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Abstract 
AND-INV graphs (AIGs) are Boolean networks composed of two-

input AND-gates and inverters. In the known applications, such as 
equivalence checking and technology mapping, AIGs are used to 
represent and manipulate Boolean functions. AIGs powered by 
simulation and Boolean satisfiability lead to functionally reduced 
AIGs (FRAIGs), which are “semi-canonical” in the sense that 
each FRAIG node has unique functionality among all the nodes 
currently present in the FRAIG. The paper shows that FRAIGs can 
be used to unify and enhance many phases of logic synthesis: from 
the representation of the original and the intermediate netlists 
derived by logic optimization, through technology mapping over 
multiple logic structures, to combinational equivalence checking. 
Experimental results on large public benchmarks confirm the 
practicality of using FRAIGs throughout the logic synthesis flow. 

1 Introduction 
AND-INV graphs (AIGs) represent Boolean functions in 

combinational equivalence checking (CEC) [10][13], bounded 
model checking (BMC) [1] and technology mapping [12][15]. As a 
functional representation AIGs enjoy remarkable properties: 
• AIGs are composed of two-input ANDs and inverters 

represented as flipped bits on the edges. This uniformity has 
considerable implementation advantages. 

• The AIGs are a multi-level logic representation whose 
construction time and size are proportional to the size of the 
circuit. This is in contrast with two most commonly used 
representations: BDDs whose canonicity forces their size to 
be exponential for some practical circuits such as 
multipliers, and SOPs whose two-level form leads a non-
robust manipulation of large logic nodes in SIS [21].  

• AIGs enhanced with random simulation and Boolean 
satisfiability can efficiently solve a remarkable variety of 
computational problems in logic synthesis and verification. 
Simulation plays the role of directing synthesis and 
reducing the number of calls to the SAT solver. 

AIGs are not canonical: a Boolean function has many AIG 
representations. For example, function F = abc can be represented 
as follows: ((ab)c), (a(bc)), ((ac)(bc)), etc. Figure 1 shows two 
AIGs of a four-variable function, which cannot be derived from 
each other by algebraic transformations. These AIGs are different 
Pareto points on the area/delay curve: one has fewer ANDs, while 
another has fewer levels of ANDs. 

Since AIGs are not canonical, internal nodes of an AIG may 
have equivalent functionality. This increases the number of AIG 

nodes and makes reasoning on the graph structure inefficient and 
time consuming. Indeed, merging two equivalent nodes removes 
one variable from any underlying SAT problem and reduces the 
search space for feasible solutions by the factor of two.  

Many applications, e.g. [17], require that the functionally 
equivalent nodes be detected and merged. In this paper, this 
process is called functional reduction. The known applications 
achieve functional reduction by applying BDD sweeping [13] or 
SAT sweeping [14] to the AIGs as a post-processing step. 

The first contribution of the present paper is an algorithm that 
integrates functional reduction into the process of AIG construction 
(rather than a post processing step) leading to a functional 
representation which we call Functionally Reduced AIGs 
(FRAIGs). FRAIGs are “semi-canonical” because no two nodes in 
a FRAIG structure have the same function in terms of the primary 
inputs, but the same function may have different FRAIGs 
structures. The construction is efficient due to the synergy between 
simulation and SAT. Experimental results show that FRAIGs are 
much more robust than BDDs and can be constructed for a wide 
range of practical circuits in reasonable time. 

The paper presents an implementation of a FRAIG package and 
discusses how functional reduction on-the-fly is similar to the 
efficient method [2] of building Reduced Ordered Binary Decision 
Diagrams (ROBDDs) in the present ROBDD packages. (Originally 
[5], the BDDs were constructed in a non-reduced form and the 
reduction process was applied as a post-processing step.)  

The second contribution of the paper is in showing that, due to 
functional reduction, FRAIGs can efficiently accumulate structural 
choices (functionally equivalent FRAIG structures). The efficiency 
of FRAIG construction suggests a new synthesis methodology 
called lossless logic synthesis, which uses intermediate structures 
derived during logic optimization as well as the structure of the 
initial and the final networks. Therefore, in lossless synthesis, the 
role of logic optimization shifts from deriving a single final 
optimized network to performing guided permutations of multiple 
logic structures and allowing for the final implementation to be 
chosen among these by the technology mapping step. This idea 
also enables a different design style where-in a designer can 
optimize parts of the circuit manually. These are added as choices. 
If the designer’s implementation is superior to the ones derived by 
the synthesis system, it will be automatically selected during 
technology mapping.  This increases the applicability of synthesis 
tools in an industrial context. 

The third contribution is in developing and experimentally 
evaluating a prototype of a lossless logic synthesis system, which 
uses FRAIGs at all stages of the flow, from the representation of 
the original and partially-optimized netlists, through technology 
mapping over multiple logic structures, to combinational 
equivalence checking. 



The paper is organized as follows. Section 2 surveys traditional 
AIGs. Section 3 reviews the previous work. Section 4 outlines the 
new algorithm to construct FRAIGs. Section 5 discusses some 
implementation details. Section 6 presents lossless logic synthesis. 
Section 7 reports experimental results. Section 8 concludes and 
lists directions for future work. 

2 Background  
This paper assumes familiarity with the basics of Boolean 

functions, Boolean networks, and Binary Decision Diagrams [5]. 

2.1 Definitions 
Definition. AND-INV graph (AIG) is a Boolean network 

composed of two-input AND-gates and inverters. 
Definition. A representation of a Boolean function is canonical 

if, for any function, the representation is unique. 
AIGs are not canonical, that is, the same function can be 

represented by two functionally equivalent AIGs with different 
structure. An example of such function is shown in Figure 1. 
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Figure 1. Two different AIGs for a Boolean function.  

Note that both graphs in Figure 1 are FRAIGs, since in each of 
them no pair of nodes represents the same function. Figure 2 shows 
the same function represented by a redundant graph with nodes A 
and B having the same function.  
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Figure 2. An AIG with functionally redundant nodes.  

Definition. The size of an AIG is the number of AND nodes in it. 
The number of logic levels is the number of AND-gates on the 
longest path from a primary input to a primary output.  

The inverters are ignored when counting nodes and logic levels. 
In the software implementation, inverters are represented as flipped 
node pointers [13]. This implementation is similar to that of BDDs 
with complemented edges [2]. 

Definition. The function of an AIG node n, denoted fn(x), is a 
Boolean function of the logic cone rooted in node n and expressed 
in terms of the PI variables x assigned to the leaves of the AIG. 

Definition. A functionally reduced AIG (FRAIG) is an AIG, in 
which, for any two n1 and n2, 1 2

( ) ( )n nf x f x≠  and 
1 2
( ) ( )n nf x f x≠ .  

2.2 AIG Construction 
AIGs for Boolean functions can be constructed starting from 

different functional representation: 
SOP: Given an SOP representation of a function, it can be 

factored [3] and the factored form can be converted into the AIGs. 
Each two-input OR-gate is converted into a two-input AND-gate 
using the DeMorgan rule. 

Circuit: Given a circuit representation of a (multi-output) 
Boolean function, the (multi-output) AIG is constructed in a 
bottom-up fashion, by calling a recursive construction procedure 
for each PO of the circuit. When called for a PI node, the 
procedure returns the elementary AIG variable. Otherwise, it first 
calls itself for the fanins of a node and then builds the AIG for the 
node using the factored form of the node. 

When an AIG is constructed from a circuit, the number of AIG 
nodes does not exceed the number of literals in the factored forms. 
When the AIG is constructed from a BDD, the number of AIG 
nodes does not exceed three times the BDD number since each 
MUX can be represented using three ANDs. It follows that the size 
of the AIG is proportional to the size of the circuit or BDD.  

Quantifications performed on AIGs have an exponential 
complexity in the number of quantified variables because 
quantifying each variable is done by ORing the cofactors and can 
potentially duplicate the graph size. Except for quantification, 
Boolean computation is more robust with AIGs than with BDDs. 
This is because Boolean operations on AIGs lead to the resulting 
graphs whose size is bounded by the sum of the sizes of their 
arguments, while in the case of BDDs the worst case complexity of 
the result is equal to the product of the sizes of the arguments.  

2.3 Structural Hashing 
Structural hashing (strashing) of AIGs introduces partial 

canonicity into the AIG structure. When a new AND-gate is added 
to the graph, several logic levels of the fanin AND-gates are 
mapped into a canonical form. Although the resulting AIG is not 
canonical, it contains sub-graphs, which are canonical as long as 
they have less than the given number of logic levels. 

No strashing: When an AIG is constructed without strashing, 
AND-gates are added one at a time without checking whether an 
AND-gate with the same fanins already exists in the graph.  

One-level strashing: When a new AND-gate is added, checks is 
performed for a node with the same fanins (up to permutation).  

Two-level strashing: In the pre-computation phase, all two-level 
AND-INV combinations are enumerated and, for each Boolean 
function realizable by a two-level AIG, one representation is 
selected as the representative one. In the AIG construction phase, 
when adding a new AND-gate, the canonical form of the two-level 
AIG rooted in this gate is constructed, which may require building 
new AND-gates for the fanins.  

A detailed discussion of two-level structural hashing can be 
found in [9][13]. An efficient implementation runs in time linear in 
the number of AIG nodes. The resulting graphs may have 5-10% 
fewer nodes, compared to one-level strashing. A drawback of two-
level strashing is that when multiple AIGs are constructed 
repeatedly, it leads to an increase in the number of unused nodes in 



the AIG manager, which in turn leads to the need to perform  
repeated garbage collection. This may slow down some AIG-based 
applications, such as image computation. 

3 Previous Work 
AIGs have been applied as a circuit representation in 

combinational equivalence checking (CEC) [13] and an object 
graph representation in technology mapping [15]. In both cases, 
AIGs are built initially using strashing, and later optionally post-
processed to enforce functional reduction. If [18] AIGs are used for 
unbounded model checking, in which both the circuits and 
interpolants computed from the unsatisfiability proofs are 
represented by AIGs. This work recognizes the need for functional 
reduction ([18], Section 3.2, paragraph 1) noting that AIGs tend to 
have many redundancies not captured by strashing.  

Two procedures have been proposed to perform functional 
reduction. BDD sweeping [13] constructs BDDs of the AIG nodes 
in terms of the PIs and intermediate “cut-point” variables. BDD 
construction is controlled by resource limits, such as a restriction 
on the BDD size. Any pair of AIG nodes with the same BDD is 
merged, and the fanout cones are rehashed. As long as all BDDs 
can be built within the resource limits, the result is a FRAIG. The 
second procedure, SAT sweeping [14][16], achieves the same 
merging and propagation by solving a sequence of incremental 
topologically-ordered SAT problems designed to prove or disprove 
the equivalence of cut-point pairs. The candidate pairs are detected 
using simulation. In both approaches, the initial graph is 
constructed in a redundant form followed by functional reduction 
applied as a post-processing step.  

Another approach to CEC was developed using NAND graphs 
[7] but the authors do not discuss what methods are used to 
perform functional reduction or how they prove the equivalence of 
the output functions represented using NAND graphs. 

4 Functional Reduction Algorithm 
This section presents the main contribution of the paper, a new 

and efficient algorithm to build AIGs on-the-fly while ensuring 
that they are functionally reduced by construction. 

Figure 3 shows the pseudo-code of the traditional AIG 
construction with one-level strashing. The first part checks trivial 
cases, such as when the nodes are equal up to complementation, or 
when one node is a constant. Next, the arguments are ordered to 
ensure that swapping of fanins does not create a new node. One-
level strashing is performed by looking up in a hash table, which 
maps the pair of fanins into the AND gate with these fanins. If a 
node with these fanins exists, it is returned. Otherwise, a new node 
is created, added to the hash table, and returned. 
AAiigg__NNooddee  **  OOppeerraattiioonnAAnndd((  AAiigg__MMaann  **  pp,,  AAiigg__NNooddee  **  nn11,,  AAiigg__NNooddeeee  **  nn22  ))  
{{  
          AAiigg__NNooddee  **  rreess,,  **  ccaanndd,,  **  tteemmpp;;      AAiigg__NNooddeeAArrrraayy  **  ccllaassss;;  
          //******  ttrriivviiaall  ccaasseess  ******//  
          iiff  ((  nn11  ====  nn22  ))                                                                                                                                rreettuurrnn  nn11;;  
          iiff  ((  nn11  ====  NNOOTT((nn22))  ))                                                                                                            rreettuurrnn  00;;  
          iiff  ((  nn11  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn22;;  
          iiff  ((  nn22  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn11;;  
          iiff  ((  nn11  <<  nn22  ))    {{  //******  sswwaapp  tthhee  aarrgguummeennttss  ******//  
                        tteemmpp  ==  nn11;;  nn11  ==  nn22;;  nn22  ==  tteemmpp;;  
          }}  
          //******  oonnee  lleevveell  ssttrruuccttuurraall  hhaasshhiinngg  ******//  
          rreess  ==  HHaasshhTTaabblleeLLooookkuupp((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  nn11,,  nn22  ));;  
          iiff  ((  rreess  ))                                                                                                                                                    rreettuurrnn  rreess;;  

          rreess  ==  CCrreeaatteeNNooddee((  pp,,  nn11,,  nn22  ));;        
          HHaasshhTTaabblleeAAdddd((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  rreess  ));;                                    rreettuurrnn  rreess;;  
}}       

Figure 3. AIGs construction with one-level strashing. 
Figure 4 contains the pseudo-code of FRAIG construction, which 

performs both one-level strashing followed by functional 
reduction. Functional equivalence test, the most time-consuming 
part of the algorithm, is performed by a call to the SAT solver in 
CChheecckkFFuunnccttiioonnaallEEqquuiivvaalleennccee(()). To reduce the number of SAT 
solver calls, random simulation is employed. The simulation vector 
of each node is derived using bit-parallel simulation of the AIG 
starting from the PIs. In our implementation, simulation of a new 
node is done incrementally by the bit-wise ANDing (possibly 
complemented) simulation vectors of the fanins. An additional 
hash table is used, which maps each simulation vector into a set of 
AIG nodes that have this simulation vector (its simulation class). 
AAiigg__NNooddee  **  OOppeerraattiioonnAAnndd((  AAiigg__MMaann  **  pp,,  AAiigg__NNooddee  **  nn11,,  AAiigg__NNooddeeee  **  nn22  ))  
{{  
          AAiigg__NNooddee  **  rreess,,  **  ccaanndd,,  **  tteemmpp;;      AAiigg__NNooddeeAArrrraayy  **  ccllaassss;;  
          //******  ttrriivviiaall  ccaasseess  ******//  
          iiff  ((  nn11  ====  nn22  ))                                                                                                                                rreettuurrnn  nn11;;  
          iiff  ((  nn11  ====  NNOOTT((nn22))  ))                                                                                                            rreettuurrnn  00;;  
          iiff  ((  nn11  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn22;;  
          iiff  ((  nn22  ====  ccoonnsstt  ))                                                                                                                        rreettuurrnn  00    oorr    nn11;;  
          iiff  ((  nn11  <<  nn22  ))    {{  //******  sswwaapp  tthhee  aarrgguummeennttss  ******//  
                        tteemmpp  ==  nn11;;  nn11  ==  nn22;;  nn22  ==  tteemmpp;;  
          }}  
          //******  oonnee  lleevveell  ssttrruuccttuurraall  hhaasshhiinngg  ******//  
          rreess  ==  HHaasshhTTaabblleeLLooookkuupp((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  nn11,,  nn22  ));;  
          iiff  ((  rreess  ))                                                                                                                                                    rreettuurrnn  rreess;;  
          rreess  ==  CCrreeaatteeNNooddee((  pp,,  nn11,,  nn22  ));;        
          HHaasshhTTaabblleeAAdddd((  pp-->>ppTTaabblleeSSttrruuccttuurree,,  rreess  ));;  
          iiff  ((  pp-->>FFllaaggUUsseeOOnneeLLeevveellHHaasshhiinngg  ))                                                            rreettuurrnn  rreess;;  
        //******  ffuunnccttiioonnaall  rreedduuccttiioonn  ******//  
          ccllaassss  ==  HHaasshhTTaabblleeLLooookkuupp((  pp-->>ppTTaabblleeSSiimmuullaattiioonn,,  nn11,,  nn22  ));;  
          iiff  ((  ccllaassss  ====  NNUULLLL  ))  {{  
                    ccllaassss  ==  CCrreeaatteeNNeewwSSiimmuullaattiioonnCCllaassss((  rreess  ));;      
                    HHaasshhTTaabblleeAAdddd((  pp-->>  ppTTaabblleeSSiimmuullaattiioonn,,  ccllaassss  ));;            rreettuurrnn  rreess;;  
          }}            
          ffoorr  eeaacchh  nnooddee  ccaanndd  iinn  ccllaassss  
                    iiff  ((  CChheecckkFFuunnccttiioonnaallEEqquuiivvaalleennccee((  ccaanndd,,  rreess  ))  ))  {{  
                                AAddddNNooddeeTTooEEqquuiivvaalleenncceeCCllaassss((  ccllaassss,,  rreess  ));;          rreettuurrnn  ccaanndd;;  
                    }}  
          AAddddNNooddeeTTooSSiimmuullaattiioonnCCllaassss((  ccllaassss,,  rreess  ));;                                      rreettuurrnn  rreess;;  
}}        

Figure 4. FRAIG construction. 
In Figure 4, the simulation table lookup results in the simulation 

class of the new node. If the class is empty, a new class is created 
and initialized with the given node. In this case, there is no need 
for the equivalence check because the new node is proved to be 
functionally unique by simulation. 

If the simulation class is not empty, then for each member cand 
of this class a SAT-based functional equivalence test is performed. 
If the equivalence checking procedure returns TRUE, that is, the 
new node res is equivalent to the old node cand, the old node is 
returned, which ensures functional reduction. Finally, if the new 
node is not equivalent to any node in its simulation class, it is 
added to the simulation class and returned. 

 
 



5 Implementation Details 
This section discusses the details of the FRAIG implementation.  

5.1 Simulation 
The performance of the proposed algorithm critically depends on 

the efficiency of simulation. The larger are simulation vectors, the 
better is their distinguishing power and the fewer SAT-based 
equivalence tests are needed. In the current implementation, 
approximately 4000 random bit-patterns are used for random 
simulation. The simulation runtime is typically about 10% of the 
SAT solver runtime. The memory overhead for storing simulation 
information is about 0.5K per node. This memory is allocated 
independently from the memory used for the AIG nodes. When the 
FRAIG is constructed, the simulation memory can be de-allocated 
and re-used by the application. 

Another way of increasing the efficiency of simulation is using 
the counter-examples returned by the SAT solver during 
unsuccessful equivalence tests. As pointed out in [13], these 
counter-examples distinguish functions, which are hard to 
distinguish by random simulation. In the current implementation, 
random simulation is performed when a node is first constructed. 
To use the SAT solver feedback, we re-simulate the AIG 
periodically, each time 32 new counter-examples are accumulated. 

5.2 SAT Solving 
For efficiency, the algorithm requires tight integration of the 

circuit-based AIG data structure and a SAT solver. The solver used 
in the implementation is MiniSat [8], with modifications to restrict 
incremental SAT solving to a subset of variables and clauses. 

The CNF for the AIG is loaded in the SAT solver incrementally, 
by adding three CNF clauses each time a new AIG node is created. 
Checking functional equivalence for AIG nodes n1 and n2 is 
performed as follows: (1) collect the AIG nodes in the union of the 
transitive fanin cones of n1 and n2; (2) set the “branchable” 
variables to be those corresponding to the above AIG nodes; 
(3) run the solver to prove or disprove equivalence.  

Incremental runs of the SAT solver create learned clauses, which 
are stored in the global clause database. Because the logic cones of 
different equivalence checking problems often overlap, the learned 
clauses are shared and reused, which improves the performance of 
the SAT solver. 

5.3 Handing Functionally Equivalent Nodes 
In Figure 4, when a new node is found to be functionally 

equivalent to the old node, the new node can be garbage collected. 
However, in the current implementation, the new node is left in the 
graph as a node without fanouts. The node is stored in the list of 
equivalent nodes, and from the node, we have the pointer to the 
representative of the equivalence class. Keeping the equivalent 
nodes around works as a "structural record" of equivalences 
proved, similar to the computed table in the BDD package. If we 
hit the same structure again, we look at the pointer to the 
representative node, and return this representative immediately, 
without going through the potentially expensive equivalence test. 

Saving the functionally equivalent nodes is also beneficial for 
some applications discussed in the following section.  

6 Applications of FRAIGs 

6.1 Traditional Logic Synthesis 
A straight-forward use of FRAIGs in logic synthesis is to 

compact circuits by detecting and merging functionally equivalent 
nodes. To this end, the FRAIGs for all the network nodes are 
constructed in terms of the PI variables. Next, the network nodes 
are grouped into classes of equivalent functionality if they are 
represented by the same FRAIG node. One representative of each 
class is selected and substituted for other nodes of the same class.  

 Other potential applications of FRAIGs in synthesis include: (a) 
a uniform representation of algebraic factored forms and DAGs 
resulting from Boolean decomposition, (b) a robust representation 
of node functions, manipulated by a logic synthesis system when it 
performs operations, such as elimination, collapsing, and node 
immunization, (c) an alternative computation engine to solve 
Boolean problems, such as don’t-care computation. 

6.2  “Lossless” Logic Synthesis 
In the classical synthesis, the network is subjected to a sequence 

of optimization steps. Each step leads to a new network while the 
previous networks are no longer considered; in other words, they 
are lost for optimization. Meanwhile, it is possible that an 
intermediate network was better, in whole or in part, compared to 
the final one. The idea of lossless synthesis is to accumulate all the 
intermediate logic representations and postpone the final selection 
until later in the design process. 

FRAIG construction can be seen as an efficient way of detecting 
and accumulating alternative structural implementations of 
Boolean functions. In this scenario, several versions of the network 
derived by applying a sequence of optimization commands are 
FRAIGed into one AIG, which internally records the structural 
alternatives using classes of functionally equivalent AIG nodes. No 
matter where the structural differences occur in the networks, on 
the PI side or on the PO side, FRAIGs take care of identifying and 
storing these differences in terms of intermediate “cut-points”. 
Technology mapping applied to this cumulative graph selects the 
best mapping over all available choices, which originate from 
different versions of the same network.  

6.3 Technology Mapping 
The traditional technology mapping [12] takes as input an object 

graph represented by a two-input gate network and a set of pattern 
graphs corresponding to the gates from a standard cell library. The 
goal of mapping is to find a covering of the object graph using the 
pattern graphs, which is optimal with respect to a cost function.  

More recent work [15] represents the object graph using AIGs 
with choice nodes, which compactly encode multiple logic 
structures. In [15] the structures are derived by enumerating 
algebraic decompositions of the logic nodes. The more choices are 
present in the object graph, the better is the mapping quality.  

In the present work, we developed a technology mapper that is 
similar to [15] in its capacity to handle choices and map over a 
number of encoded logic structures. A detailed discussion of our 
technology mapper is beyond the scope of this paper. Here we only 
make several remarks about the use of choices generated and used 
in the new technology mapper. 

The choices used in our technology mapper include different 
logic structures derived by FRAIGing in the course of netlist 
optimization as well as different algebraic decompositions. The 



former are “sparse” and “deep” because there are relatively few of 
them but they penetrate across multiple logic levels. The latter are 
“dense” and “shallow” because there are many of them but they 
cover only a few logic levels. The combination of the two types of 
structural flexibility helps overcome structural bias, which 
favorably reflects on the quality of technology mapping. 

6.4 Formal Verification 
The traditional AIGs post-processed by BDDs sweeping or SAT 

sweeping to ensure functional reduction are widely used in CEC 
[13][10] and BMC [1][14]. In this paper, we use a simplified 
equivalence checker developed by performing functional reduction 
on the fly. Using FRAIGs for CEC in this case is similar to using 
BDDs. Once FRAIGs are constructed for the circuit outputs, the 
circuits are equivalent if and only if the corresponding pairs of 
outputs are represented by the same FRAIG nodes.  

It should be noted that interleaving functional reduction on the PI 
side with SAT-based search for counter-examples on the PO side, 
as proposed in [13], leads to a more robust CEC for deeper circuits, 
compared to forcing functional reduction on the fly, as done in the 
current implementation. The non-robustness of FRAIGs shows in 
processing very deep circuits derived by unrolling sequential 
circuits in BMC, while relatively shallow circuits optimized in a 
delay-driven synthesis flow allow for fast construction of FRAIGs 
and for an efficient accumulation of structural choices. This 
observation is backed by our experiments. 

7 Experimental Results  
The proposed algorithm for constructing FRAIGs is implemented 

in C as a stand-alone AIG package “FRAIG” [19]. The package 
was tested in the MVSIS environment [20] and used in a number 
applications ranging from compression of logic functions 
(Experiment 1) to technology mapping (Experiment 3) and 
equivalence checking (Experiment 4). 

Benchmarks 
 The test cases are taken from the following sources: 
o MCNC benchmarks [23] (the first four circuits in Table 1) 
o ISCAS benchmarks [4] (s15850.blif)  
o PicoJava benchmarks [22] (pj1.blif) 
o ITC'99 benchmarks [11] (b14.blif, b17.blif) 
Most of the test cases are included because of their relatively 

large size. Several smaller MCNC benchmarks were added to have 
circuits for which BDDs could be constructed. The above selection 
of circuits is available on the web [19].  

The benchmark stats are given in Table 1: the number of inputs 
(column “ins”), outputs (column “outs”), and literals after 
sweeping (column “ff-lits”), which involves collapsing constants 
and single-input nodes as well as removing dangling nodes. 

Unless specifically mentioned, runtimes are reported on a 
1.6GHz laptop computer under Windows XP. 

7.1 Experiment 1 (FRAIG Construction) 
Table 1 compares the number of AIG nodes for three different 

methods of constructing the AIGs (the corresponding MVSIS 
command is given in parentheses): 

o No strashing (fraig -n).  
o One-level strashing (fraig -r).  
o Strashing with functional reduction (fraig). 

 

Table 1. Node count after strashing and FRAIGing. 

Name ins outs ff-lits fraig -n fraig -r fraig 

des 256 245 6084 5530 3895 3876
c1355 41 32 992 550 537 537
c6288 32 32 4675 2354 2339 2336
i10 257 224 4355 2869 2436 2274
s15850 611 684 7303 4344 4020 3884
pj1 1769 1063 34533 18744 16834 16471
b14 32 54 17388 9419 6300 5855
b17 37 97 57311 32422 28916 27907
Ratio  100.0 85.6 82.8

Table 1 shows that most of the reduction in the circuit size is 
achieved by one-level strashing (fraig -r) while FRAIGing (fraig) 
reduces the circuit size on average by 3% for the selected 
benchmarks. The reduction ratio due to FRAIGing is more 
significant (2-10 times) for highly redundant circuits, such as sets 
of reachable states and interpolants [18] represented as AIGs. 

7.2 Experiment 2 (Runtime Tradeoffs) 
Table 2 lists the runtime of FRAIGing with different options: 
o No functional reduction (fraig -r). 
o No SAT solver feedback (fraig -f). 
o No equivalence test for sparse functions (fraig -s). 
o Simulation with different number of bit patterns. 

Table 2. Runtime for FRAIGing with different options. 

Name fraig-r fraig -f fraig-s fraig 
(2^8) 

fraig 
(2^10) 

fraig 
(2^12) 

fraig 
(2^14)

fraig 
(2^16)

pj1 0.18 2.77 0.53 7.33 1.64 0.82 0.75 1.42
b14 0.07 0.24 0.18 1.12 0.26 0.30 0.22 0.41
b17 0.30 13.49 3.14 98.77 45.38 7.55 4.35 7.73

When no functional reduction is performed (fraig -r), FRAIGing 
becomes one-level structural hashing. Not using SAT solver 
feedback (fraig -f) slows down FRAIGing compared to other 
options when functional reduction is enabled. Not checking 
equivalence for sparse functions (fraig –s) speeds up FRAIGing 
but the resulting graph is not completely reduced since in some 
cases the equivalence test is skipped. (For space limitation, we 
omit the discussion of several possibilities for trading functional 
reduction for runtime.)  

The remaining five columns compare FRAIGing with different 
number of simulation vectors: from 2^8 to 2^16. It is clear that too 
few simulation vectors perform badly because of the lack of 
distinguishing power while too many vectors lead to a slow-down 
as well because simulation is too time consuming. The default 
value set in the FRAIG package (~2^12 vectors) is a trade-off 
between the runtime and memory consumption. 

7.3 Experiment 3 (Technology Mapping) 
In Table 3 we compare the results of technology mapping with 

and without structural choices accumulated using the approach of 
“lossless synthesis” discussed in Section 6.1: 

o Traditional mapping (map) 
o Mapping with choices (choice.script + map -rc) 

 
 
 
 
 
 



Table 3. Technology mapping with different options. 

Traditional mapping Mapping with choices Name 

Area Delay Runtime Area Delay Runtime
des 6565 13.60 0.50 7778 13.40 1.74 
c1355 1499 17.60 0.18 1149 14.10 0.48 
c6288 8394 82.60 1.13 8764 63.40 4.02 
I10 4332 36.10 0.50 4312 29.70 1.38 
s15850 6574 33.60 0.47 6447 28.70 1.48 
pj1 28726 44.80 2.19 29180 26.50 19.97 
b14 13458 76.60 1.55 10885 42.70 7.23 
b17 54568 69.50 4.88 53099 68.30 70.51 
Ratio 1.00 1.00  0.98 0.77  

We used a gain-based mapper with area recovery implemented in 
MVSIS environment. The standard cell library is mcnc.genlib from 
SIS distribution [21]. The first section of the table reports the 
results of mapping when the object graph is derived from the final 
netlist derived by running optimizing script mvsis.rugged applied 
to the original benchmark. The second section reports the results of 
technology mapping of five different versions of the same 
benchmark derived by choice.script, which is similar to 
mvsis.rugged with the additional capability of FRAIGing the 
intermediate networks into one object graph with choice nodes.  

The runtime measurements in Table 3 refer to mapping alone. 
Network optimization by mvsis.rugged (the first part) and deriving 
choices by choice.script (the second part) took approximately the 
same time as technology mapping. 

7.4 Experiment 4 (Equivalence Checking) 
Table 4 reports the results of comparison of CEC using FRAIGs 

with the following equivalence checking options: 
o BDD: BDD-based CEC (verify).  
o SAT: Monolithic SAT-based CEC using “MiniSat” 

(deriving CNF from the miter of the two circuits and 
using SAT solver to prove it unsatisfiable). 

o SWEEP: SAT-based CEC with simulation-guided 
learning based on [16] (functional reduction is used as a 
post-processing step) (sat_verify). 

o FRAIG: FRAIGing (fraig_verify) 
o CSAT: The external checker based on CSAT [17]. 

Table 4. Runtime comparison for CEC algorithms. 

Name BDD SAT SWEEP FRAIG CSAT FRAIG 
Des 0.3 1.0 2.8 0.4 0.60 0.53 
c1355 10.0 0.2 0.1 0.1 0.07 0.06 
c6288 - - 1.0 0.6 0.52 0.78 
i10 57.2 2.4 1.5 0.3 0.46 0.36 
s15850 6.3 1.5 3.3 0.5 0.76 0.41 
pj1 - - 31.9 4.5 7.28 5.25 
b14 - - 15.3 1.6 3.03 1.98 
b17 - - 385.6 4.7 9.54 5.23 

The two copies of the circuits used in this experiment are the 
original benchmark after sweeping and the same benchmark 
optimized by mvsis.rugged. The first part of the table reports the 
runtimes of the four equivalence checking options in MVSIS 
environment. The second part (comparison with CSAT) shows the 
runtimes on a Dell Precision 530 with 2.4 GHz Xeon CPU. The 
dash in the table indicates that the runtime exceeded 600 seconds.  

8 Conclusions and Future Work 
The paper shows that the AIGs powered by simulation and SAT 

lead to a representation called functionally reduced AIGs 
(FRAIGs), in which each AND-node is functionally unique by 
construction. An implementation of FRAIGs is proposed, which 
differs from other methods of functional reduction, such as BDD 
sweeping [13] and SAT sweeping [14][16], in that it detects and 
eliminates functionally equivalent AIG nodes on-the-fly.  

FRAIGs can be used to unify all the stages of logic synthesis, 
from the functional representation of the original and optimized 
networks, through an improved technology mapping using multiple 
structural choices. At the same time FRAIGS enable transparent 
combinational equivalence checking to guarantee that the 
transformations made at each step during synthesis are correct. 

The experiments indicate that the FRAIGs are more robust than 
BDDs in those applications that rely on partial canonicity and do 
not require quantification. A new application of FRAIGs is in 
lossless logic synthesis which structural information is 
accumulated during technology independent synthesis and used to 
provide choices during technology mapping. 

The experiments also indicate that FRAIGs used for checking 
equivalence of large combinational circuits are on par with state-
of-the-art academic equivalence checkers, such as CSAT [17].  

The future work will include exploring other potential 
applications of FRAIGs in logic synthesis, technology mapping, 
and equivalence checking, as outlined in Section 6. An interesting 
application would be a tool to compare two networks for structural 
commonality using FRAIGs. Such a tool would be very useful for 
studying how a network changes structurally over the course of 
different transformations during logic synthesis. 
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