
Fault-Tolerant Quantum Computation With Constant Error

D. Aharonov”

Abstract

In the past year many developments have taken place
in the area of quantum error corrections. Recently Shor
showed how to perform fault tolerant quantum computa-

tion when, ~, the probability for a fault in one time step

per qubit or per gate, is polylogarithmically small. This
paper closes the gap and shows how to perform fault
tolerant quantum computation when the error proba-

bility, q, is smaller than some constant threshold, q..
The cost is polylogarithmic in time and space, and no
measurements are used during the quantum computa-
tion. The same result is shown also for quantum cir-
cuits which operate on nearest neighbors only.

To achieve this noise resistance, we use concatenated
quantum error correcting codes. The scheme presented
is general, and works with any quantum code, that sat-

isfies certain restm”ctions, namely that it is a “proper
quantum code”. The constant threshold r10 is a func-
tion of the parameters of the specifc proper code used.

We present two explicit classes of proper quantum
codes. The first class generalizes classical secret shar-
ing with polynomials. The codes are defined over a

field with p elements, which means that the elemen-
tary quantum particle is not a qubit but a “qupit”. The
second class uses a known class of quantum codes and
converts it to a proper code.

We estimate the threshold qO to be = 10-6. Hope-
fully, this paper motivates a search for proper quantum

codes with higher thresholds, at which point quantum
computation becomes practical.

1 Introduction

Quantum computation[ll, 10, 31] is believed to be
more powerful than classical computation, due to or-
acle results[26, 6] and Shor’s algorithm [24]. It is yet
unclear whether and how quantum computers will be

*Institutes of Physics and Computer science, The Hebrew
University, Jerusalem, Israel, Email: doria@cs.huji.ac.il

thstit,ute of Computer science, The Hebrew university,
Jerusalem, Israel, E-mail: benor@cs.huji.ac.il

M. Ben-Ort

physically realizable,[20, 12, 8] but as any physical sys-
tem, they in principle will be subjected to noise, such

aa decoherence[30, 29, 21], and inaccuracies. With-
out error corrections, the effect of noise can accumu-
late and ruin the entire computation[29, 7], hence the

computation must be protected. Even the simpler
question of protecting quantum information is harder
than the classical analog because one must also pro-
tect the quantum correlations between the quantum

bits (qubits). However, it was shown [4, 28] that good
quantum error correcting codes exist, a result which
was followed by many explicit examples(ex: [22, 19]).
This does not trivially imply the existence of noise resis-
tant quantum computation, since due to computation
the faults propagate. One must be able to compute
without allowing the errors to propagate too much. Re-

cently Shor[23] showed how to use quant urn codes in
order to perform fault tolerant quantum computation
when the noise rate, or the fault probability each time
step, per qubit or gate, is polylogarithmically small. In
this paper we improve this result and show how to per-
form fault tolerant quantum computation in the pres-

ence of constant noise rate, which is what one might
expect in a real physical system. The cost is polyloga-
rithmic cost in time and size.

The error corrections which have been described so
far use a combination of classical and quantum opera-
tions. We would like to define a model of noisy quan-
tum computational], such that errors and error correc-

tions can be described entirely inside this model. In
this paper we are able to prove the main result due to
working in such a formal framework. Sequential quan-
tum computation can not be noise resistant [1], so we
work with quantum circuits[lO, 31]. As the state of a

noisy quantum system is in general a probability distri-

bution over pure states, i.e. a mixed state[16], and not
merely a pure state as in the standard model, we use
quantum circuits with mixed states[3]. Since noise is a
dynamic process which depends on time, the circuit will
be divided to levels, or time steps. Unlike Yao[31] we
allow qubits to be input and output at different times

to the circuit. This is crucial, since with the restriction
that all qubits are initialized at time O, it is not possi-

176

ble to compute fault tolerantly without an exponential
blowup in the size of the circuit [2]. Between the time
steps, we add the noise process, which is a probabilis-

tic process: each qubit or gate undergoes a fault with
independent probability q per step, and ~ is referred to
as the noise rate. The list of times and places where
faults had occurred, namely the ~atdt path, is random,
and naturally, the function that the circuit computes
is a weighted average over the noise process.

Let us first describe how one can protect quantum

information against noise, using quantum error correct-
ing codes[4, 28]. As in classical linear block codes, a
quantum error correcting code spreads the state of each

qubit on a number of qubits, called a “block”. The code
is said to correct d errors if the whole state is recov-
erable given that not more than d errors occurred in
each block. The difference from classical codes is that

the quantum correlations should be recovered as well,
and not only the logical states of the qubits. It turns
out that applying classical error corrections in one ba-
sis of the Quantum space can correct the logical states,
while applying classical error corrections in some other

basis corresponds to corrections of the quantum corre-
lations.

In order to protect a quantum computation against

faults, one can try to compute on encoded states, and
not on the states themselves, using quantum codes.
The circuit Ml which will compute on encoded states
is defined as a simulation of the original circuit &f..
A qubit in the original circuit transforms to a block

of qubits in the simulating circuit, and each time step
transforms to a working period of several time steps.
To simulate the computation done in the t’th time step
in &f., we will apply in Ml the analog computation,

on encoded states. Each gate in MO will transform to
some “procedure” in Ml, which computes this gate on

encoded states. The procedure might require ancilla
qubits, so these are added to the circuit Ml, and are
initialized only when needed. If A41 is initialized with
some encoded state, we expect this state to evolve by
the computation along some “trajectory”, such that
at the end of each working period it encodes the cor-
rect corresponding state of M.. The input and output

to Ml will simply be a duplication of the inputs and

outputs of MO, on the corresponding blocks. We will
therefore need to add on each block, before compu-
tation begins, an input procedure, that transforms the
duplicated input, i.e a string of O’s or a string of l’s, to
the encoding state ISO >, or lS1 >. At the end of the
computation we will need the opposite transformation,
so we will use an output procedure that transforms a
block in the state [SO > or ISI > back to a string of O’s

or 1’s.

Computing on encoded quantum states does not au-
tomatically provide protection against faults, since er-
rors accumulate, and when the damage has effected too

many qubits in one block, the correct state is no longer
recoverable. In order to prevent accumulation of errors,
error corrections should be applied all the time, and so
in each working period in Ml we will add a step of error
corrections of each block. The working period will be
divided to two stages: a computation stage and a cor-
rection stage. The idea is therefore to apply alternately
computation stages and correction stages, hoping that
during the computation stage the damage that accu-

mulated is still small enough so that the corrections
are still able to correct it. One should notice, however,
that this “hope” does not always come true. During the

computation faults can spread to places not in the fault
path. This can happen if a gate operates on a damaged
qubit and some “correct” qubits- in general, this can
cause all the qubits that participate in the gate to be
damaged. If for example, a gate procedure consists of
one gate operating on the whole block, then even one
fault can cause an uncorrectable error. The procedures
should be designed in such a way that a fault can not
effect all the qubits in the block. In general, a fault
in qubit q at time t can effect qubit q’ at time t’> t

if there is a path in the circuit connecting the points

(q, t) and (q’, t’).Define the “spread” of a procedure

as the maximal number of qubits in each block in the
output of the procedure, which are effected by a fault
that happened in this procedure. If we use only proce-
dures with small spread, the error corrections will still
be able to correct the damage using the undamaged
qubits, provided that not too many errors happened
during the computation stage in each procedure. We
are actually looking for a pair consisting of a quantum

code which can correct d errors, and a corresponding
universal set of gates, such that their procedures, with

respect to the code, allow one fault to spread to at most
d qubits. Since the error corrections, input, and output
procedures are also subjected to faults, we need them
to have small spread too. Such codes, with the corre-

sponding universal set of gates, will be called quantum
computation codes.

We now want to show that the reliability of the sim-
ulating circuit is larger than that of the original circuit.
In the original circuit, the occurrence of one fault may

cause the computation to fail. In contrast, the simu-
lating circuit can tolerate a number of errors, say k, in
each procedure, since they are immediately corrected
in the following stage. The effective noise rate of Ml
is thus a function of the probability for more than k

errors in a procedure, and it will be smaller than the

actual noise rate q, if the procedures are not too large.

177

However, it seems that an improvement from a con-

stant noise rate to polynomially small effective noise
rate, as we need for fault tolerance, is hard to achieve

in the above scheme. In [23] Shor shows how to ap-

ply the above scheme to achieve fault tolerance with
polylogarithmically small noise rate, q.

To improve this result, we use concatenated simula-
tions, which generalizes the works of Tsirelson [9] and

Gac’s [14] to the quantum case. The idea is that the
effective noise rate of the simulating circuit can be de-

creased by simulating it again, and so on for several
levels. It will suffice that each level of simulation im-
proves only slightly the effective noise rate, since the

improvement is exponential in the number of levels.
Such a small improvement can be achieved when using
a code of constant block size, if the noise rate is smaller
than some constant threshold qO.

The picture is hierarchical: Each qubit in the origi-
nal circuit transforms to a block of qubits in the next
level, and they in their turn transform to a block of
blocks in the second simulation and so on. A gate in
the original circuit transforms to a procedure in the

next level, which transforms to a larger procedure con-
taining smaller procedures in the next level and so

on. The final circuit computes in all the levels: The
largest procedures, computing on the largest (highest

level) blocks, correspond to operations on qubits in the
original circuit. The smaller procedures, operating on
smaller blocks, correspond to computation in lower lev-
els. Note, that each level simulates the error corrections

in the previous level, and adds error corrections in the
current level. The final circuit, thus, includes error
corrections of all the levels, where during the computa-
tion of error corrections of larger blocks smaller blocks
of lower levels are being corrected. The lower the level,

the more often error corrections of this level are ap-
plied, which is in correspondence with the fact that

smaller blocks are more likely to be quickly damaged.

We are interested in how far the state of the noisy
final circuit is, from the correct one. Naturally, due
to the hierarchical structure of this scheme, we define
the metric recursively: A block in the lowest level is
said to be close to it’s correct state if it does not have
too many errors, and a higher level block is “close”
to it’s correct state if it does not cent ain too many
blocks of the previous level which are far from their

correct state. If the state is close to the correct state
in this metric, we say that the set of errors is sparse.
Which set of faults does not cause the state to be too
far from correct in the above metric? The answer is
recursive too: A computation of the lowest level pro-
cedure is said to be undamaged if not too many faults

occurred in it. Computation of higher level procedures

are not damaged if they do not contain too many lower

level procedures which are damaged. A fault path will
be called spar-se, if the computations of all the highest

level procedures are not damaged. A major portion of

the effort in this paper is applied to showing that if
the set of faults is sparse enough, the distance of the
state from the correct state, in the above metric, is
kept bounded. It will be rather easy to show that the
probability for the set of faults not to be sparse decays
exponentially with the number of levels. In order to

show that, we use the fact that the places where errors
occur are random. The result holds also in a more gen-
eral noise model, in which for all integers k and for any
set of k points, the probability that a fault occured in
all the points is bounded by qk, and an adversary can
pick a transformation that operates on all the damaged

qubits together.

Not any quantum computation code can be used in
the above scheme. There are two restrictions:(1) When
applying the simulation, we replace the gates by fault
tolerant procedures. Since we want to simulate the new

circuit as well, we need that these procedures use gates
that can be replaced by fault tolerant procedures as
well. Hence the universal set of gates associated with

the code, must have fault tolerant procedures which
use gates from the same universal set of gates. This is
the “closeness” restriction. (2) Let us consider a two

level simulation. If a simulated error correction oper-
ates on an encoded wrong word, it clearly corrects it.

But what happens if it gets as an input some state
which does not encode any word? The simulated error

correction “understands” only encoded words. If we de-
mand that error correction in the lower level corrects
any state to some word in the code, then the input for
the error correction of the upper level might be wrong
but it will be an encoded word] so it can be under-
stood and corrected by the upper level. The second

restriction is therefore that the error correction takes
any state to some word in the code. Quantum compu-
tation codes which satisfy both restrictions are called
proper quantum computation codes.

We describe two classes of proper quantum compu-
tation codes, with constant block size. We first describe

a generalization of the quantum codes in [4], to codes
over FP, with p prime, These codes are defined for gen-
eral quantum circuits which consist of particles with
p ~ 2 possible states. We call such quantum particles
qupits, as a generalization to qubits. The proofs that
these are quantum codes [4] transform smoothly from

F2 to FP. The first example of proper codes is with

p = 2. In this example the set of gates and proce-
dures described in [23] is used, modified to fit the defi-

nition of proper quantum codes. For the second class of

178

proper codes, we recall the result in [25], showing that

a quantum error correction exists if and only if the en-
vironment gains no information about the unencoded

data from the damaged qubits. Hence there is a strong

connection between quantum error correction codes to
secret sharing schemes that are used to perform secure
fault-tolerant distributed computation [5]. The second
class of quantum codes is thus the quantum analog of
random polynomial codes[5]. To adopt the techniques
of [5] to the quantum setting one can use the same en-

coding but instead of selecting a random polynomial
to share a secret we pick the superposition of all those
polynomials. The noise threshold turns out to be larger
than R 10-6.

The results hold also for quantum circuits which are
allowed to operate only on nearest neighbor qubits (In
this case the threshold will be smaller.) The scheme

applies also for corrections of random inaccuracies, but
not for systematic errors. Similar results to those of

this paper where independently discovered by Knin,
Laflamme and Zurek[18]. Non binary codes where de-
fined independently also by Chuang[15] and Knill[17].

2 Noisy Quantum Circuits

In this section we recall the definitions of quantum
circuits[16, 10, 31] with mixed states[3], and define
noisy quantum circuits[l].

2.1 Pure states

We deal with systems of n two-state quantum par-
ticles, or “qubits”. The pure state of such a system is
a unit vector, denoted la}, in the 2n dimensional com-

plex space C2”. We view C2” as a tensor product of n
two dimensional spaces, each corresponding to a qubit:
C=” = C2@... @C2. As a basis for C=”, we use the 2n

orthogonal basic states: Ii) = Iil) @ Iiz) @ Iin), O <
i < 2n, where i is in binary representation, and each ij

gets O or 1. A general unit vector Icr) in C2” is called a
“pure state”, and is a superposition of the basic states:

ICY)= z~ll ci Ii), with ~~~1 Icilz = 1. Icr) corresponds
to the vector Va = (cl, c=, c=.). vi, the complex

conjugate of Va, is denoted (a 1. The inner product

between [a) and 1~) is (al/?) = (va, vi). The matrix

v~vp is denoted = la) (PI. An isolated system of n
qubits develops in time by a unitary matrix, of size
2n x 2n: la(t2)) = Ula(tl)), A quantum system in C2”
can be observed by measuring the system. An impor-
tant measurement is a basic measurement of a qubit
q, of which the possible outcomes are O, 1. For the

state la) = ~~11 ci Ii), the probability for outcome O

is PO = Di,il,=o Icilz and the state of the system will

collapse to 1/3) = ~ ~i)il,=o ci]i), (the same for 1). A
unitary operation U on k qubits can be applied on n
qubits, n ~ k, by taking the extension ~ of U, i.e.

the tensor product of U with an identity matrix on the
other qubits. All definitions can be generalized to cir-
cuits which operate on p—state quantum particles, or

qupits. (simply replace 2 by p in the definitions above).

2.1.1 Mixed states

A system which is not ideally isolated from it’s envi-
ronment is described by a mixed state, There are two
equivalent descriptions of mixed states: mixtures and
density matrices. We use density matrices in this pa-
per. A system in the mixture {a} = {pk, laJ } is with
probability pk in the pure state Iah). The rules of devel-
opment in time and measurements for mixtures are ob-
tained by applying classical probability to the rules for
pure states. A pure state [~) = ~i ci Ii) is associated
the density matrix pla) = Ia)(crl i.e. pla)(i, j) = cic~.
A mixture {a} = {pl, Ial) }, is associated the density

matrix : p{~] = xl p~pl~l}. A density matrix is thus a
2n x 2“, hermitian positive semi definite complex ma-
trix with tr(p) = 1. The operations on a density ma-
trix are defined such that the correspondence to mix-

tures is preserved. If a unitary matrix U transforms
the mixture {a} = {pl, Is/)} to {@} = {pl, U\ao}, then

P{PI = ~~PIUl~l)(OVIU+ = UPi~IU+. A b~ic mea-
surement of the j’th qubit in p gives the outcome O
with the probability which is the sum of the diago-

nal terms of p, which relate to the basic states i with

Zj = 0: Pr(o) = ~~~1 ~i,i~(ij = O). conditioned that
the outcome is the eigenvalue O, the resulting density
matrix is 00 0 (p), which is the minor of p that in-

cludes only rows and columns which relate to basic
states i with ij = O. (This minor should of course

be normalized to have trace one). Without condition-
ing on the outcome the resulting density matrix will be
00 (p) = Pr(0)Oo o (p) + Pr(l)Ol o (p). which differs
from p, only in that the entries in p which connected
between O and 1 on the same qubit, or coordinate, are
put to zero. Given a density matrix p of n qubits, the

reduced density matrix of a subsystem,A, of, say, m
qubits is defined as an average over the states of the

other qubits: plA(i, j) = ~~~~m p(ik, jk).

2.2 Quantum circuits with mixed states

A quantum unitary gate, g, of order k is a complex
unitary matrix of size 2k x 2k. A density matrix p will
transform by the gate to g o p = ~p~t, where O is

the extension of U. A Quantum circuit is a directed

179

acyclic graph with n inputs and n outputs. Each node
v in the graph is labeled by a quantum gate g.. The
in-degree and out-degree of v are equal to the order of
gV, Some of the outputs are labeled “result” to indicate

that these are the qubits that will give the output of the
circuit. The wires in the circuit correspond to qubits.
An initial density matrix p transforms by a circuit Q to

a final density matrix Q o p = gt 0 ...0 gz o gl o p, where
the gates gt.. .gl are applied in a topological order. For
an input string i, the initial density matrix is pli). The
output of the circuit is the outcome of applying basic

measurements of the result qubits, on the final density
matrix Q o pli}. Since the outcomes of measurements
are random, the function that the circuit computes is a
probabilistic function, i.e. for input i it outputs strings
according to a distribution which depends on i.

2.3 Noisy Quantum Circuits

As any physical system, a quantum system is sub-
jected to noise. The process of noise is dynamic and

depends on time. We therefore divide the quantum cir-
cuit to time steps. We permit that qubits are input and
output at different times, and we say a qubit is alive
from tl to t2 if it is input to the circuit at tl and out-

put at tz.The space-time of the noisy quantum circuit
is a two dimensional array, consisting of all the pairs
(q, t), of a qubit q and time t, where the qubit q is alive
at time t. V(M), the volume of the circuit M, is the
number of points in it’s space-time. In our model of

noisy quantum circuits, between every two time steps,
each qubit and each gate are damaged with indepen-
dent probability q. The damage operates as follows:

A unitary operation operates on the qubitj (or on the
qubits that are output from the gate in the case of a
gate damage) and on a state of the environment (The
environment can be represented by m qubits in some
state). This operation results in a density matrix of
the n + m qubits. We reduce this density matrix to the
n qubits of the circuit to get the new density matrix

after the damage. The density matrix of the circuit de-
velops by applying alternately computation steps and
noise steps. Each “run” of the computation is sub-

jected to a specific fault path, which indicates where
and when fault occured. Each run ends up with some
output. The function computed by the noisy quantum
circuit is naturally the average over the outputs, on the
probabilistic process of noise.

3 Computing on encoded states

In the following section we define quantum codes
and quantum computation codes. Then it is explained

how to improve the reliability of the computation using
quantum computation codes.

3.1 Quantum block codes

A quantum linear block linear code is a function ~
from the Hilbert space of a qubit to a Hilbert space
of m qubits: ~ : C2 _ C2m. m is called the size of

the block in the code. Such a code induces a linear

function from C2” to C2mn in the following way: a pure
state in C2”, la) = X, c, [i) will transform to 1,6) =
E, ci~]il)~liz)... ~lin). A pure state in the image of ~ is
called a word in the code. The above definition can be
extended to density matrices: A mixed state of n qubits
will be encoded by the corresponding probability over

the encoding of the pure states. A mixture of words in
the code is also said to be in the code.

The error in the encoded state is sparse if not too
many qubits in each block are damaged. Using this
notion of sparse sets, we can define a metric on block
density matrices. They will be close if the difference
between them is confined to a sparse set of qubits:

Definition 1 Let B be the qubits in n blocks of m
qubits. A set A ~ B of qubits is said to be k–sparse
if in each block there are not more than k qubits in
A. The deviation between pl and p2 of the qubits B is
the minimal k such that 3A which is a k-sparse set of

qubitsj and pl IB-A = p21B-A.

A quantum code is said to correct d errors if there
is some correction procedure, such that when which

operating it on all the blocks in any density matrix
that deviates by d from a code word w, we get the

correct word w.

3.2 Quantum computation codes

A computation code is a quantum code which pro-
vides a way to perform gates on the encoded states fault
tolerantly. The procedure Pg that simulates a gate g
with respect to a quantum code is a sequence of gates
which transforms the encoded state to the encoded out-
put of the gate: Pg(~li > @10 >) = ~(g o Ii >) @ la >,

where we have used extra ancilla qubits. These qubits
are not counted as the inputs or outputs of the pro-
cedure. A quantum procedure is said to have spread [
if no qubit or gate effects more than i outputs of the

procedure. We will need procedures with small spread
for fault tolerant computation. Since we want to con-
vert any arbitrary circuit to a more reliable one, we

need the set of gates that have l-spread procedures to
be universal.

180

Definition 2 A quantum block code C 1s satd to be a

quantum computation. code with spread 1 if there exists
a universal set of quantum gates G such that (I) for any
gate g E G there exists a procedure Pg with respect to

C, with spread 1, and (2) There exist correction, input
and output procedures with spread 1.

3.3 Improving reliability by block simulations

To simulate some circuit by a quantum computa-
tion code, we first convert it to a circuit which uses

only gates from the universal set of the code. Then
we simulate this new circuit as was explained: We now
convert each qubit to a block of qubits, each time step

to a working period, and each gate to the corresponding

procedure, and besides that we add in each working pe-
riod a correction procedure on each block. Apart from

all that, we also add an input procedure before the first
working period of each block and an output procedure

after the last working period of each result block.

The space-time of the simulating circuit Ml can be
divided to rectangles, where each rectangle will corre-
spond to one procedure, in the following way: First,
divide the time to alternating stages: computation
stages, in which one time step of M. is simulated, i.e.

one gate procedures is applied (in parallel), and a cor-
rection stage, in which one error correction procedures
is appIied (in parallel). Each stage is a stm”p in the
space time. Each strip can be divided to rectangles
by dividing the qubits to sets: A correction strip will

be divided such that in each rectangle a correction of
one block is computed. In a computation strip, we di-
vide the strip to rectangles by dividing the qubits to
sets, where each set of qubits participates in exactly
one procedure. Each rectangle thus corresponds to one
procedure.

We show that if a fault path in Ml is such that
no more than a few faults occured in each rectangle,
then indeed the computation succeeds. The number

of faults allowed in one rectangle is bounded so that
when taking into account the spread of the fault, the

number of qubits effected in each block at the end of
one working period is not too big, so that the density

matrix can still be recovered.

Definition 3 A fault path of Ml that block simulates

A40 is said to be a ‘k–sparse fault path” if no more
than k faults occured in each rectangle.

Lemma 1 Let C be a quantum computation code that
corrects d errors, with spread i. Let Ml be a block simu-
lating circuit. Consider a computation of Ml subjected

to a k–sparse fault path with d > 2kl. At the end of

each workzng period the density matrix M d— detnated

from the correct one.

Proof: We will prove by induction on t a stronger as-
sertion, that at the end of the t’th working period the

density matrix is d/2–deviated from the correct one.
For t = O the deviation is zero. Suppose that the den-

sity matrix at the end of the t’th working period is d/2-
deviated from the correct matrix. After the computa-
tion stage, not more than kl qubits are effected in each
block, so the density matrix is kl + d/2-deviated. Since

ki + d/2 ~ d, the correction procedure indeed corrects

the error, only that during the corrections new errors
occur. Again, the number of effected qubits is not more
than kl in each block, and all the other qubits transform
as they should, so they are corrected. Hence after the
correction procedure the matrix is ki-deviated. Since
kl s d/2 this proves the induction step.1

Lemma 2 If the final density matrix of Ml is
d–deviated from the correct final matrix of Ml, then
when measuring the result qubits of Ml, a majority of
them gives the correct answer of MO.

Proof: Let pO be the correct final density matrix of
MO, describing the mixed state {a} = {p~, lcr~ >},
where la~ >= xi c! Ii >. Due to the output proce-

dures, the correct final density matrix, pl, of M 1, the
mixed state {~} = {pk, 1~~ > } where l~k > is gener-
ated from l(r~ > by duplicating each qubit m times:

Ih >= x~c$lip~...i: >. Let al be a density ma-
trix which is d–deviated from pl, where 2d < m. The

probability to get an n-string i when measuring pO,
equals the probability to get an n-string i when mea-
suring pl, and taking the majority. We claim that the

distribution D on n – strings generated by measuring
all qubits in pl and taking the majority is the same as

the distribution D’, generated when measuring al and
taking the majority. Take A to be the maximal set of

qubits such that al 1.4= pl 1A. Hence, when measuring
the qubits in A, in al, one gets the same answer on all

the qubits in one block, as in pl. Since 2d < m, these
qubits determine the majority vote. ~

The above two lemmas together show that if the
faults are sparse, a majority of the result qubits will
give at the end the correct answer. We can now com-
pute the effective noise rate of Ml. The probability of
M. to be correct is (1 – q)” ~MOl. We define the effective

noise rate of Ml to be 1 minus the V(MO) ‘th root of
the probability of Ml to be correct.

Theorem 1 Let Ml simulate M. by the computation
code C’, which corrects d errors, have spread 1, with all
rectangles smaller than a. The effective noise rate of

“is~2(@+l)’*+1

181

Proof: If the fault path in Ml is d/21 sparse, a ma-

jority of the result qubits will give the correct answer,
by lemmas 1. and 2. The probability for a rectangle to

have more than d/21 faults is smaller than the number

of possibilities to choose d/2i + 1 points in the rect-
angle, times the probability for these points to have a
fault. The number of the rectangles in Ml is less than
2V(M0). Computing the probability that no rectangle

had more than d/21 faults, and taking the V(MO)’th
root and subtracting from 1 gives the desired result. H

The effective noise is smaller than ~ if the parameters
of the code are chosen correctly, and in this way one can
improve the reliability of the computation. However,

in the above scheme, it seems difficult to find a code
which will give an improvement from a constant q to
polynomially small effective noise rate. To achieve such
an improvement, we use concatenated simulations.

4 Concatenated simulations

In this section, we define proper quantum code, and
concatenated simulations by such codes. We prove that
the reliability of the computation can be improved to a
constant using iog(log(n)) levels of simulations, when

the noise is smaller than some constant imposed by the
parameters of the code.

4.1 Improving reliability to a constant

We would now like to apply recursively simulations,
using the simulation from the last section for several
times. This scheme will work if cert ain restrictions are

imposed on the quantum computation code:

Definition 4 A quantum computation code which is
associated with a set of gates G is said to be proper ij

(1) all procedures use only gates from G, and (2) The
correction procedure takes any density matrix to some

word in the code.

Let M. be a quantum circuit. We define recur-
sively M,, an r-simulating circuit of a circuit M. by
the proper quantum computation code C, as the sim-

ulation by C of Mr _ 1. The recursive simulations in-

duce a definition of s-blocks: Every qubit transforms
to a block of m qubits in the next level, and this block
transforms to m blocks of m qubits and so on. One
qubit in M.–, transforms to m’ qubits in M.. This set
of qubits in M. is called an s-block. An O-block in M.
is simply a qubit. This hierarchy of blocks requires a
definition of a metric which is recursive. A density ma-
trix of M, is recoverable, i.e close to the correct state,

if it deviates on a “sparse” set of qubits:

Definition 5 Let B be the set of qubits tn n r–biocks.

An (r, k)-sparse set of qubits A in B is a set of qubits
in which for every r–block in B, there are at most k
(r – I)–blocks such that the set A in these blocks is not

(r– 1, k) sparse. An (O, k)–sparse set of qubits A is an
empty set of qubits. Two density matm”ces pl, pz, are
said to be (r, k)-deviated if k is the minimum integer
such that there exist an (r, k)-sparse set of qubits A ~
~, with pIIB-A = f?zlEj_A.

The deviation is a metric, since the union of two sets
which are (r, 11), (r, 12)-sparse respectively is (r, 11+ 12)
sparse. This is easily shown by induction on r.

The recursive simulations also induce a definition of
s-rectangles: Each space time point in Mr _ ~ transforms
to a set of space time points in the following simula-
tion M(, _~+l), which in their turn transform to more

points in the following levels of the simulation. The
set of all these points in Afr that originated from one

space time point in M(. _~) are called an s-rectangle.
The definition of s-rectangles defines a division of the
space time of Mr, and this division is a refinement of
the division to (s+ I)-rectangles. An O-rectangle is just
a space time point in Mr. Using this hierarchy of rect-
angles, we define a notion of “sparse” fault paths. We
will show in lemma 3 that given that the fault path is

sparse, the deviation of the state from the correct state
is kept bounded throughout the computation.

Definition 6 A set of space time points in an
r—rectangle is said to be (r, k)-sparse if there are no

more than k (r – I)–rectangles, in which the set
is not (r — 1, k)-sparse. An (O, k)-sparse set in an
O–rectangles (which is one space time point) is an
empty set. A fault path in M, is (r, k)-sparse if in
each r—rectangie, the set is (r, k) —sparse.

We claim that if the fault path is sparse enough,
then the error corrections keep the deviation small.

Lemma 3 Let L’ be a proper code that corrects d er-
rors, with spread 1. Let Mr be the r–simulation of M.

by C. Consider a computation subjected to an (r, k)-
sparse fault path with kl(l + 1) < d. At the end of each
r– working pem”od the density matn”x is (r, d/2)-deviated

from the correct one.

Proofi We first prove by induction on the number of
levels r three assertions, together. The first two asser-
tions, when applied alternately for the r– comput ation
and r—correction stages in Mr, will give the desired
result.

1. Consider n r–blocks, in a density matrix which is
(r, kl)–deviated from #(po), where p. is a den-

sity matrix of n qubits. After applying one stage

182

of r – computations on these blocks, simulating
the operation g on po, with an (r, k) sparse set of
faults, the density matrix is (r, d) deviated from

4’(90 PO).

2. Consider n r–blocks, in a density matrix p,, which

is (r, d) deviated from a word @(PO), where PO
is a density matrix of n qubits. After applying
r–corrections, on all of the r–blocks, with an
(r, k) sparse set of faults, the density matrix is
(r, It/) deviated from @r(pO).

3. Consider n r–blocks, in some density matrix,
p.. After applying r–corrections, on all of the
r–blocks, with an (r, k) sparse set of faults, the

density matrix is (r, k{) deviated from a word

4’(Po), where PO is a density matrix of n qubits.

For r = O the proof is trivial. The computations
are just faultless, and O–corrections are the identity.
For instructiveness, let us consider also the case of r =

1. Claims 1,2 are satisfied merely because we use a
computation code. Claim 3 is satisfied by the extra
restriction on the error correction which a proper code
satisfies. Let us now assume all the claims for r, and
prove each of the claims for r + 1. In our proof, we

refer to r-correction stages and r-comput at ion stages.
An r-correction stage will start and end with an (r – l)-

correction stage, and an r-computation stage will start
and end with an (r – 1)-computation stage.

1. We consider an (r + 1)–computation stage,

(r+ 1)–simulating the operation g on PO. It can be
viewed as a sequence of alternating r—computation
stages and and r-correction stages. (The number

of these r-stages is w.) Let us consider the density
matrices in the trajectory of ~r+l (po), at the end of
each of these r–st ages. These matrices can be writ-
ten as ~r(p~). Where p? = 4(Po) and p? = d(g o PO).

Let us assume for a second that all the r–rectangles
in the (r + 1)–stage have (r, k) sparse set of faults.
(This assumption is wrong- in each (r+ 1)–rectangle
we might have k r—rectangles in which the faults are

not (r, k) sparse, but we will deal with this in a sec-
end.) Let us also assume that the density matrix we

start with is (r, ki)-deviated from @r+l (PO). (Again, a
wrong assumption- there might be kl r–blocks in each
(r + I)–block that are not (r, ki)–deviated.) With

these assumptions, we now prove by induction on t

that applying an r–computation stage followed by
an r–correction stage, on a matrix which is (r, ki)-
deviated from 4’ (p]), gives a matrix which is (r, kl)-
deviated from ~’ (p~+l). This is true by applying the

induction assumption of claims 1, and 2. Now, tak-

ing into account our wrong assumptions, the “bad” k

r-rectangles and kl r-blocks which did not obey the as-
sumptions can effect at most /(k+ ki) r–blocks in each
(r+ 1)–block, at the end of the (r+ 1)–stage, since

the (r+ 1)-computation stage r–simulates a procedure
with spread 1. So if /(k/ + 1) < d, we have that the

final density matrix at the end of the (r + 1)–stage is

(r+ 1, d)–deviated from the correct one.

2. We consider an (r + 1)–corrections stage of n
(r+ I)–blocks. Again, we view this stage as alter-
nating r–correction stages and r-computation stages,
where the number of r-stages is w. Let us consider

the trajectory (i.e. no errors) starting with 4’ (P1),
where pl is a density matrix which is (1, d)–deviated

from some word @(po), and denote the density matri-

ces in this trajectory at the end of each r–stages by

4’ (Pi). Then since the (r + 1)–rectangle simulates
error correction, and the simulated matrix is not too

deviated, the trajectory which starts with ~r(p~) =
@’(pl) will end with ~r(p~) = &(#(po)) = @r+l(po).

Now, let us assume, again, that all the r–rectangles
in the (r + 1)–stage have (r, k)-sparse set of faults,
and that the density matrix we start with is (r, d)-
deviated from 4“ (pl). Under these assumptions, in-

duction on tshows that applying an r–correction stage
followed by an r–computation stage, on a matrix which

is (r, d)-deviated from qY(p~), gives a matrix which
is (r, d)-deviated from ~r (p~+l). This is true by ap-
plying the induction assumption of claims 1, and 2.

So under the above assumptions, we end up with a
matrix which is (r, ki)-deviated from ~r+l (p.), using
the fact that the last r–stage is a correction stage.
Now, we actually start the computation with a matrix
which is (r + 1, d)–deviated from #r+l(po). So most

of the r–blocks are (r, d)–deviated from ~r+l (p.), ex-
cept maybe d r–blocks in each (r + 1)–block which
are not. By the induction stage on claims 2 and

3, after the first stage of r–corrections, most of
the r–blocks are (r, ki)–deviated from ~r+l (p.), ex-
cept maybe d r–blocks in each (r + 1)–block which
are (r, kl)–deviated from q$r(p~). So after the first
r–correction the density matrix is (r, ki)–deviated

from @r(pI), where PI is (1, d)–deviated from q5(po).

We can now use the induction from before and say
that the final density matrix is (r, ki)-deviated from
~r+l (p.). We now take into account the fact that there
where k r—rectangles in each (r + 1)-rectangle where

the faults where not (r, k)–sparse. By the fact that the
(r+ 1)–correction r–simulates a correction procedure
with spread i, these can effect only kl r–blocks in each
(r+ I)–block, at the end of the (r+ I)–stage, so we
have that the final density matrix at the end of the
(r+ 1)–stage is (r+ 1, kl)–deviated from the correct

one, #r+l(po).

183

3. We consider one stage of (r + I)–corrections

on the n (r + I)–blocks in an arbitrary density ma-
trix. Again, let us assume that the faults in all
the r–rectangles are (r, k)–sparse. By the induction

stage on claim 3, after one stage of r–corrections, the
density matrix is (r, ki)–deviated from some q$r(pl).
Let us consider the trajectory of qY(pI) in the (r +
I)–correction rectangle. Since it is an r–simulation of
a correction, it takes the density matrix to some word
qY+l (po). As before, we can prove by induction on the

r—stages that at the end of the (r + I)–rectangle we
end up with a matrix which is (r, /cl) -deviated from
~’+1 (pO), and taking into account the r–rectangles
with faults which are not (r, It)-sparse, we end up with
a density matrix which is (r + 1, Ici)-deviated from

@r+ ’(PO).
We can now use claims 2 and 1 alternately to prove

by induction on the number of r–working period that
at the end of each r–working period in M, the density
matrix is (r, kl)–deviated from the correct one. n

We can’ now’ prove the main result of this paper:

Theorem 2 Let C be a quantum computation code,
which corrects d errors, have spread 1, and size of all
procedures smaller than a. Let MO be a quantum cir-
cuit, with size s and depth t. There exists a quan-

tum circuit M. of size 0(s . polylog(s)) and depth

O(t . polyiog(t)), such that in the presence of noise. .

outputs the correct ‘answer with prubabiliiy ~ 2/3.

Proofi Set k = d/1(1+ 1). If the fault path is (r, k)-

sparse, then the final density matrix is indeed (r, d)-
deviated from the correct one, by lemma 3. Measuring

all result blocks in a density matrix (r, d)-deviated from
the correct final density matrix, and taking majority in
each r-block, gives the correct answer by an argument
similar to that of the proof of lemma 2. Hence the
probability for M, to succeed is larger than the prob-
ability for a fault path to be (r, k)-sparse. Let us show
by induction on r that the probability, P(r), of the
faults in an r–rectangle to be (r, k) sparse is higher. \

than 1 – T$l+’IT, where we set
(k~l)qk+’=q’+f

We can do that because of the ‘assumption on the pa-
rameters, and e is a positive constant. The probabil-
ity for an O—rectangle, i.e. one space time point, to
have faults which are (O, k) sparse, i.e. that in this
point a fault did not occur, is 1 – q. For the step
of the induction, assume for r, and let us prove for
r + 1. For the faults in an (r + I)-rectangle to be
(~+ 1, k) sparse, there must be at most k r–rectangles

in which the fault is not (r, k) sparse. So P(r + 1) ~

induction assumption. This proves that the probabil-
ity of success of Mr is ~ (1 — qt1tClr)2v[MO) since the

number of r–rectangles is less than 2V(MO). Taking
r = O(log(log(V(Mo))) gives a constant probability of
success. Since the growth in time and in space is expo-
nential in r, the cost is polylogarithmic (We use codes
of constant size). r

Remark: Theorem 2 requires that the code can
correct d > 1 errors. A similar result holds for d = 1,

()bwith the threshold
2

q < 1 where b is the maximal

size of slightly different rectangles, defined to contain a
computation and a correction procedure together. The

proof is almost the same. In some cases this threshold
is better. I

5 Explicit proper codes

Linear quantum codes[4] are represented, using clas-
sical codes over FP, and shown to be proper for p = 2.

A subclass of linear codes, polynomial quantum codes,
is defined and shown to be proper for p >2.

5.1 Linear quantum codes over FP.

A linear code of length m and dimension k over the
field FP is a subspace of dimension k in FPm, where FPm
is the m dimensional vector space over the field of p
elements. Given two linear codes C’l and C2 such that

{O} C C2 C Cl C F~ consider the following set of

quantum states in the Hilbert space CPm:

Va E Cl : IS= >= p-(m-k)12 ~la+v>
VEC2

If (al – a2) E C2 then lS.l >= 1S.2 >, otherwise

< Sal lS~Z >= O. Hence these states construct a basis
for a linear subspace of the Hilbert space CPM, with
dimension z = p dim(cl)–dim(cz). This subspace is our

quantum code. Define a second basis of this subspace

to be:

If Cl and C: both have minimum weight d, then the
quantum code can correct for t = [%#j, by applying
classical error corrections with respect to the code Cl,
first in the S–basis, and then in the C–basis. The
proofs in [4] transforms smoothly to this general case.

184

Theorem 3 For p = 2, linear block codes are proper.
The universal set of gates associated with the code is :

(1) \a, b >- la, a + b >,

(’2) la>- ~ Db(-l)”blb >,

(3) la>* Ii-a >,

(4) la>- (i)ala >, and
(’5) Ia, b,c>- Ia, b,c+ab>,

where all the addition and multiplication are in

F2(i. e. mod 2). These exist gate procedures, correc-
tion, input and output procedures, with respect to the

code which have spread ! = 1.

Proof: This set of gates is universal by [23]. We de-

scribe input, correction, output and gate procedures,

all with spread 1.
Input procedure: It is enough to show how to

generate a state ISO > in an ancilla block, since we
can apply afterwards a controlled not (gate 1) from the
i’th input bit to the i’th bit in the ancilla, and we get

ISO > or [SI > in correspondence with the input. To
generate the state ISO >, we actually apply a correction
procedure with respect to a code which consists of one
word: ISO > alone. We start with a state 10~ >, and
we want to correct it with respect to the code of one

word, lSO >. First, rotate each bit around the z axis,
using gate 2. We now want to compute the syndrome
of the error. We will compute the syndrome indepen-
dently m times, one for each qubit. To compute the
j’th bit of the syndrome, we do the following: After
[23], we will use a cat state, generated in the following

way: Start with 10m >, apply a rotation around the x
axis (gate 2) on the first qubit and then a controlled not
{gate 1) from this qubit to all the other m – 1 qubits,

to get ~(10’” > +Ilm >). Now apply a controlled

not bitwise from the block we are initializing to the cat

state ordy on the coordinates which in the j’th raw of
H, the parity check matrix of Cl, are 1. From this cat
state apply a controlled not bitwise to m qubits in 10>,
to imitate a measurement of the cat state. Now com-

pute from the measured cat state the j’th syndrome
bit, using only gates from the universal set. Compute
in this way all the bits of the syndrome, and now from
these bits we can compute whether the i’th bit hss an

error, as follows: the vector space can be divided to

non-intersecting cosets of the subspace Cl. Each coset
can be written as Cl + e where e is a vector. Each

such e gives one possible syndrome. (He = s). Given
the syndrome, we compute the table s– > e, and de-
cide whether a qubit is wrong by asking whether it is in
the support of e, meaning that the corresponding co-
ordinate in e is 1. Finally apply a controlled not from
the result to the i’th qubit. This can be done inde-

pendently for all the qubits. We have used 2m3 ancilla

qubits. To see that we indeed get the state ISo >, note

that after the first rotations we have ~~~0- 1 Ii >. The
corrections will then take this state to a uniform dis-
tribution over all the basic states in CL, due to the

linearity of the code. The spread of this procedure is
1: a fault in the cat states, in the first rotations and in
the first controlled not gates can only effect one bit at
the end.

Correction procedure: The correction is similar
to what is done in the input procedure (Computing

the syndrome with respect to Cl, independently for
each qubit, and correcting the qubits.) There is one
difference: Since the code must be proper, any density

matrix must be corrected to some word in the code. We

guarantee this in the following way: Before starting the
correction procedure, Generate another state ISO > on
ancilla qubits, as in the input procedure. When com-
puting from the i’th copy of a syndrome whether the
i’th qubit is wrong, also compute whether the number

of faults according to the syndrome is larger than d,
and write the answer on another qubit. The controlled

not from the result to the i’thqubit is replaced by a
Toffoli gate (gate 5) which also checks if the number
of faults is smaller than d. We also add a gate which

swaps the qubit with a qubit from the state IS. > if
the number of faults is indeed larger that d, using a

Toffoli gate again. After applying classical error cor-
rections, with respect to the code Cl, we transform to
the C–basis by applying bitwise gate 2, correct again
and rotate back to the S—basis.

Output procedure: The output procedure is ap-
plied by computing independently m times the a from
the state IS. >. This procedure requires m(m + 1) an-

cilla qubits. First we apply controlled not from each of
the qubits to one of the last m ancilla qubits to simu-

late m basic measurements of these qubits[3]. We re-
peat this operation again to each one of the m blocks of
m ancilla qubits, so we have m copies of the measured
state. On each of these copy we apply an operation
that computes the bit that is represented by this state,
using only gates from the universal set. (This might
require more ancilla qubits.) The resulting qubits are
the m qubits which carry the results from these m com-

putations. The spread of this procedure is 1. A fault in
the first stage of copying the qubits m times can only
effect one qubit in each of the copies, and if the number

of faults is smaller than the critical number, the fault
has no effect on the resulting qubits. A fault during
the computation of one bit can only effect this bit. So

the spread is 1, as long as the sum of damage in the
block and number of faults in the first stage is smaller
than half the minimal distance of the code.

Gate procedures: The procedures of gates 1 – 4

185

are performed by applying bitwise the gates on each of

the qubits in the block.
Toffoli gate: we define a Toffoli procedure as is

described in [23], where all the measurements are re-

placed by controlled not gates. The only piece of this
procedure which is not straight forward is creating the

ancilla state 1A >, without involving classical oper-
ations. To do that, generate m cat states, ISO >’”,
rotate the first block by applying gate 2 bitwise, and
then copy this block bitwise on all the other blocks,

giving the encoded cat state: ~(lSo > ISO > ...lS. >

+1S1 > IS1 > ...1S1 >). Generate three such ancilla
states. Also generate 1A > +IB > as in [23]. Now ap-
ply the transformation: IS. > lb > Ic > Id > – – – >

(–l)at~c+dJISa > Ih > Ic > Id> on a block in the first
encoded cat state and three bits in the three blocks of

[A > +IB >, and do that forallblocks in the first
encoded cat state, i.e. m times. Repeat with the sec-
ond cat state and then the third. To measure the cat
state, rotate all qubits in the encoded cat states in the

z direction. Now compute from each block the bit it
represents, and then independently m times the parity
of these bits in each encoded cat state. For each qubit
in the third block of 1A >, compare three parity bits

from the three cat states by a majority vote and apply
a controlled not from the result to the qubit in 1A >. If
only one fault occurred in this procedure, then in each
block of 1A > there is at most one effected qubit.g

5.2 Polynomizd quantum codes

Here we define the quantum analog of random poly-
nomial codes[5]. To correct d errors, set m = 4d + 1
andsetp>m+l. Let al, az,am be m dis-

tinct non zero elements of FP such that the polynomial
G(z) = n~: (z – ai) has a non-zero coefficient of Xzd.

(Such cq exist because IFPI > m + 1).Denote by

VI = {~(z) E F(z) I degf(z) < d},
fi={f Evl[f(o)= o},
C’l= {(f(~l),...,f(cr~))1f GVI] c F~,

C2 = {(f(crl), f(crm)) I f G Vz} c cl.

As before, we use the codes Cl and C2 to define the
quantum code:

(2) Ycc F’, lu>-[a+c>,

(3) O#c EF:la>-lac>,

(4)la>l~> lc>-la>lb>lc+ab>,
(’5) Vc E F la >- W’ala >, and the Fourier tmns-

form

(6) la >- ~XbEFWrab[b >,VO < r <p.

Proofi
Universality: Clearly, all classical reversible func-

tions can be spanned by this set. We find an ex-

plicit unitary matrix in the group generated by this
set, which has infinite order. We then use group rep-
resentation theory to show that this group is dense in
SU(n). By [27], a general product of j such matrices,
is exponentially (in j) close to any finite matrix, so the
rate of approximation is exponential.

Input, output and correction procedure:

These are exactly as in the general linear code, where
transforming between the S–basis and the C–basis is
done by the Fourier transform.

Gate procedures: The procedures of gates 1,2 and
3 are performed by applying pitwise the corresponding
gates.

Procedure of general Toffoli gate (4): This pro-
cedure we use interpolation techniques[5]. First we ap-

ply pitwise the general Toffoli gate on the m coordi-

nates. On the third block we obtain the sum:

~lA(@I)~(~I)+C(~I),..., A(am)B(am)+C(am) >,

where the sum is over A(z), B(z), C(z) E Vl, A(0) =

a, B(o)= b,c(o) = c. The polynomial l)(z) =
A(z)B(z) + C(z) satisfies D(O) = ab+c, and it’s degree
deg(D) ~ 2d. To reduce the degree we use a quantum
analog of the techniques in [5], where we keep the pro-

cedure fault tolerant. we can still correct d errors in D
since m = 4d + 1.We proceed as follows: we apply the
input procedure to each coordinate in the third block,
which will give the state

Is(dl), . ..S(dm) > , dj = D(~j).
D(z), D(r)= A(r) B(x)+C(Z)

We then first run the error correcting procedure of the
code with degree 2d, and after this compute the linear
combination S(~i cld~) = Sd, where the c1 are the in-

terpolation coefficients such that V f E F[z], deg(f) ~
m – 1,~(0) = ~~1 ci.f(@i).

Va E F, [S= >= ~ z lf(~l),..., f(%) >. Procedure of general rotation around the z

MV21 ,.”,,,(0)=. axis by the angle r (5): This is done by applying
on the i’th qupit the gate la >= WC1a la >.- The proof

Theorem 4 Polynomial codes are proper quantum that this achieves the desired operation is :
computation codes with spread 1 = 1. The universal
set of gates is: Is.>= ~ ~ If(w),...,j(@m)>-

(’I) la>lb>=la>la+ b>, WV21 j,v,f(o)=a

186

E ~y=lwd(d If(m) ,..,, f(am) >=

jEvl,f(o)=a

= ~ waif(%),...,f(%l) > ~

jEV,~(o)=a

Procedure of the Fourier transform:(6)
Isa >= ~ ~b~r u#’lf% >. (This can be done with

any WT by replacing in the following w by WT. This
operation generalizes the rotation around the x axis by
the angle r.)

To perform this procedure we first note that there

are fixed non zero el, ..., em such that for any poly-

nomial f(z) over FP with deg(i) S m – 1, fzi =
Z,, e~f(~:). This is true since interpolation via

al,. . . 2’,1=am is a linear functional. Denote wl = we’‘t

1, m. Let us operate on each coordinate, that is

qupit, by the Fourier transform

Is>* ~w~bla> .
beFp

We claim that this indeed gives the desired operation.
This is true since

1
— ~ If(@l),f(%) >-Isa ‘= Wvzl f,v,f(o)=”

$- E ~ J:, elcrfdf(m)h 1~1, ..bm > .

bl,b2,..bmEF j~V,f(O)=a

Let b(z) be the unique interpolation polynomial
b(~l) = bl, with degree deg(b) ~ m – 1, for some
01, .

●

●

.bm E FP. We distinguish two cases:

CASE 1: Deg(b) < d. In this case the polynomial
h(z) = z2db(z)f(z) for f(z) E VI is of degree
~4d=m– landso

~e~~?df(~~)b, = f(o)b(o) = c~eff of ~2dinh(~)
1=1

In the above sum, we will have:

sum is the coefficient of Xd in this polynomial. It

is enough to show that this is not always the same
value when summing over j E V1 with f(0) = a,

since then the sum vanishes. Let r = deg(b) > d.

Picking ~(z) = a + cz Zd-t-+1, deg(f) < d, and

deg z2df(z)b(z) = 4d + 1 = m. Therefore h(r) =

~2df (~)b(~) —cILG(z) where Br is the leading co-
efficient in b(z), i.e b(x) = B,z’+... +BO. B. # O.
Looking at the coefficient of x 2d of h(z) we have
aBo — cBrgz’ where gz’ # O is the coefficient of

X2’ in G(z). This can obtain any value we want
by selecting an appropriate c c FP.1

6 Generalizations and open problems

The result implies that quantum computation might
be practical if the noise in the system can be made very
small. We hope these results motivate physicists to
achieve lower noise rates, and theoreticians to develop
a theory for proper quantum codes, and seek such codes
with better parameters, in order to push the threshold

as high as possible. The point at which the physical
data meets the theoretical threshold is where quantum

computation becomes practical.

The results of this paper hold also in the case of cir-

cuits which allow to operate only on nearest neighbors.
(We thank Richard Cleve for pointing this out to us.)
This is true since the procedures we use, which are of
constant size, can be made, with constant cost, to op-
erate only on nearest neighbors, by adding gates that

swap between qubits. However, the bound on q in this
case will be smaller.

Our scheme requires a polylogarithmic blow-up in
the depth of the circuit. Reducing this to a constant,

as in the clsssical case, remains an open problem.

This result might also have an impact on a long
standing question in quantum physics, regarding the

transition from quantum to classical physics[30]. In [1]
it was shown that for a very high noise rate, the quan-

$
E x

Wb(o)f[o}xlbl, bm >= turn circuit behaves in a classical way. In this paper we,,

bl,b2,..bmEF,b(c) EVlf<V,j(O)=a show that for very small noise rate, the system can still
maintain it’s quantum nature. If indeed the quantum

= ~ wab~Sb >. nature can not be imitated by classical systems [13], or

bEFP in other words if BPP # BQP, then, increasing the
noise, a transition from the quantum behavior to clas-

CASE 2: Deg(b) > d. We claim that the sum sical behavior occurs. Does this transition happen at

vanishes for the b’s in this case. Let h(z) be a critical noise-rate? Indications for a positive answer

the interpolating polynomial through the values are already shown in [1]. We view this connection be-

a~~f(al)b~. Then h(z) = z2df(x)b(z)(modG(z)). tween quantum complexity and quantum physics as ex-

recall the definition of G(z). The power of w in the tremely interesting.

187

7 Acknowledgments

We wish to thank Noam Nisan, Peter Shor, Thomas
Beth, David DiVincenzo and Ehud Friedgut for helpful
discussions and essential remarks. We thank Richard
Cleve for solving the question of nearest neighbor
gates.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

D. Aharonov and M. Ben-Or. Polynomial simulations
of decohered quantum computers. 37th Annual S~rnpo-
sium on Foundations of Computer Science, pages 46–
55, 1996.

D. Aharonov, M. Ben-Or, R. Impagliazzo, and

N. Nisan. Limitations of noisy reversible computation.
In preparation, 1996.

D. Aharonov and N. Nisan. Quantum circuits with
mixed states. in prepamtion.

A. R. Calderbank and P.W. Shor. Good quantum error
correcting codes exist. In ph~s. Reu.A, to appear, pages
quant-ph/9512032, 1995.

M. Ben-Or, S, Goldwasser, and A. Wigderson. Com-
pleteness theorems for fault-tolerant distributed com-
puting. In Proc. 20th ACM Symp. on Theory of Com-
puting, pages 1-10, Chicago, 1988. ACM.

E. Bernstein and U. Vazirani. Quantum complexity
theory. In Proceedings o} the Twenty-Fifih Annual
ACM Symposium on the Theory of Computing, pages
11-20, 1993.

I. L. Chuang, R. Laflamme, P. W. Shor, and W. H.
Zurek. Quantum computers, factoring and decoher-
ence. Science, 270:1633–1635, 1995.

I. Cirac and P. Zoner. Phgs.Reu.Lett, 74:4o91, 1995.

B.S. Cirel’son. Reliable stomge of information in a
system of unreliable components with local interactions,
volume 653 of Lecture Notes in Mathematics, pages 15–

30. springer edition, 1978.

D. Deutch. Quantum networks. In Proc. ROY. sec.

Lend, Vol. A~OO, 1989.

D. Deutsch. Quantum theory, the church-turing prin-

ciple and the universal quantum computer. In Proc.
Roy. Sot. Lend, Vol. A400, pages 96-117, 1985.

DiVincenzo. Quantum computation. Science, 270,
1995.

R. Feynman. Simulating physics with computers. In
international Journal of Theoretical Physics, Vol. 21,
No. 6/7’, pages 467488, 1982.

P. Ga’cs. Self correcting two dimensional arrays. In
S. Micali, editor, Randomness and Computation, vol-
ume 5 of Advances in Computing Research, pages 240-
241,246–248. 1989. series editor: F.P.Preparata.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

I.Chuang, W.C. D. Leung, and Y, Yamamoto. Bosonic
quantum codes for amplitude damping. 1996.

J.J.Saqurai. Modern Quantum Mechanics, revised edi-
tion. Addison Wesley, 1994.

E. Knin. Non-bhary unitary error bases and quantum
codes. quant-ph/9608048, 1996.

E. Knin, R. Laflamme, and W.H. Zurek. Threshold ac-
curacy for quantum computation. quant-ph/961 0011,
1996.

R. Laflamme, C. Miquel, J.P. Paz, and W.H Zurek.
Perfect quantum error correcting codes. quant-

ph/9602019, 1996.

S. Lloyd, A potentially realizable computer. In Science,
Voi 261, pages 1569-1571, 1993.

G. M. Palma, K.A. Suominen, and A. Ekert. Quantum
computation and dissipation. Proc. Roy. Sot. Lend.,

1995.

P. Shor. Scheme for reducing decoherence in quantum
computer memory. Phys.Reu.A, 52(4), 1995.

P. W. Shor. Fault-tolerant quantum computation. In
3’7th Annual Sympo9ium on Foundations of Computer
Science, 1996.

P.W. Shor. Algorithms for quantum computation: Dis-
crete logarithms and factoring. In 95th Annual Sympo-
sium on Foundations of Computer Science, pages 124–
134, 1994.

B. Shumacher and M.A. Nielsen. Quantum data pro-
cessing and error correction. pages quant-ph/9604022,
1996.

D. Simon. On the power of quantum computation. In
35th Annual Symposium on Foundations of Computer
Science, pages 116-123, 1994.

R. Solovay and A. C. Yao. in preparation.

A.M. Steane. Multiple particle interference
turn error. In Proc. Roy. Soc. London.Ser,
Also quant-ph/9601029.

and quan-
to appear.

W. G. Unruh. Maintaining coherence in quantum com-
puters. Technical report, University of Vancouver,
1994. quant-ph/9406058.

W. H.Zurek. Decoherence and the transition from
quantum to classical. In Physics today 44(1 O), pages
3644, 1991.

A. Yao. Quantum circuit complexity. In 34th An-
nual Symposium on Foundations of Computer Science,
pages 352-361, 1993.

Pemlissioll 10 mnkc dlgi[allhard copies 01’:111(w p:lll ol’[hi>m:ilcri:llIi)r
personalor clwwoom List is granted !Villm(ll lit proivdcd 111:11the topics
we not made w distrilllll cd Iiw pro~ll or commwci:il a&fiI1l Jge. t Iw copy.

right notice. (he title ol’tllc pllhlica lionwni its d:ilc nmmflr.trnlin{Nictis.,
given that mpyrigh! is by permission ol’the ALIM. Inc. TO cony o(hwwise.
w reptlblish, 10 post w swvcrs or 10 redistrihtlle to Iis{s. reqilircs sptci tic
pemlission mid/or fee

ST()(’ “97 El Paso. Tews I.1S,.1

Copyrigllt 1997 AC\l ()-X979 1-8 XR-(1974J5 ..$3 5(J

188

