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GALS Principle

• Locally-synchronous (LS) modules perform all functionality

• Data are transferred in self-timed manner between LS modules

asynchronous wrapperasynchronous wrapper

data

handshake

locally-synchronous
module

locally-synchronous
module

Benefits:

➜ Facilitates clocking of SOCs

➜ Modularity enhances optimization and re-use of LS blocks

➜ Provides a hook for low-power operation

➜ Natural inclusion of totally asynchronous modules
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The asynchronous wrapper
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• Asynchronous port controllers allow for fast handshake processing

• Metastability of data is prevented by pausing the clock

• No extra latency (synchronizers, FIFOs. . . ) introduced

• Wrapper shall be assembled from predesigned elements
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Pausable clock generation

• Ring oscillator for local clock generation

• Arbitration with Mutual Exclusion (ME) elements

• Programmable delayline
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Delayline and Arbitration

Principle of delayline using slices Multiple Arbitration block
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• every slice can bypass rest of
delayline

• delay adjustable over a wide range

• small delay increment (≈ 350ps
per slice with 0.25µm technology)

• safely arbitrates between incoming
requests and rising edges on rclk

• row of mutual exclusion elements

• scales linearly to multiple ports
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GALS building blocks

• Port controller responsible for managing all data transfers

• Each unit is captured by a structural VHDL description

• Asynchronous port controllers achieve cycle times less than 350ps

• A Poll-type ports ask for clock stretching only to prevent metastability and
ensure data correctness: “proceed while waiting”

• Demand-type ports also ensure data integrity but stop the local clock as soon
as they are enabled: “sleep while waiting”

• ROM (LUT) port: Interface at the ROM port is just a fake delay between Rp
and Ap matching the data delay

• RAM access: Essentially a Demand-Out port with bidirectional data transfer
(two data vectors in opposite direction controlled by a common handshake pair)
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D-input port
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• Performs 2-phase to 4-phase conversion

• Transfer acknowledge (Ta) indicates successful transfer

• 3D-tools available for synthesis (by K.Y. Yun)
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D-input port (cont.)

Synthesis results

Ri = Rp Ri + Den Z0 + Den Ap Z0

Ap = Rp Ai + Ai Ap

Z0 = Rp Z0 + Ai Z0 + Den Rp Ap

2-level AND-OR
Implementation

Ri Ap

Z0

AiRpDen Reset

Compact, fast and hazard-free implementation of async FSM
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Data transfer mechanism

Clockgen1 Clockgen2
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• The transfer channels all work with rendezvous scheme

• Push channels only, but pull channels would also be possible

• Data latches needed due to undetermined clock relation between the modules
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Data channel simulation
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P-out to D-in
channel:

• Clock stretching
infrequent for
P-ports

• Fast transfer
processing

• Local clocks
restart in phase
with data
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SAFER cryptoalgorithm
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output transformation:

• Secret-key iterated block cipher

• Encryption and decryption
slightly different

• Byte oriented: blocks of 8 bytes

• Recommended number of rounds
10 to 12

• Additional input/output
transformation

• Comes with variable key lengths
(Implemented version: SK-128)
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Cryptographic operation modes

ECB Mode CFB mode
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p : Plaintext

c : Ciphertext

k : Key

IV: Initialization Vector
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Design Example: MARILYN SAFER cryptochip
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• SAFER block
cipher algorithm

• Supports ECB,
CBC, CFB, OFB

• Implements both
encryption and
decryption

• 5 “true” clock
domains

• Synchronous
counterpart
named
“MERLIN”
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Area figures

nominal (sync.) wrapper area wrapper area

cycle module w/o sync with sync

time [µm2] [µm2] [µm2]

controller 2.1ns 38 457 12 501 18 315

key prep 3.4ns 250 299 13 059 18 531

bias ROM 1.2ns 32 805 4 104 4 104

datapath 3.3ns 214 956 28 629 37 863

mux1 2.3ns 150 831 29 628 39 204

mux2 2.2ns 126 747 26 361 34 227

exp/log ROM 1.7ns 291 672 12 708 12 708

subkey RAM – 237 415 17 784 17 784

async FIFO – 34 182 – –

1 377 364 144 774 182 736

area 100% 10.5% 13.2%
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Design flow
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MARILYN

• Technology:
0.25µm, 5 metal, CMOS

• Core: 1.7 x 1.7 mm2

• Die: 2 x 2 mm2

• 66 pads (→ JLCC68 package)

• Contains extra testblocks for
GALS components

• GALS overhead ≈ 10%

• Throuhgput 232Mbit/s at 10
rounds ECB

• Max. throuhgput up to
780Mbit/s (feedthrough)
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Results

MARILYN MERLIN MERLIN GALS
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Conclusion

• Complete methodology for GALS architectures developed

• Over 25% energy reduction (energy per MBit throughput)

• Area overhead below 10%

• Throughput up to 25% lower than synchronous version
(due to datapath not running at full speed, reason currently being investigated)

• GALS building blocks:

– Consist mainly of technology independent structural VHDL

– Only mutual exclusion (ME) element requires cell design

• And most important: GALS works on silicon!
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Future work

• Improve testability

• Extend the communication schemes beyond point to point links

• Adress system level aspects like deadlock analysis and system partitioning

• Improve tool flow support (hierarchical flow, timing verification, integration of
asynchronous tools)

• Possibility to withdraw a data transfer request (bus deferral)

• Power estimation theory

• Finer time-slice resolution of ring-oscillator
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