Asynchronous Logic

Scott McPeak

UC Berkeley, CS 250, Fall 1999

Prof. John Wawrzynek

December 13, 1999



�Abstract

This paper introduces and analyzes asynchronous logic, from the perspective of a designer familiar with synchronous techniques.  Asynchronous design can be partitioned into three categories, called small, medium, and large, which permits a better understanding of the relationships among asynchronous techniques.  Asynchronous designs offer several benefits over synchronous designs, including early completion (performance), low power, improved electromagnetic emissions, superior adaptability, and lack of a global clock signal.  However, asynchronous logic is more difficult to design and test, in part because synchronous logic is the established convention in universities and industry, but also because it shares with concurrent programming the difficulties of organizing communication among processes executing in parallel.

Introduction

Motivation

The goals of this investigation were to answer several basic questions about asynchronous logic, and its relation to the more familiar synchronous logic:

What is asynchronous logic?  What are the basic design techniques and constraints?

Under what conditions is it better or worse than synchronous logic, and how will this change as processes progress into the future?

Why doesn’t industry seem to use it?  Are asynchronous design methodologies sufficiently mature for industrial use?

Is there a balance to strike between asynchronous and synchronous design?

Outline

The first part of this paper is a tutorial on asynchronous design.  I divide asynchronous design into three major categories: small, medium, and large.  Design in the small is low-level control and handshaking circuitry, for which timing is crucial.  Design in the medium is datapath and other computational logic.  Design in the large is design at the architectural level, where the communication among many different modules must be organized.

The second part of this paper analyzes the tradeoffs between asynchronous and synchronous design.

For comparison: a synchronous FSM

As the reader is assumed to be familiar with synchronous techniques, I will take the synchronous finite state machine (FSM) as a starting point.

�

Figure � SEQ Figure \* ARABIC �1�: Synch FSM

The synchronous FSM is a block of combinational (no feedback) logic, surrounded by clocked registers.  A global clock signal is delivered to each register, and all registers are thus clocked at (nearly) the same time.

The arrival of an active clock edge causes the current state to change.  The combinational block’s outputs must stabilize at their final values before the arrival of the next active clock edge.  This is usually achieved by setting the clock period to be longer than the delay through the critical (slowest) path through the combinational logic.

It is important to recognize that even the most complex designs, including pipelined, superscalar, and/or out-of-order microprocessors, fit into this simple model.

Definition

Asynchronous logic, then, is stateful logic implemented without the use of a global clock.  Simply removing the clock from a synchronous design leads to chaos; the first part of this paper illustrates how to restore order by decentralized mechanisms.

Asynch in the “small”: control

Control circuitry is typically small, both in area and in functional description.  It has tight interface constraints, including timing and event ordering requirements.  Asynchronous control differs from synchronous control principally in that the asynchronous control circuitry, taken as a whole, is responsible for setting the timing of everything else on the chip.  Synchronous designs have a single, global asynchronous element in that role (the clock), and the rest of the control circuitry can take timing for granted.

Hazards and glitches

Asynchronous control logic differs from synchronous logic in that its inputs and outputs are always being “sampled” — that is, they are always meaningful.  In contrast, synchronous logic inputs and outputs are meaningful only on the active clock edge.  This imposes an additional requirement on logic implementing asynchronous control circuits, namely, hazard avoidance.

A glitch is a nonfinal output transition.  For example, if an output transitions to 1 before returning to 0 and stabilizing there, that is a glitch.  A hazard is the potential for a glitch to occur on some input.  Whereas a glitch is a property of a particular evaluation, a hazard is a property of the circuit itself.  Hazards are a problem because of the continuous-evaluation nature of asynchronous circuits; an asynchronous circuit cannot, in general, tell the difference between an “accidental” glitch and two “real” transitions in rapid succession.

If we restrict inputs to only change one bit at a time, and successive input changes happen slowly enough for outputs to stabilize before inputs change again, it is possible to implement arbitrary logic functions as hazard-free combinational logic.  Input restricted in this way is called fundamental mode.

For example, consider the function � EMBED Equation.2  ���. On an input transition from ABC=111 to ABC=101, the first term (� EMBED Equation.2  ���) becomes false while the second term (� EMBED Equation.2  ���) becomes true.  Depending in the details of the circuit delays, both inputs to the final OR gate may be momentarily false, and this may propagate to produce a momentary 0 output.

�

Figure � SEQ Figure \* ARABIC �2�: Karnaugh Map for F

We can understand the hazard by considering the Karnaugh map (� REF _Ref469684797 \* MERGEFORMAT �Figure 2�).  A hazard is reflected in a Karnaugh map anyplace two boxes have the same output value, but are covered by different minterms (i.e. no minterm oval covers the line between the boxes).  Thus, the hazard can be eliminated by adding an additional, logically redundant, minterm that covers the hazardous transition (the dotted oval).

Note that it is not possible, in general, to eliminate hazards when multiple input bits are allowed to change simultaneously.

Huffman asynchronous FSM

We can use hazard-free combinational logic to build a simple asynchronous FSM (� REF _Ref469684942 \* MERGEFORMAT �Figure 3�).

�

Figure � SEQ Figure \* ARABIC �3�: Huffman FSM

The delay elements play a role similar to the registers in a synchronous design.  However, whereas a register’s primary purpose is to hold a state bit, the feedback in the FSM construction itself holds state in the Huffman FSM.  Instead, the delay elements serve to equalize the delays in the evaluation front in the circuit.  That is, if one output transitions quickly, while another transitions slowly, the fast transition propagating back to the inputs could violate the fundamental-mode assumption.  Therefore, the delay elements must make sure all outputs stabilize before the new next-state value is presented to the inputs.

Additionally, the state values must be encoded such that adjacent states differ by only one bit.  This may require some redundant (duplicate) state encodings.  This requirement is really just an implication of fundamental-mode operation, since the next-state outputs are also inputs to the combinational logic.

Finally, the inputs to the circuit must themselves meet the fundamental-mode criteria.  In particular, the delay between successive input changes must be at least as long as two trips through the combinational logic and one trip through the delay elements, because the inputs can’t change until the new state value is stable at the combinational outputs.

A variation on this design, called burst-mode operation [Nowick91], permits multiple input bits to change simultaneously, under some restrictions.

The restrictions on input changes may seem difficult or impractical to design around.  However, in the first place, they are not as restrictive as they would be in a synchronous design, because the circuit reacts immediately to changes, and the circuit stabilizes as quickly as the gates allow.  In a synchronous design, the circuit would have to wait for a clock edge to begin stabilizing.  In the second place, note that synchronous designers already have ample experience meeting these requirements, in the form of setup and hold times on registers, which are themselves asynchronous circuits (where the clock input is treated as just another input).  The setup and hold times of a register are its fundamental-mode requirements.

Synthesis

While we now have an architectural model for asynchronous control circuits, we still need a systematic method for designing them.  Appealing again to synchronous design for analogy, we need something to play the role of Moore and Mealy FSMs.

There are two broad approaches.  The first, essentially a concurrent version of the (sequential) FSM, is the Petri Net [Murata89].  Petri Nets are appealing because they are graphical and have a close relationship to FSMs.

The second approach is an algebraic system based on Hoare’s Communicating Sequential Processes (CSP) formalism, originally proposed for designing concurrent software systems.

I will give an example of the Petri Net approach because of its similarity to synchronous approaches.  The example here closely follows the example presented in [Hauck95].

A stateful component commonly used in synchronous designs is the Muller C-element [Miller65].  The C-element has two inputs and one output.  When its inputs are the same, the output is the same as its inputs.  When the inputs differ, the output keeps its prior value.  As an equation, � EMBED Equation.2  ���.

����

Figure � SEQ Figure \* ARABIC �4�: Muller C-element (schematic symbol and dynamic CMOS implementation)

We can specify this behavior as a Petri Net.  A Petri Net has places and transitions, and directed edges between them.  The state of a Petri Net consists of the set of markings, where each place can have either zero or one marks (though some variants of the formalism permit multiple marks per place).

State change in a Petri Net is accomplished by firing transitions.  A transition is enabled to fire when all of its input places (places with edges pointing at the transition) have marks.  When more than one transition is enabled, any enabled transition may fire; this behavior models concurrency.  When a transition fires, marks are removed from all input places, and marks are put into each output place.  The firing of a transition corresponds to the transition of an input or output circuit signal.  In some variations, transition direction (low to high or high to low) is distinguished; my example Net does not do so.

�

Figure � SEQ Figure \* ARABIC �5�: Petri Net for C-element

The Net in � REF _Ref469699574 \* MERGEFORMAT �Figure 5� starts with marks in each of the upper places.  In this state, either A or B may fire.  Once, say, A fires, the only enabled transition is B; this models the way the C-element does not change its output (Q) until both inputs have transitioned. �  Once both inputs transition, the output is enabled, and fires.  The firing of the output restores the marks to their original configuration.

From the Petri Net we can derive an Interface State Graph (ISG), which is similar to a conventional state machine, except that there is no syntactic distinction between inputs and outputs.  The ISG (� REF _Ref469699729 \* MERGEFORMAT �Figure 6�a) is produced by exhaustively simulating the Petri Net, and creating an ISG state for each distinct marking encountered, and an edge for each enabled transition in that marking.

��

Figure � SEQ Figure \* ARABIC �6�: C-element ISGs

The ISG states are then assigned encodings (� REF _Ref469699729 \* MERGEFORMAT �Figure 6�b).  Due to the requirement that adjacent encodings differ by one bit, we may have to create redundant (duplicate) states.  This happens in the example ISG, where each state gets two encodings.  The process of creating state encodings may necessitate the introduction of additional, internal state bits.

Next, logic expressions are derived for each signal.  For input signals, these expressions function as an “enable”, saying when that signal may transition; for output and internal state signals, the expressions directly compute their value.  In either case, the expression is derived by constructing a truth table.  For a given signal, and a given state in the ISG, if that state has a transition for that signal, the truth table entry is toggled.  If the state has no transition for the signal, the truth table entry is unchanged.

�

Figure � SEQ Figure \* ARABIC �7�: Karnaugh maps�(M is the majority function)

Finally, the signal expressions are implemented as hazard-free combinational logic, and inserted into a variant of the Huffman FSM that incorporates the input-enable signals.

�

Figure � SEQ Figure \* ARABIC �8�: Complete C-element circuit

This procedure deserves a few remarks.  First, the number of states in the ISG can be exponential in the number of places in the Petri Net.  This is usually not a practical concern, however, because control logic typically does not have a very large Petri Net specification.  Second, in this example, the circuit resulting from this synthesis procedure is far from minimal — a single C-element would have been adequate!  Techniques for generating minimal implementations automatically are not known.  Finally, the Petri Net itself was presented without discussion of how it was obtained.  It remains somewhat unclear just how to go about designing Petri Nets.

In the “medium”: datapath

Datapath circuits are the computational core of a microprocessor.  They typically consist of large, wide combinational circuits.  Internal timing details of a datapath element are usually not important, but it is crucial to know when the outputs have stabilized, given some knowledge of when the inputs stabilized.  Using datapath elements with built-in completion detectors, we can then connect several datapath elements together using a request/acknowledge handshaking scheme.

Completion detection

The general model for datapath circuits divides them into a combinational block that does the desired computation, and an auxiliary completion detection circuit.  When the circuit’s inputs are stable, a “Go” input is asserted.  When the outputs become stable, the “Done” output is asserted.  Depending on the signaling conventions, a reset cycle may separate computations.

�

Figure � SEQ Figure \* ARABIC �9�: Completion detection model

Bounded delay

The simplest approach is to accompany each datapath circuit with an explicit delay element, designed to always be slower than the critical path through the functional block.

�

Figure � SEQ Figure \* ARABIC �10�: Bounded-delay model

It is possible to design the prototype delay to depend on the inputs (e.g., [Nowick96]), though this requires detailed knowledge of the algorithm and its delay characteristics.

This method is simple, and it does not slow down the functional unit.  However, it is difficult to obtain early completion (data-dependent delays).

Dual rail monotonic encoding

In contrast to bounded-delay, which seeks to minimize the impact of completion detection on the design of the functional block, dual rail encoding adds completion information to every bit.  Each bit of the data is represented by two wires.  For example, signal X would be represented by wires XH (X high) and XL (X low).

XH�XL�X��0�0�not ready��0�1�logic “0”��1�0�logic “1”��1�1�unused��Table � SEQ Table \* ARABIC �1�: Dual rail encoding

Logic gates for dual rail signals are easy to define, and have the advantage that they compute completion information at a very fine granularity.  In this way, circuits built from dual rail gates exhibit average-case, rather than worst-case, delay.

It is interesting to note that, since the signaling is monotonic, we don’t need any inverters to implement these gates!  However, this otherwise academic curiosity can be a problem, because CMOS is the implementation technology of choice, and most CMOS gates have inverted outputs. These gates also have the drawback of using more area, since they compute both a function and its complement.

�

Figure � SEQ Figure \* ARABIC �11�: Some dual rail gates

 To get a sense of the power of fine-grained completion information, consider a full adder implemented with dual rail gates (� REF _Ref469689409 \* MERGEFORMAT �Figure 12�).  The familiar carry-kill, -generate, and -propagate signals are implicitly computed and automatically used to speed the computation.  Rather than waiting for the entire carry chain delay, the outputs stabilize as soon as the longest carry chain finishes, where every carry-kill or -generate signal starts a new carry chain (immediately).

�

Figure � SEQ Figure \* ARABIC �12�: Dual rail ripple adder

 For a ripple adder with random inputs, the average length of the longest carry chain grows logarithmically, whereas the worst-case length grows linearly, in the number of input bits.  For wide adders this is certainly an advantage.

DCVSL

Differential Cascode Voltage Switch Logic (DCVSL) is essentially a precharged version of dual rail.  An NMOS tree computes a function and its complement, so when the evaluate signal is asserted, one side or the other pulls down.  Completion detection is then simply a matter of waiting for one of the outputs to drop.

 One of the advantages of DCVSL is its ability for the two outputs to share transistors in the pulldown network, which saves area.  For example, the adder carry-out circuit in � REF _Ref469689563 \* MERGEFORMAT �Figure 13� shares the XOR pulldown.

�

Figure � SEQ Figure \* ARABIC �13�: DCVSL carry-out

Completion detection comparison

This table offers a crude comparison among the presented completion-detection methods, along several important design dimensions.

�Power�Speed�Area�Early��Bounded Delay��+�+�–��Dual Rail��+�–�+��DCVSL�+�–��+��Table � SEQ Table \* ARABIC �2�: Detection technique comparison

It is interesting to note that early work in asynchronous design, such as [Martin89], tended to use dual rail, whereas later work, such as [Willams91] tends to use DCVSL.

Local handshaking

Building upon completion detection within modules, we need a way to connect modules and regulate the flow of data between them.  A typical technique is to use a handshaking protocol in which one module asserts a request line, and its neighbor asserts an acknowledge line.  This arrangement is best suited for modules in which one is a producer and the other is a consumer of the data that flows between them; the rest of this section assumes this is the case.

Active vs. passive

�

Figure � SEQ Figure \* ARABIC �14�: DCVSL model

In an active transfer protocol, the producer asserts the request line; thus, data and request go in the same direction (producer to consumer).  The producer asserts the request line when it has valid data to pass to the consumer.  When the consumer has received the data, either by internally latching it or by passing the results on to yet another module, it asserts the acknowledge line.  When the consumer sees the acknowledgment, it can stop driving the data lines, and later, make another request.

In a passive transfer protocol, the consumer asserts the request line; data and request go in opposite directions.  The consumer makes this request when it is ready to receive new data.  When the producer supplies this data, it asserts the acknowledge line.

In [Martin89] (p. 105) it is claimed that passive transfer permits an easier implementation of the consumer logic.

Two-phase vs. four-phase

In addition to active vs. passive, the protocol designer must decide between two-phase and four-phase.  Two-phase signaling uses transitions as the semantic unit; the direction (low to high or high to low) is ignored.  To assert a line, a module simply changes its value.

�

Figure � SEQ Figure \* ARABIC �15�: Two-phase protocol

 Four-phase signaling uses levels.  To assert a line, its value must be set to a logic ‘1’.  The protocol’s third and fourth “phases” consist of resetting the request and acknowledge lines to logic ‘0’.

�

Figure � SEQ Figure \* ARABIC �16�: Four-phase protocol

 An apparent advantage of two-phase is that it might be faster, since it does not require the two final transitions.  However, the two extra transitions in four-phase signaling can usually be overlapped with the actual module computation, and they therefore do not cause additional latency.  What’s more, as latches are basically level-sensitive circuits, one must often build additional circuitry to convert two-phase to four-phase for the latches, and this can cost latency.

Example: Micropipelines

Micropipelines were introduced in Ivan Sutherland’s Turing Award lecture [Sutherland89].  They use bounded-delay completion detection and two-phase active handshaking.  This combination permits a particularly simple and elegant implementation of the handshaking circuitry, which is literally just a C-element and an inverter.

�

Figure � SEQ Figure \* ARABIC �17�: Micropipeline

In the “large”: multiway communication

Asynchronous designs such as micropipelines are simple because modules are connected in a simple producer/consumer pipeline.  Communication in such a circuit is easy to organize because it is local and unidirectional.

However, many designs are not so simple.  For example, a microprocessor merges the flow of instructions and the flow of data at the register file — decoded instructions want to read register values while retiring instructions want to write computed values into registers.  Additionally, deeply pipelined designs usually require some forwarding mechanism, in which computed values can be re-injected directly into the pipe (bypassing the register file), to reduce pipeline stalling.

�

Figure � SEQ Figure \* ARABIC �18�: RISC-like synchronous pipeline

 In a synchronous design, complex communication like this is easily handled, because pipeline stages are all in lock step.  Each module knows that the data from all its communication partners is valid at the clock edge, and the merge takes place at exactly that time.

How can we design such a processor asynchronously?  The circuits used in the synchronous case (for example, the forwarding mux shown in � REF _Ref469691170 \* MERGEFORMAT �Figure 18�) will clearly not work; the inputs to any merge element (like a mux) are not simultaneously valid at any particular time.  Any attempt to insert handshaking to force them to be valid simultaneously would coerce modules into lock step, and we would be back to essentially a synchronous design.

Note that forwarding is not necessarily required; the pipe can simply stall between dependent operations.  It is then relatively easy to synchronize events at the RF, because values cannot usefully flow past it.  However, performance may suffer due to stalling.

Forwarding 1: Amulet2

The Amulet2 asynchronous processor [Furber99] organizes forwarding by partitioning it among functional units.  There is a forwarding register for the ALU results, called the Last Result Register (LRR), and a forwarding FIFO for the memory results, called the Last Loaded Value (LLV).

�

Figure � SEQ Figure \* ARABIC �19�: Amulet2 forwarding architecture

The LRR employs a “trick”: since Amulet2 pipeline stages are separated by latches, rather than registers, the RF stage is idle while the ALU stage is computing, and vice-versa.  Thus, when the ALU stage transitions from active to idle, the RF stage is just becoming active.  This transition also corresponds to making the ALU stage’s input latches transparent.  The LRR becomes opaque when those input latches become transparent (and vice-versa), and thus holds the ALU’s computed result while the RF stage does its work, and continues to hold it until the RF stage is complete (because it doesn’t become transparent again until the ALU’s inputs are latched).  Effectively, the LRR is a backward-flowing data channel, piggybacking its handshaking on the signals used for the forward-flowing input latches.  While clever, this is not a general multiway communication design, because it simply inverts the producer/consumer relationship.

The LLV is a FIFO queue of memory stage results.  The important characteristic of the FIFO is that it decouples synchronization of reads and writes, thus permitting two otherwise unsynchronized stages to communicate through it.  However, because the reader (the RF stage in this case) cannot safely inspect anything except the head of the queue, and because the head might be a stale value if successive instructions load the same register, the RF stage must not use the dequeued value unless it is the only value in the queue.  This effectively prevents forwarding from the first of two successive memory reads, even if they load different registers.  This design is general, in that it can be applied to any two nonadjacent stages that need to communicate, but it is inefficient, since it requires the reader to conservatively discard some information.

In [Furber99] (§VII.B), it is reported that the combined performance benefit of the LRR and the LLV was just 2.5%.  This very disappointing fact apparently has two causes.  First, the memory used to test the processor was rather slow, which prevented much pipelining in the first place.  Second, and more relevant to the asynchronous design, is that even when the pipeline stalled while waiting for (say) and ALU result, it did not stall for very long, because the result could quickly flow past the memory stage.  Whereas a synchronous design makes every value wait in every stage for a complete clock cycle, the asynchronous design permits values to fly past unneeded functional units, arriving back at the register file much faster.  Thus, one lesson is that forwarding is partially obviated in asynchronous designs by the fast path back to the RF.

Forwarding 2: forwarding buffer

Considering the shortcomings of the approaches taken in the Amulet2 design, I sketched an alternative design for general forwarding, which I will present mainly to illustrate the breadth of the design space.

�

Figure � SEQ Figure \* ARABIC �20�: Forwarding buffer architecture

The forwarding buffer (FB) is an array of slots attached to the register file.  When an instruction is decoded and flows past the RF, it requests operand values (as usual) from the RF.  At the same time, it allocates a free slot in the FB for its result, and indicates in that slot which register it intends to eventually write.

If an instruction requests an operand which is has an outstanding write pending in the FB, the instruction must wait for that value to be written.

When an instruction finishes computing its result, it writes into its allocated slot.  Because each instruction has its own slot, there is no contention, and the instruction is free to write the value as soon as it is known.  Having thus written its result, the instruction can simply “evaporate” from the pipe.

The RF then has the task of coordinating register reads with slot writes, and also must write values from slots to registers, as time permits.  While this is a nontrivial asynchronous design challenge, it is localized, and therefore presumably tractable.

Forwarding 3: Counterflow

The Counterflow processor architecture is introduced in [Sproull94].  It differs from the classic forwarding architecture in three ways:

The forwarding path is pipelined.

The register file is pushed to the end of the pipe.

The whole design is turned on its side; instructions flow from bottom to top instead of from left to right.

In a counterflow processor, instructions flow up, and data flows in both directions.  An instruction collects its operands from the right pipe, computes its result in the pipeline stage containing the required functional unit (there may be more than one), and puts the result in both pipes.  The computed result in the left pipe flows up into the register file, and the result in the right pipe is effectively forwarded to subsequent instructions.  Data flow is constrained such that every pair of data in the left and right pipes must interact in some stage; left and right cannot “swap”.  In principle the register file can use any policy (including random) to decide which registers’ values to insert into the right pipe; in practice, the decode stage has a special hint path to tell the RF which ones will be needed.

�

Figure � SEQ Figure \* ARABIC �21�: Counterflow architecture

While this architecture can be implemented either synchronously or asynchronously, the communication is almost all local, which lends itself to asynchronous implementation.  Communication organization is an extension of the simple producer/consumer pipe, with one running in each direction.  With respect to forwarding, the key insight in the design is that by pipelining the multiway communication paths, data can move almost as freely (if a little slower, perhaps) as in the synchronous case, but using only local communication.

Asynchronous logic and concurrent software

There is an important connection between asynchronous logic and concurrent (parallel) software.  In both cases, several processes (in a general sense) are executing without implicit synchronization.  This contrasts with synchronous logic, in which everything is synchronized by the global clock, and sequential software, which is synchronized by the one-at-a-time nature of sequential execution.  Synchronous logic can also be seen as a one-at-a-time paradigm, where the “one” thing happening at a time is the combinational logic between the state registers.

It is interesting to note that both asynchronous logic and concurrent software use similar design formalisms.  We’ve already seen Petri Nets, and hinted at the use of Communicating Sequential Processes (CSP), for synthesis of control circuitry.  Petri Nets are also used in concurrent software, to do deadlock prevention (among other things), and CSP was of course invented as a basis language for theorizing about concurrent software.

The key attribute that asynchronous logic and concurrent software share is the need to organize and synchronize communication; if the processes didn’t need to communicate, the design task would be easy.  Since they do, each communication event needs explicit synchronization, and global effort must be expended to avoid deadlock.  Local communication and synchronization in software is achieved through (e.g.) shared variables and mutexes, and in asynchronous logic through FIFOs and the associated handshaking, primarily.  In both kinds of systems, deadlock avoidance resists canned solutions.

Finally, I mention that just as asynchronous logic has an “easy” case, namely the straight FIFO, concurrent software has this same easy case.  A common example is the Unix pipe.  A shell pipeline is several concurrent processes, but because their communication follows a strict producer/consumer model, it admits a simple and reusable organization.

Should we use asynchronous logic?

This section discusses each of the benefits and drawbacks to asynchronous logic, as compared to synchronous logic.

Benefit: early completion

The principal performance benefit to asynchronous logic is its ability to exhibit average case, rather than worst-case, behavior.  For example, the average delay (for random inputs) of a ripple-carry adder grows logarithmically in the number of input bits, whereas the worst-case delay grows linearly.  A dual rail or DCVSL implementation of such an adder could retain the simple and compact ripple design, with performance (on average) comparable to a larger and more complex design like carry-select or carry-save.

Benefit: better electromagnetic mmissions

Synchronous designs tend to concentrate circuit activity around the clock edge, which causes an EM spike at the clock frequency and harmonics thereof.  Asynchronous designs tend to distribute activity more evenly in time, and hence distribute EM emissions more evenly across the frequency spectrum.

Some applications, like cellular phones, are sensitive to excess EM activity.  An asynchronous design offers a cheaper and lighter alternative to shielding.  Even for desktop computers, as the society utilizes more wireless communication, all EM emissions at the expected frequencies (GHz) of future processors become problematic.

Benefit: low power

Low power synchronous designs such as the StrongARM [Montanaro96] rely on a low-power idling mode, in which the clock is turned off.  However, restarting the clock, which often includes a Phase-Locked Loop (PLL), is such a time-consuming operation (300ms) that idling can only be done with a relatively course granularity.  Since there is no clock or PLL to stop or start, an asynchronous processor can effectively idle at a much finer granularity.

Another low power technique in synchronous designs is to selectively enable or disable the clock signal to functional units, depending on whether they are needed for the current computation.  This stems from the implicit need to distribute the clock everywhere; extra effort must be expended to dynamically limit its distribution.  Asynchronous circuits, in contrast, automatically only draw power while doing useful work, and at arbitrarily fine granularity of function.

Benefit: adaptability

CMOS integrated circuit performance depends (post-fabrication) primarily on temperature and supply voltage (Vdd).  Synchronous designs therefore have an implicit (nonlinear) coupling between the clock frequency and these environmental factors.  Unless the system can vary the clock in accordance with these variations and the coupling function, the clock must be paced conservatively.  This costs performance under nominal conditions, and correctness under extreme conditions.

Asynchronous designs automatically adjust to slower circuit performance.  This is true even when using bounded-delay, because the prototype delay will increase by the same amount as the computational delay, if designed correctly.  As just a single example of this adaptability, the first Caltech 2-(m asynchronous processor design was functional with Vdd from 7V to 0.35V (switching threshold)! [Martin89]

All this means a system designer has much greater flexibility concerning environmental factors.  For example, one could easily imagine a laptop computer with a user-settable Vdd knob.  Such functionality in a synchronous system would be very difficult to provide.

Benefit: no global clock

The global clock in a synchronous design represents a significant design challenge in its own right.  Controlling the skew in a complex, high-frequency design is essential for correct operation, but difficult to achieve.  The clock node can be responsible for consuming as much as 40% of the total power budget [Dobberpuhl92].  And, at expected future processor frequencies, a chip-wide node begins to act like an antenna, further complicating distribution challenges.  Eliminating the clock provides area, power, and engineering time savings that can be redirected elsewhere.

Drawback: design difficulties

The primary drawback to asynchronous design is that it is hard.  Control logic (in the “small”) must operate in fundamental mode, or a close variant (like burst mode), and the synthesis formalisms are unfamiliar.  Architectural design (in the “large”) has all the same challenges that concurrent software has; researchers have yet to make concurrent software design a turnkey affair, despite decades of attention.

And of course, there is the basic obstacle that asynchronous design techniques have been out of favor since the 1980s, and are therefore not typically taught in universities.  If a microprocessor design company today wanted to use asynchronous logic, they would have to begin by training their engineering staff in the basics.

Drawback: tools

The predominance of CAD tools oriented towards synchronous design is another chicken-and-egg problem.  However, most circuit simulation techniques are independent of synchrony, and existing tools can be adapted for asynchronous use.  Also, previous academic design efforts have produced the first sprinkling of a dedicated tool base.

Drawback: testing

Testing asynchronous circuits presents several new challenges.  For example, a common technique in synchronous testing is to slow or stop the clock, to allow the logic functions to be observed at human speeds.  However, gating the request and/or acknowledge signals is a possibility, and it is at least conceivable that dropping Vdd to near the threshold could provide a useful slowing effect (and possibly more useful, since some of the slow-transition effects are preserved, unlike clock dividing).

Additionally, asynchronous circuits have timing requirements that are more constrained than synchronous circuits.  Whereas the latter simply have to compute a valid result before the clock edge, asynchronous circuits may have minimum delays too; the prototype delay in a bounded-delay design is such a circuit.

Finally, related to the design difficulties, is the testing of the possible interleaving scenarios, as in concurrent software.  Asynchronous control circuitry must be designed to handle a variety of contingencies regarding timing, and the testing harness must be able to cause at least most of these possibilities.

Conclusion

Why isn’t it used?

Why doesn’t industry currently use asynchronous designs (with a handful of exceptions)?  The main cause is risk.  Asynchronous design techniques are sometimes seen as unproven, despite a number of academic (and industry) successes.  Further, any asynchronous design will incur additional cost in training engineers to use techniques they didn’t learn in school.  Finally, tool development is likely seen as an obstacle.

Moreover, at least up to now, industry has been getting by without asynchronous design.  So far, the clocked designs have been feasible (if occasionally expensive), and low power does not yet dominate demand.

Should it be used?

My conclusion is an emphatic yes!  Clocks are getting faster, while chips are getting bigger, both of which make clock distribution harder.  Chips are also becoming more heterogeneous, with functions like memory and network interfaces being considered, all of which complicates the global timing analysis necessary for a synchronous design.  Finally, we are entering an age when processors will be just about everywhere, and this will require very low power designs.  It’s just not practical to expect a clean, skew-free clock for every (say) piece of clothing with a processing element.

But this can only happen if more focus, especially at the university level, is given to asynchronous design.  Most of today’s designers don’t understand it well enough to use it, and may even regard it with suspicion.  It is certainly a challenge, but just as the software community is moving towards more concurrency, the hardware community must move to incorporate asynchronous logic.

References

[Dobberpuhl92]  D.W. Dobberpuhl, et. al., “A 200-MHz 64-b Dual-Issue CMOS Microprocessor,” in IEEE Journal of Solid-State Circuits, vol. 27, no. 11, pp. 1555-1565, November 1992.

[Furber99]  S.B. Furber, J.D. Garside, P. Riocreux, S. Temple, P. Day, J.W. Liu, N.C. Paver, “AMULET2e: An asynchronous embedded controller,” in Proceedings of the IEEE, vol. 87, no. 2, pp. 243-256, February 1999.

[Furber96]  S.B. Furber, “Breaking Step - The Return of Asynchronous Logic,” in IEE Colloquium on Design and Test of Asynchronous Systems, 1996

[Hauck95]  S. Hauck, “Asynchronous Design Methodologies: An Overview,” in Proc. IEEE, vol. 83, no. 1, pp. 69-93, January 1995.

[Miller65]  R.E. Miller, “Sequential Circuits,” Chapter 10, in Switching Theory, vol. 2, Wiley, NY, 1965.

[Martin89]  A.J. Martin, S.M. Burns, T.K. Lee, D. Borkovic, P.J. Hazewindus, “The first asynchronous microprocessor: the test results,” in Computer Architecture News, vol. 17, no. 4, pp. 95-110, June 1989.

[Montanaro96]  J. Montanaro, et. al., “A 160-MHz 32-b, 0.5-W CMOS RISC Microprocessor,” in IEEE Journal of Solid-State Circuits, vol. 31, no. 11, pp. 1703-1714, November 1996.

[Murata89]  T. Murata, “Petri nets: Properties, analysis and applications,” in Proc. IEEE, vol. 77, no. 4, pp. 541-580, 1989.

[Nowick91]  S.M. Nowick and D.L. Dill, “Automatic synthesis of locally-clocked asynchronous state machines,” in Proc. ICCAD, pp. 192-197, 1991.

[Nowick96]  S.M. Nowick, “Design of a low-latency asynchronous adder using speculative completion,” in IEE Proceedings-Computers and Digital Techniques, vol. 143, no.5, pp. 301-307, September 1996.

[Poole96]  N. Poole, “Experiences with Asynchronous Design Methodologies,” in IEE Colloquium on Design and Test of Asynchronous Systems, 1996.

[Sproull94]  R.F. Sproull, I.E. Sutherland, C.E. Molnar, “The Counterflow pipeline processor architecture,” in IEEE Design & Test of Computers, vol. 11, no. 3, pp. 48-59, Fall 1994.

[Sutherland89]  I.E. Sutherland, “Micropipelines,” in Communications of the ACM, vol. 32, no. 6, pp. 720-738, June 1989.

[Williams91]  T.E. Williams, M.A. Horowitz, “A zero-overhead self-timed 160-ns 54-b CMOS divider,” in IEEE Journal of Solid-State Circuits, vol. 26, no. 11, pp. 1651-1661, November 1991.

� There is a subtle discrepancy between the equation and the Petri Net, because the equation permits an input to transition many times with no intervening transitions on the other input, whereas the Net demands that input transitions be paired.  For simplicity, assume the Net specifies the circuit we want.



�PAGE  �





�PAGE  �1�










