 
circle in the icon system introduced in Figure 5) oscillators in the study we report here. 
Although second order oscillators (e.g., Fitzhugh-Nagumo or other two dimensional 
nonlinear approximations to the Hodgkin-Huxley equations  [Holmes, 1997]) have been 
proposed as models of neural dynamics, we prefer to adopt the reasoning of Cohen, 
Holmes and Rand [Cohen, Holmes and Rand, 1981/81] and operate in the more neutral 
“phase coordinates” known to exist in the neighborhood of any limit cycle oscillator1.  
 
The CPG approach to control, avoiding any active measurements, is by its nature immune 
to sensor noise issue, which is a big advantage in practical implementations. On the other 
hand, steady state behavior depends very strongly on the environmental parameters, and 
therefore, external disturbances to the system cause the system to vary its steady state 
body speed wildly, thereby eliminating coordination between legs.  We have observed 
that the leg synchronization is maintained fairly well if the external changes are slow and 
do not drive the system into regions where no stable fixed operation exist. 
 
In summary, coordination via a CPG does not require sensory information to generate 
control signals but instead drives the underlying cyclic mechanism in a purely feed-
forward fashion. 



3 Simulation Study: Application of Reflex and CPG 
Control to Two Dynamical Models 

 
RHex is presently controlled via the centralized pattern generator depicted in Figure 2 
that provides no mechanism for incorporating body, leg, or ground state feedback. On the 
other hand, the feedback mechanisms discussed in Section 2.2.2 target the quasi-static 
regime of operation. In this section we use the “cartoon” BBR and BSLIP models to 
provide simulation evidence that the reflex coordination mechanism must indeed be 
reworked for successful operation in the dynamical regime. We then offer a modified 
representation of the reflex mechanism and simulation evidence suggesting that it works 
quite effectively in the dynamical regime. We also use the models to explore the 
feedback/feedforward axis of dynamical coordination control, presenting a means of 
interpolating between the two. 

3.1  The BBR and BSLIP Dynamical Models 
 
The BBR and BSLIP models are detailed mathematically in the appendix and it will 
suffice here merely to sketch the architecture of their dynamics and control blocks as in 
Figure 7.  Each leg periodically forces the body, defining second order mechanical 
oscillators2 - the double circles, according to the icon conventions established in Figure 5. 
The dynamics are hybrid continuous/discrete, discrete modes being defined by whether 
one, two, or no legs are touching the ground. Since that condition may be read off the pair 
of leg phase angles, the block labeled “body dynamics” may be correctly imagined as 
represented by an appropriate dynamical system on a torus (the cross product of two 
circular phases), as we have detailed in [Klavins, Ghrist and Koditschek, 2000]. 
Conceived of in this light, the job of the block labeled coordination controller is to 
regulate a pair of angles. 
 
[Place Figure 7 Approximately here] 
 
In the case of the BBR model, the coordination controller acts to regulate that pair of 
phase angles by prescribing the PEP for each leg, determining in this manner the next 
angle of leg liftoff.  In the case of the BSLIP model, each of the double circles should 
properly be repeated as in Figure 8 since there is a second degree of freedom (vertical as 
well as fore-aft or, equivalently, radial and angular) that must be coordinated as well. In 
the present study we have, following Raibert’s lead in the control of hopping robots 
[Raibert, 1984], employed a feedback controller whose radial and angular components 
are decoupled3. The radial degree of freedom is controlled according to a PD law that 
seeks to regulate height by adjusting the spring stiffness independently of the leg angle. 
The angular degree of freedom is controlled, by adjusting the touchdown angle 
(coincident with the liftoff angle magnitude at steady state). In our study, we connect the 
output of the coordination block to the BSLIP angular controller by interpreting PEP as a 
phase coordinate prescription from the former and as a liftoff angle prescription to the 
latter block. 
 



[Place Figure 8 Approximately here] 
 
Throughout the remainder of this section, we will report on the results of simulating the 
dynamical system depicted in Figures 7 and 8 with different coordination controllers 
substituted in the blocks marked “coordination control”. 

3.2 Dynamical Reflex Coordination Control  

3.2.1 Quasi-Static Reflexes Support “Walking” in the BBR Model 
 
We first apply a reflex coordination scheme similar to that described by Cruse and 
studied by Beer and Calvitti (see Section 2.2.2). Of the coupling mechanisms described 
by Cruse, three are considered to be at work in regulating gait. In each, the PEP of one 
leg (the receiver) is offset based on the state of the other leg (the sender) as described in 
Beer and Calvitti’s analysis of Cruse’s work [Calvitti and Beer, 2000]. In our model, each 
leg serves both as sender and receiver. In the first mechanism, the PEP of the receiving 
leg is decreased below its nominal value by some small amount 1α  when the sending leg 
is protracting, thereby delaying the start of protraction in the receiving leg. In the second 
mechanism, the PEP of the receiving leg is increased beyond its nominal value by a small 
amount 2α  when the sending leg is in retraction and its length is within some small 
distance of its AEP, thereby shortening the period of the receiving leg. In the third 
mechanism, the PEP of the receiving leg is increased from its nominal value gradually, 
throughout the retraction mode of the sending leg, by the value )(3 lAEP −α  where 3α  is 
a tunable parameter and l  is the length of the sending leg. 
 
As a kind of conceptual calibration to the previous literature – particularly the papers of 
Cruse and Beer mentioned above - we simulated the BBR model with each of the 
mechanisms in turn. With two-way coupling, we found, as did Calvitti and Beer in their 
model with one way coupling, neutrally stable gaits for each mechanism. In addition, we 
found that the forward velocity of the body was regulated to a steady state. We found the 
third mechanism to be the most aggressive and we present simulation data for it in Figure 
9(a). Note that the average velocity seems to stabilize after an initial acceleration and that 
the legs approach out of phase alternation but do not quite achieve it. 
 
[Place Figure 9 Approximately here] 

3.2.2 Quasi-Static Reflexes Do Not Support “Running” in the BSLIP 
Model 

 
We now replace the BBR model with the BSLIP and retain the reflex in the “coordination 
controller” block. It is not obvious that Cruse’s model of insect reflexes, concerned as it 
is with the behavior of decidedly quasi-static insect walking, should extend to the control 
of insect running. Specifically, because it does not address the exchange of potential and 
kinetic energy, that coordination mechanism must be supplemented with some additional 



scheme that can account for the second order dynamics of running captured by the BSLIP 
model.  
 
Initially, we attempted to supplement a Cruse style reflex mechanism with a Raibert style 
gait controller. This simulation coordinates the BSLIP legs by adjusting their liftoff 
length - the analog of PEP in this setting. Control of the remaining gait parameters 
(hopping height, forward velocity and duty factor) is accomplished using mechanisms 
similar to Raibert’s as discussed above. However, the domain of stability of this control 
scheme was quite small. Essentially, we found that changing the liftoff conditions 
interfered with the control of forward velocity and hopping height unless the 
synchronization gain, synck , was quite small, while a too-small synck  resulted in a lack of 
synchronization — meaning that at some point the mass hit the ground because neither 
leg was “ready” to touchdown. See the appendix for an explanation of synck . Examples of 
these behaviors are shown in Figures 10(a) and 10(b).  
 
[Place Figure 10 Approximately here] 

3.2.3 Dynamical Reflexes Use the Language of Coupled Oscillators 
 
The quasi-static view of the world presumes that forces effect change in position. This is 
a useful fiction when operating in a highly damped regime, or in the context of behaviors 
that do not entail the exchange of kinetic energy. To understand intuitively the 
importance of managing explicitly the exchange of total energy intrinsic to mechanical 
systems that perform work in demanding regimes, consider the following analogy. When 
driving a car, there is a delay between the control input and the position output of the 
system. The driver of the car experiences this delay, for example, when he or she steps on 
the brakes: the car does not stop immediately but rather decelerates, gradually coming to 
a stop.  
 
In this section we describe another, similar, coordination mechanism resulting from a 
formalization [Klavins, Koditschek and Ghrist, 2000] of our phase regulation algorithm 
for vertical juggling [Buehler, Koditschek and Kindlmann, 1994; Rizzi, Whitcomb and 
Koditschek, 1992] that presents (when viewed with the appropriate abstraction) an almost 
identical coordination problem to our present concern arising from locomotion. 
Implementation within the simple BBR and BSLIP models suggests that this 
representation of local reflexes is capable of imitating key properties of the Quasi-static 
style reflex coordination mechanisms introduced by Cruse, described above. Expressed 
within the traditional framework of coupled oscillators, it enjoys the added benefit of 
straightforward analysis via standard tools from dynamical systems theory. Moreover, as 
we will soon show, for this reason, it can be extended in a straightforward manner to 
handle the exigencies of the dynamical regime represented by our more complex BSLIP 
model. 
 
The method, summarized in Figure 11, is based on defining an artificial energy function, 
V, on the difference in the phases of the two legs. Specifically, if we let 1ϕ  and 2ϕ  be the 



phases of two legs, one suitable definition for V is )cos( 21 ϕϕ − . Minimizing the energy 
between the two phases via changing PEP in a suitable fashion requires that 1ϕ  and 2ϕ  
differ by π  – that is, that the two legs be exactly out of phase with each other. The 
resulting dynamics bears a strong resemblance to the provably stable system described in 
[Klavins, Koditschek and Ghrist, 2000]. We note that in our simulations we do not have 
direct access to the actual phase of a leg. Rather, we define an approximation to phase 
based on the length of the leg rather than on time. Unless the body moves backwards, this 
quantity increases monotonically with time and is an effective stand in for phase in the 
present application. 
 
[Place Figure 11 Approximately here] 
 
In simulation, the system regulates the forward velocity of the body to a steady state and 
regulates the legs to an alternating gait exactly 180° out of phase. The alternating gait 
appears to be stable.  
 
The energy function may be defined by )}cos(,max{ 21 ϕϕα −  for some numberα  
between –1 and 0, to simulate the third mechanism described by Cruse, and results in 
neutrally stable gaits centered around 180° out of phase. In Figure 9 we compare the 
return maps, obtained numerically, of the model with different energy functions and with 
Cruse’s third mechanism in place. We conclude that the phase-regulation method can 
mimic Cruse style coordination and provides and obvious way to specify gaits exactly by 
providing the appropriate energy function. 

3.2.4 Dynamical Reflexes Support “Running” in the BSLIP Model 
 
An alternative means of regulating the legs in this model is to use the fact that phase 
regulation is based on a continuous reference field which is obtained from the energy 
function V as in Figure 11. Thus, the legs may be synchronized at times other than liftoff 
events. Specifically, instead of changing PEP, which as we have shown substantially 
affects the motion of the body, we change the swing phase dynamics by modifying the 
stiffness of the hip springs, ik , to be )sin( jisyncnom kk θθ −−  – that is, a nominal stiffness 
modified by a gain times the negative gradient of the “pseudo-energy” function (See the 
appendix for an explanation of the gain ik ). Thus, we suppose that the leg angles 

correspond roughly to phase and use the fact that ik  controls the velocity of leg i during 
swing. Since we only change the speed of swing, we do not affect the underlying control, 
which affects the touchdown angle and the leg spring stiffness during decompression. 
Data from a typical run is shown in Figure 12. It is not obvious how such a coordination 
controller could have been constructed using the Cruse style reflex framework directly 
and in a natural way, although careful consideration of the effects of changing the liftoff 
length on the horizontal velocity may prove fruitful. We believe the proper route is to use 
the mechanisms described by Cruse as inspiration, but to work in the more informative 
language of coupled oscillators when designing controllers. 
 



[Place Figure 12 Approximately here] 

3.3 Exploring the Feedback/Feedforward Axis of Dynamical 
Coordination Control 

3.3.1 CPG Based Coordination Control 
 
We aim to develop a means of interpolation between pure feedforward and pure feedback 
coordination mechanisms. We have, just above, established a pure feedback mechanism 
that implements (Cruse inspired) leg angle corrections by means of phase velocity 
corrections (as described in Figure 11). To establish the desired correspondence with pure 
feedforward coordination, it is helpful to take the obverse step of reworking an absolute 
reference velocity based controller (inspired by the RHex coordination mechanism of 
Figure 2) into an absolute reference position based controller as follows. One can 
effectively realize the two-speed RHex velocity profile of Figure 6 by running a constant 
speed clock and issuing a “leg lift-off” command as its internal reference phase crosses a 
marker at pepφφ = . To coordinate two legs of an alternating gait, one places two markers, 

1pepφ and 2pepφ  on the circle which are 180o out of phase. 

 
As a feedforward mechanism, such a position-based clock has no better “idea” of the 
leg’s true state than it’s velocity reference generating equivalent of Figure 6. But the 
physical fact of whether or not the leg is in contact with the ground determines the 
physical consequences of the command.  For example, the leg lift-off command has a 
physical effect if it arrives while the leg is in retraction. That command can have no 
physical effect if the leg is already in protraction when it is received. This observation 
hopefully now makes it clear that notwithstanding the absence of an explicitly 
implemented sensory pathway from the leg’s mechanical oscillator back to the CPG, the 
following two relationships between actuation effect and phase difference provide a 
“hidden” mechanical feedback channel – the “preflexive” mechanism. First, the leg liftoff 
command may cause the leg to begin protracting at any point in retraction and thus alters 
the effective PEP length, and changes the leg cycle period. Second, the change in phase 
difference is a monotonic function of the difference between the periods of the leg and 
CPG. This mutual dependency causes the phase difference, sampled at AEP for example, 
to converge to a steady state constant value. We observe that the losses in the mechanical 
system and the above phase-actuation relationships are sufficient for asymptotic 
convergence to a steady state operating point. 
 
Applied to a single legged version of the BBR model, this feedforward controller would 
yield a system very similar to one analyzed formally in [Komsuoglu and Koditschek, 
2000] wherein sufficient conditions are given for the stability of a feedforward  “clock” 
controlled hopping gait. In that work, stabilization can be formally demonstrated to obtain 
via the implicit interaction of the mechanical oscillator with the clock – the “preflexive” 
mechanism intuitively described above. 4 Applied to the complete BBR model of interest 
here, the feedforward controlled two legged systems are best thought of as a pair of one-
way coupled oscillators -  one internal (the CPG) and one mechanical (the leg) -  as 



depicted in Figure 2,  corresponding to the setup in Figure 7 where the connection 
between the body dynamics block and the coordination controller (that block now 
occupied by the coordinated pair of reference marked clocks from Figure 6) has been 
severed. 
  
Our simulation study of the CPG mechanism applied to the BBR model suggests that 
feedforward coordination of a pair of preflex stabilized legs functions as effectively as a 
preflex stabilized single leg. 4 Each leg converges to its respective “synchronized” 
operating point, the transient effects of the other leg are rejected as essentially external 
disturbances, and the body converges to a steady velocity. At the steady state operation, 
the legs are 180o out of phase in accordance with the markers on the CPG, Figure 13(a). 
 
[Place Figure 13 Approximately here] 

3.3.2 Comparing CPG and Reflex Coordination of BBR 
 
Having related reflex and clock style coordination through the language of coupled 
oscillators, we are now in a position to compare their performance in various versions of 
our BBR and BSLIP model. Although a detailed comparison across many parameters of 
interest lies beyond the scope of the present paper, it is worth presenting one specific 
example of the questions that might now be addressed, both analytically as well as 
computationally.  
  
As might be expected, the CPG suffers serious limitations on the achievable gaits in an 
uncertain world. For a single legged version of BBR model, one can compute quite 
straightforwardly a CPG period that has a fixed operation point yielding a desired body 
velocity: choose a PEP leg length that does not yield net body speed change and integrate 
the differential equation over a complete leg cycle. This computation assumes there is at 
most one leg applying force to the body at any given time, hence, absent a “double 
stance” juncture, it applies as well to the full (two-legged) model provided that there is no 
double stance at the desired steady state. As this tuning procedure suggests, the CPG 
period cannot be chosen arbitrarily but rather needs to be in proper accord with such task 
parameters as the natural stiffness of the legs and rail width.  In support of this, our 
numerical studies, sampled in Figures 13(a) and 13(b), indicate that the resulting fixed 
operation may be stable or unstable depending on the period of the CPG relative to the 
natural period of the BBR model. In general, the feedforward CPG controller cannot 
dictate an oscillation that is faster than the legs are physically capable of realizing. The 
equivalent problem in RHex would occur if its CPG oscillated faster than its motors were 
capable of spinning: the legs would end up playing a never ending, possibly unstable, 
game of catch-up with the CPG. 
 
The previous intuitive arguments may be confirmed by direct simulation. Figure 14 
depicts the relation of the steady state response (forward velocity x*) of the BBR system 
with CPG control to the distance w from the rail to the outer guide-rails. The black 
regions indicate that there is no fixed point for the (w,x*) pair. Gray regions indicate that 
there is a fixed point that is unstable. And, finally, the white region is the stable fixed 



points. This figure exhibits the fixed-point dependence to the environmental settings in a 
feedforward control system.  In contrast, Figure 15, exhibiting the same relationship for 
the reflex coordinated BBR,  suggests the value of feedback as a hedge against 
environmental uncertainty.  In contrast to the previous case, we see that the model can 
operate successfully at every rail width, with no a priori information about what that 
parameter might be.  
 
[Place Figure 14 Approximately Here] 
 
[Place Figure 15 Approximately Here] 
. 

4 Conclusion: Stabilizing Feedback Pathways for 
Mechanical Locomotion 

 
RHex (Figure 1) functions quite ably in unusually demanding terrain on the strength of its 
“preflexes” alone. At present, RHex’s CPG (Figure 2) receives no information regarding 
the state of the actuators, the legs they move, the body that translates in consequence, nor 
the terrain that body visits. It seems clear that significant advantage can derive from 
feedback, but it is not yet clear how best to insert sensory information in the purely 
feedforward control scheme.  In this paper we have reported on work in progress 
addressing this question - the beginnings of a simulation study that promises to shed light 
on how to do so.    
 
Specifically, we have introduced two simple computer models of bipedal locomotion: 
one, the BBR model, where the exchange of potential and kinetic energy of the body does 
not significantly impact the locomotion task; and the other, the BSLIP model, where it 
matters a great deal. We have explored within these two contrasting examples the 
applicability and efficacy of two general paradigms of biological motor control: CPGs 
and reflexes. To carry out this exploration we have found it useful to modify the quasi-
static representation of reflex coordination originally proposed by Cruse, bringing it into 
correspondence with the traditional literature on coupled oscillators. Whereas the past 
representation succeeds in coordinating the BBR model, it leads to tripping and crashing 
in the BSLIP. The revised representation we introduce here affords a version of the reflex 
mechanism capable of coordinating the total energy as well as kinematic variables 
relevant to running.  
 
It would be most desirable to select from a spectrum of possible coordination models that 
introduce more or less sensory information at will. However, engineers will confidently 
deploy an appropriate combination of these general coordination mechanisms only when 
similarly general principles addressing the efficacy of such combinations have been 
developed. The daunting modeling and analysis task requisite to such general 
understanding is arguably best approached by initial appeal to “cartoon” instances 
developed that capture the essence of the problems, yet which are more amenable to 
formal inquiry. Such a formal inquiry is the target of our longer-term research effort in 
this area. 



 

Acknowledgements 
 

The Computational Neuromechanics Project is supported by DARPA/ONR under grant  
N00014-98-1-0747. The CNM Hexapod project is supported by DARPA/SPAWAR 
under contract N66001-00-C-8026. We thank Martin Buehler, Uluc Saranli, Phil Holmes, 
Devin Jindrich , and the other members of these projects for their shared insights and help 
with the specific questions addressed in this paper. We thank Art Kuo as well for a 
number of useful discussions bearing on the topics addressed.  
 

Appendix: Details of the Simulation Models 

The Bipedal Bead: A Simple Model 
 
This model consists of a point mass, constrained to lie on a rail, with two massless legs 
connecting the body to one of two parallel rails as in Figure 3. The legs act as springs and 
pull the body along the rail. A leg can be either protracting (swinging forward, not 
grasping an outer rail) or retracting (swinging backward, grasping the rail and, therefore, 
pulling the body). In protraction, the length of a leg is less than AEP and increasing. In 
retraction, the length of a leg is greater than PEP and decreasing. (Note that in this model 
AEP and PEP are not angles but instead are considered, equivalently, to be leg lengths.). 
 
A leg protracts until its length is greater than AEP, at which point it attaches to the rail 
and begins to retract. It retracts until its length is less than PEP, at which point it releases 
the rail and begins to protract again. The length of time between the beginning of the kth 
retraction and the (k+1)st retraction is called the period of the kth cycle. The length of the 
kth period is a function of the PEP of the leg and the velocity of the body at the 
beginning of the kth retraction. Thus, PEP is a natural candidate for a control input as it 
affects the period of leg, which is essential for gait regulation. 
 
We denote by },{ rpsi ∈  the discrete state of leg i  and by x  the position of the body. 

The symbols 1l  and 2l  denote the lengths of the legs, and 1,toex  and 2,toex  denote the 

positions of the toes of the legs. Finally, 1θ  and 2θ  denote the angles from the horizontal 
to leg one and leg two respectively. We assume that the body has a mass of one and that 
it is constrained in the plane to move along the line 0=y  and the toes along the lines 

wy −=  and wy =  respectively, where w  is the distance from the center rail to an 
outside rail. 
 
Let 0l , PEP , AEP , and exl  be constant parameters such that 
 

exlAEPPEPwl <<<<0 . 



 
The constant 0l  is the rest length of a leg in retraction. The constant exl  is the rest length 
of a leg in protraction. The constant PEP  is the nominal posterior extreme position of a 
leg. The actual posterior extreme position of leg i  is iPEP  — a value that can be used as 
a control input and which is constrained to lie between w  and AEP . The constant AEP  
is the anterior extreme position. If leg i  is protracting ( psi = ), then il  increases until it 

exceeds AEP  at which time it begins to retract, rsi = , until its length is less than PEP , 
at which point it begins to protract again. 
 
When a leg is in protraction, its movement does not affect the movement of the body. The 
leg simply extends and the toe glides along the rail away from the body. Since the legs 
are massless, we model a protracting leg as a first order spring: 
 

)(thenif exiproii llklps −−== &  
 
where prok  is a constant spring stiffness. When a leg is touching the ground, its 
movement and that of the body are coupled.  We have 
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and the length of leg i  is just a function of the position of the body:  
 

2
,
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Here, retk  is the spring stiffness and b  is a damping constant. 

The Bipedal SLIP: A More Complex Model 
 
The bipedal SLIP model of Figure 4, may be familiar in its resemblance to Raibert’s two-
legged hopping robot [Raibert, 1986]. However, with a view toward relevance to RHex, 
this model differs from Raibert’s hoppers in that the legs must circulate backwards and 
return above the body toward their next touchdown.  
 
Let (x,y) denote the position of the center of  mass of the BSLIP robot, which we assume 
to have a mass of one. Let 1θ and 2θ denote the angles of the two legs, which we assume 
to be essentially massless. The legs may not exceed a length of L. We denote by xtoe the 
horizontal position of the toe of the robot when it is in stance and by r, the distance 

||)0,(),(|| toexyx − . A leg can either be in stance or in swing mode. In stance, it is not 
controlled directly but instead a slave to the body dynamics. Thus, if leg i is in stance, 
then [ ]rxxtoei /)(sin 1 −= −θ . 
 



In flight, the dynamics of the center of mass are 
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and while in stance they are 
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Here U(r) is the spring potential law. For our simulations we chose U(r)=k/r3 where k is 
the stiffness of the spring, tunable online. In particular, we may change k during stance to 
adjust the amount of thrust supplied by the leg. The constant b determines the amount of 
damping in the spring and g is the gravitational constant. We assume that the masses of 
the legs are much less than the mass of the robot so that their velocities in swing are 
directly controllable: ii u=θ& . 
 
The discrete dynamics are as follows. The body’s dynamics are ballistic (A1) and both 
legs swing according to their control inputs until one of the legs touches down, which 
happens when )cos( iLy θ<  for some i. Then the dynamics of the body are given by (A2) 
and the leg that touched down becomes a slave to the body dynamics. The leg that is still 
swinging is still controllable. When the leg reaches maximal compression, when 0=r& , 
then the spring stiffness k may be adjusted. When the value of r exceeds L, the leg lifts 
off again and the cycle repeats. In the version of the synchronization controller where 
PEP can be altered, liftoff occurs when r exceeds PEP(t), a control input. 
 
Discussion of the details of the body control algorithm can be found in [Saranli, Schwind 
and Koditschek, 1999] Essentially, we choose the next touchdown angle to be some 
nominal value plus kv(v*-vprev) where kv is a gain, v* is the desired horizontal velocity 
during flight corresponding to the nominal touchdown andgle and vprev is the horizontal 
velocity during the last flight mode. Similarly, we choose the spring stiffness k to be 
some nominal value plus kh (h*-hprev) where h* is the vertical hopping height 
corresponding to the nominal value and hprev is the hopping height of the last flight mode. 
 
The leg control during swing is via an artificial spring. That is,  
 

)||/(||)( εθθθθθ +−−= itditdii k&  
 
where tdθ  is the desired touchdown angle of the leg and ik is a tunable gain. In the continuous 

control version of the synchronization problem, we have )(tk i as a control input, essentially 
affecting the velocity of the swing. 



Footnotes 

 

1 This models exactly the present day RHex architecture. From the view of biology, the 
approach can be justified as reflecting the (plausible) presumption that the settling time of 
the electrical-chemical energy components inherent in the more complex (second and 
higher order) models of the biological pattern generators should be much faster than 
those of the body mechanics. This first cut simplification significantly eases the 
translation of the Cruse reflex model into the language of coupled oscillators that we 
introduce in Section 3.2.3. That translation in place, a more physiologically sophisticated 
view of the biological pattern generator can be substituted in future studies as needed.  
 
2 To be precise, we simulate the legs using first order velocity dynamics when they are 
not in contact, modeling the common situation that they have negligible mass and 
encounter significant viscous damping.  Adding second leg flight dynamics would have a 
negligible effect on the qualitative outcome but add significantly to the complexity of the 
simulation. 
 
3 Even though the Raibert-style architecture decouples the two controller degrees of 
freedom, the body degrees of freedom are intrinsically coupled through the dynamics of a 
spring loaded inverted pendulum. If space and the reader’s patience allowed, we would 
substitute for each double circle in Figure 7 a copy of the block diagram itself to suggest 
the manner in which the Raibert controller cleverly coordinates the phases of the vertical 
and horizontal single leg degrees of freedom. 
 
4 We have conducted extensive simulations of the single legged bead on a rail, but have 
not thought the results worth reporting in the present paper since they are so reminiscent 
of the single vertical hopping leg studied in [Komsuoglu and Koditschek, 2000]. We 
believe but have not yet demonstrated that the stability proof for that case can be readily 
applied to the single legged bead on a rail as well. In the sense we have tried to depict in 
Figure 7, the single legged SLIP represents a parallel composition of this vertical hopping 
leg together with the single legged bead on a rail. The formal question of whether a CPG 
controller can stabilize this two degree of freedom composed mechanism (i.e., the single 
legged SLIP) is a matter of ongoing mathematical study.   
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Illustrations 

 

 

 
 
Figure 1: The RHex robot running at a body length (~50cm) per second over rough 
terrain. 
 
 

 

 

 
 

(a) (b) 
 

     
Figure 2: (a) Identical copies of the phase and anti-phase version of the two stroke clock 
signal are used as reference trajectories by decoupled PD controllers at each of the hip 
motors comprising the respective tripods. (b) A schematic top view of RHex showing in 
black the left tripod and in gray, the right tripod. 
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Figure 3: The Bipedal Bead on a Rail (BBR) model. (a) A bead is constrained to move 
on a rail (central horizontal line in the figure). The legs may grab the parallel outer rails 
to pull the body forward, which they do via their springs. Specifically, during protraction, 
a leg is not grasping the outer rail and is extending its spring well beyond its rest length. 
When it grasps the rail in retraction, the spring pulls the body toward the toe position, 
attempting to restore itself to the rest length. See the appendix for details of the BBR 
model. (b) A sequence showing the legs alternating between protraction and retraction. 
Open indicate the leg is not grasping the rail and closed indicate that it is. 
 



 
 

 

 
  

(a) (b) 
 
Figure 4: The Bipedal Spring Loaded Inverted Pendulum (BSLIP) model. (a) Two 
spring-loaded legs alternatively support the body and swing over the top of it. (b) A 
sequence showing the legs alternating in stance. Images 1 and 5 correspond to the 
touchdown of a leg, images 2 and 6 to maximal compression, and 3 and 7 to liftoff. 
Image 4 corresponds to the apex of the flight phase when both legs are in swing mode. 
 

 
 

Figure 5:  Two different types of oscillator with their corresponding equations and icons. 
(a) A First order system cannot oscillate without some switching controller. Because 
velocity is the control input to the system, we denote a first order oscillator by a single 
circle. (b) A second order oscillator has a phase mechanically determined by its energy. If 
it has damping, periodic control inputs (underscored in the figure by the discontinuities in 
the mass’s trajectory) are needed to reintroduce energy. Because the control input to the 
system is force, which only indirectly affects phase, we denote a second order oscillator 
by two circles. 
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(b) (c) 
 
 Figure 6: CPG control of RHex. (a) An animation sequence showing a full stride for the 
right tripod, shown in gray, of RHex. The counter motion of the left tripod is shown in 
black. (b) RHex’s “clock” — the periodic feedforward reference signal presently used to 
drive an alternating tripod gait. Between the angles AEPθ  and PEPθ  the leg is in stance or 
retraction. The rest of the time it is in swing, or protraction. (c) The speed profile for the 
two tripods. During retraction, the leg moves slowly. While in protraction, it moves 
quickly, sweeping out a greater angle in the same amount of time. 
 



 

 
 
Figure 7: Block diagram suggesting the dynamics of the BBR model introduced in 
Figure 3 (see the Appendix for mathematical details). Each leg consists of an angular 
degree of freedom that periodically forces the body upon making ground contact, 
yielding, at each touchdown a second order mechanical oscillator. The resulting hybrid 
body dynamics (i.e., the evolution of the 1 degree of freedom center of mass position and 
velocity) together with the leg states determine whether one, two, or no legs are in 
contact. The coordination mechanism is allowed to set the posterior extreme position, 
PEP, of a leg.  Reflex mechanisms adjust this input based on the state of the body and 
each leg; CPG mechanisms simply select the input in an unvaryingly periodic manner. 
 
 



 

 
 

Figure 8:  Block diagram suggesting the dynamics of the BSLIP model introduced in 
Figure 4 (see the Appendix for mathematical details). Each leg consists of a radial and an 
angular degree of freedom that periodically force the body upon making ground contact, 
yielding, each at touchdown a parallel composition of two second order mechanical 
oscillators. The resulting hybrid body dynamics (i.e., the evolution of the two degree of 
freedom center of mass position and velocity) together with the leg states determine 
whether one, two, or no legs are in contact. The coordination mechanism is allowed to set 
either the posterior extreme position, PEP, or the swing velocity of the leg.  Reflex 
mechanisms adjust this input based on the state of the body and each leg; clock 
mechanisms simply select the input in an unvaryingly periodic manner. 
 



 

 
 
 
 
Figure 9: Comparing the “return maps” generated by two styles of reflex coordination 
mechanism applied to the BBR model.  Each figure exhibits the same BBR “Poincare 
section” wherein the horizontal axis represents body velocity at the instant leg one 
touches down while the vertical axis represents the position of leg two at that same 
instant. The dots represent samples from several hundred runs, each run having initiated 
at a distinct different state and sampled forward in time until steady state (depicted by a 
darker dot) is achieved. (a) Quasi-static style reflex coordination achieves a neutrally 
stable region (in dark dots). (b) Coupled Oscillators style reflex coordination stabilizes at 
an exact, alternating gait – in other words, the stable region is a point. (c) The Coupled 
Oscillators style reflex coordination mechanism with a saturated energy function 
reproduces the effect in (a). 
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Figure 10: Two characteristic failure modes of the Quasi-static style reflex control 
mechanism applied to the BSLIP model. (a) Using a higher synchronization gain and low 
swing velocity. The faltering trajectory of the center of mass height and the increasingly 
uncoordinated leg angles are plotted as functions of center of mass horizontal position. 
(b) Using a lower synchronization gain and higher swing velocity. The phase difference 
between the two legs, plotted as a function of time (solid line), fluctuates with increasing 
magnitude as each leg “waits” a longer time to touchdown (because the swing velocity is 
set high) until, eventually, the body falls to the ground. Compare this to the neutrally 
stable phase difference trajectory (dashed line) resulting from the Coupled Oscillator 
style reflex control mechanism.   



 

 
 

(a) 

0

2

4

6

phase 1

0

2

4

6

phase 2

-1

-0.5

0

0.5

1

Energy

0

2

4

6

phase 1

 
0 p 2p

phase of
leg one

0

p

2p

phase of
leg two

 
(b) (c) 

 
Figure 11: The Coupled Oscillator style reflex coordination mechanism results from 
correcting a measured pair of phase velocities at a measured pair of phases toward a 
desired pair at that measured phase. The desired pair of phase velocities is specified by a 
reference phase dynamical system constructed as follows. (a) The set of phase angle pairs 
(the “cross product” of two cyclic phase spaces) is a torus. The task of cycling out of 
phase is encoded as a circle embedded in the torus along with a desired instantaneous 
phase velocity for each point along the circle. (b) A “pseudo-energy” function 

)cos(),( 2121 ϕϕϕϕ −=V  yields a reference field derived by taking the gradient 
(directional derivative) at each phase pair. The desired phase difference cycle lies along 
the “low energy trough.” (c) The reference field ),(),( 212121 ϕϕϕϕ VkkR ∇−=  derived 
from V. The legs are driven (at a rate proportional by constant 2k to the gradient 
magnitude) out of phase down onto the “trough” along which the phase velocities are 
pulled at the constant rate 1k .  
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Figure 12: A simulation of the Coupled Oscillator style reflex coordination mechanism 
applied to the BSLIP model using the “pseudo-energy” function described in Figure 11. 
After an initial transient period, the system settles down into an alternating gait and the 
characteristic body motion of a spring loaded inverted pendulum. See Figure 10(a) for an 
explanation of the axes. 
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Figure 13: Simulations of the BBR model using a CPG for coordination as described in 
the text. The horizontal axis is time, the vertical axis contains the body’s forward velocity 
and the positions of the two legs. (a) The CPG period is tuned to the natural frequency of 
the system as defined by the stiffness of the leg springs. Notice that the gait and the 
forward velocity stabilize. (b) The CPG is too fast: the legs cannot realize the signals it 
sends, resulting in an undesired, “limping” gait. 
 



 
 
Figure 14: The relationship between the steady state behavior of the CPG coordinated 
BBR model and the environment into which it operates.  The abscissarepresents the 
steady state velocity of the body, *x& ,sampled at the AEP event of a specified leg. The 
ordinate represents the distance, w, from the central rail to the outer guide-rails. The 
black regions indicate that there is no fixed point for the (w,x*) pair. Gray regions 
indicate that there is a fixed point that is unstable. And, finally, the white region 
represents the stable fixed points.  
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Figure 15: The function relating steady state behavior of the Reflex coordinated BBR 
model to the environment into which it operates.  The abscissa and ordinate are the 
reverse from Figure 14. As expected, feedback confers significant robustness against 
environmental variation: there is a unique asymptotically stable body velocity for each 
environmental condition. 


