
IEEE Design & Test of Computers, Vol. 11, No. 3, pp. 60-69, Fall, 1994.

AN FPGA FOR IMPLEMENTING ASYNCHRONOUS CIRCUITS

Scott Hauck, Steven Burns, Gaetano Borriello, Carl Ebeling

Department of Computer Science and Engineering
University of Washington

Seattle, WA 98195

Abstract

Field-programmable gate arrays are a dominant implementation medium for digital circuits, especially for
glue logic. Unfortunately, they do not support asynchronous circuits. This is a significant problem
because many aspects of glue logic and communication interfaces involve asynchronous elements, or require
the interconnection of synchronous components operating under independent clocks. We describe Montage,
the first FPGA to explicitly support asynchronous circuit implementation, and its mapping software.
Montage can be used to realize asynchronous interface circuits or to prototype complete asynchronous
systems, thus bringing the benefits of rapid prototyping to asynchronous design.

Keywords: Asynchronous Circuits, FPGA Architectures, Prototyping

1. Introduction

Asynchronous circuits are becoming more prevalent. Most commonly they occur in the interfaces and the glue logic
that binds the components of a system. One reason for this is that asynchronous logic is adaptable to delay
variations and components designed to function asynchronously can be more easily composed. Some of the
differences between asynchronous and synchronous design are the arbitration mechanisms and hazard-free logic design
required to ensure proper operation. As evidenced by many of the articles in this special issue, methodologies have
recently been developed to effectively design large asynchronous and mixed synchronous/asynchronous systems. In
fact, we are reaching the point where designers can contemplate designing complex system components or even
entire systems as asynchronous logic.

Unfortunately, implementation media for asynchronous circuits and systems have not kept up with those for the
synchronous world. Programmable logic devices do not include the special non-digital circuits required by
asynchronous design methodologies (e.g., arbiters and synchronizers) nor do they facilitate hazard-free logic
implementations. This leads to huge inefficiencies in the implementation of asynchronous designs as circuits require
a variety of seperate devices. This has caused most asynchronous designers to focus on custom or semi-custom
integrated circuits, thus incurring greater expense in time and money. The net effect has been that optimized and
robust asynchronous circuits have not become a part of typical system designs. The asynchronous circuits that must
be included are usually designed in an ad-hoc manner with many underlying assumptions. This is a highly error-
prone process, and causes implementations to be unnecessarily delicate to delay variations.

Field-programmable gate arrays, one of today’s dominant media for prototyping and implementing digital circuits,
are also inappropriate for constructing more than the simplest asynchronous interfaces. They lack the critical
elements at the heart of today’s asynchronous designs. Unfortunately, resolving this problem is not just a simple
matter of adding these elements to the programmable array. The FPGA must also have predictable routing delay and
must not introduce hazards in either the logic or routing. Futhermore, the mapping tools must also be modified to
handle asynchronous concerns, especially the proper decomposition of logic to fit into the programmable logic
blocks and the proper routing of signals to ensure that required timing relationships are met.

Ideally, we need an FPGA that can support both synchronous and asynchronous circuits with comparable efficiency.
As a step in this direction we present Montage, an integrated system of FPGA architecture and mapping software
designed to support both asynchronous circuits and synchronous interfaces. The architecture provides circuits with
hazard-free logic and routing, mutual exclusion elements to handle metastability, and methods for initializing
unclocked elements. The mapping software generates placement and signal routing sensitive to the timing demands
of asynchronous methods. With these features, the Montage system forms a prototyping and implementation
medium for asynchronous designs, providing asynchronous circuits with a powerful tool from the synchronous
designer’s toolbox.

The remainder of this paper is broken into four sections. In section 2 we discuss in detail why we cannot simply use
standard FPGAs and mapping techniques for asynchronous circuits. In sections 3 and 4 we discuss the two aspects
of Montage: its architectural design and its mapping tools, focusing on how they address the issues raised in section
2. Finally, in section 5 we conclude, and discuss some directions for future work.

2

2. Requirements for FPGA Support of Asynchronous Circuits

There are numerous reasons why synchronous FPGAs and mapping techniques cannot be used for asynchronous
circuits. They fall into the general categories of hazards, timing constraints, stateholding elements, analog
components, and decomposition. These are discussed in turn below.

2.1. Hazards

In a synchronous circuit a clock determines when a signal is sampled. The value of the signal is only important near
the sampling clock edge, allowing the designer to largely ignore any extraneous signal transitions. In contrast, an
asynchronous circuit is constantly sampling its signals. Because of this, any extraneous transitions (“hazards”) may
cause incorrect results, and thus must be avoided.

Hazards may be inherent in a Boolean function or arise because of how it is implemented. For example, if both
inputs to an XOR are allowed to change simultaneously, there is an unavoidable hazard since one input may change
before the other. Thus, slight differences in signal arrival times will cause the circuit to generate spurious
transitions. Asynchronous circuits either do not use elements with unavoidable hazards, or do not allow the
hazardous situations to occur. However, during circuit mapping to FPGAs, especially during decomposition, the
circuit logic may be altered, possibly adding hazards. Careful decomposition techniques must be used to restructure
the logic so that the resulting circuit remains hazard-free. Such issues are dealt with in subsection 2.5.

Designers do not have precise control over how logic is implemented within the logic block of an FPGA. These
logic blocks must be designed such that they do not introduce any new hazards into implementations. Again,
circuits may have unavoidable hazards that an implementation cannot avoid, but hazards that do not exist in the
original circuit must not be introduced by the implementation. If one has only simple gates as logic elements (e.g.,
ANDs and XORs, as in the CFA FPGA [Concurrent91]), making them hazard-free is easy. However, look-up tables
(LUTs), the element generally used in FPGAs to implement arbitrary n-input functions, are much more complex
than simple gates. However, as will be shown in section 3, there are implementations of LUTs that do not
introduce hazards into the logic they implement.

A less obvious concern is that FPGA routing is typically not just simple wires, but includes routing “functions”.
For example, the interconnection of several wires in an FPGA will often be accomplished by a multiplexor, and this
multiplexor must be hazard-free. However, it is easy to design a multiplexor which has charge-sharing. Charge-
sharing allows a value to be stored on an unused capacitance, and when this value is reconnected to a signal it may
momentarily alter the signal’s value. In this way, the routing functions can introduce hazards where the specification
did not even have any logic.

The point to be made is that hazard avoidance in FPGAs is a subtle issue, and while it is possible to remove hazards
from an FPGA architecture by careful design, an FPGA not specifically targetted to asynchronous circuits will most
likely generate hazards.

2.2. Timing Constraints

All asynchronous design methodologies make assumptions about how and where delays are encountered in the
resulting circuits. These circuits depend on the assumptions, and an FPGA system must meet these assumptions to
properly map the circuits. Bounded-delay methodologies [Unger69][Hollaar82][Nowick91] require upper-bounds on
the delays in all circuit elements, and insert extra delays into feedback or other paths in response. The magnitude of
the inserted delays is any amount greater than some formula on other delays in the circuit, and thus can be left to the
placement and routing tools to specify exactly. However, the FPGA system must be able to insert these delays in
the circuit. Fine-grained architectures [Algotronix91][Concurrent91] generally leave many logic cells unused in their
mappings, and the paths to be delayed could be fed through unused cells configured as buffers, thus delaying the
signal. All FPGAs could delay signals by using more circuitous paths. However, the router must be able to
efficiently find these paths. Routers usually are based on finding the shortest path under some cost metric, which
can be computed efficiently. Unfortunately, finding the shortest path with delay greater than some value is a more
complex problem. Other methodologies have bundled-data constraints [Brunvand89][Sutherland89], which require the
delay along one path (where a path includes both logic and routing) be greater than the delay on other paths. This is
a similar, but more difficult, version of the same problem, since the burden of meeting the timing constraint must
be fairly shared by all segments of a path.

Quasi-Delay Insensitive methodologies [Martin90][Ebergen89] contain isochronic fork constraints. These are either
symmetric, where all ends of a fork must be reached nearly simultaneously, or asymmetric, where one end of the fork
must be reached before the other. While Speed-Independent methodologies [Chu87][Kishinevsky92] assume that
there is no delay in any wire, in practice these can be replaced by isochronic forks. In many FPGAs, the routing

3

resources are very complex, with delays often greater than the logic delays. In such a system, meeting isochronic
constraints can be almost impossible. While asymmetric forks can be handled simply by routing to the required
earlier destination first, and then routing from there to other destinations, symmetric forks are much harder. Unless
there is a relatively fast path from some shared routing resource to all fork destinations, there is very little chance
that the symmetric isochronic fork assumption will be met.

The final timing constraint used is atomic, multi-output gates. Specifically, some methodologies
[Brunvand89][Ebergen89] use gates with more than one output, and it is assumed that the logic for all gate outputs
will react to a new input at about the same time. For example, a TOGGLE element is a one-input, two-output
element where one output responds to odd input transtions, and the other to even input transitions. It is assumed
that by the time one output sends an output transition, the other output has sensed the input. Thus, the
environment can then send in a new transition without worrying that the unfired output hasn’t sensed the previous
input. A method to handle this constraint is to carefully craft a module set to guarantee that the atomic gate
constraint is met [Brundvand91]. These modules will contain not only logic, but also routing designed to ensure the
constraints. In order to allow this, the mapping tools must respect the structure of the modules, ensuring that all
resources are assigned as dictated, and the architecture must be reasonably uniform so that a module has many
potential placements.

2.3. Stateholding Elements

Synchronous circuits require some mechanism for storing information from one clock cycle to the next. Thus,
FPGAs usually include D-latches in their logic blocks. Asynchronous circuits do not have any single way of
storing information, but instead different methodologies use different structures. They use C-elements, asynchronous
S-R flipflops, standard latches with local clocks, or even Q-flops [Rosenberger88] (locally clocked latches with
metastability handling). While adding each of these elements into the standard logic cell would be expensive, all but
the Q-latches can be implemented out of standard combination logic. To implement these n-input stateholding
functions one can express them as an (n+1)-input combinational function, with the function’s output fed back as the
new input. However, the methodologies usually consider logic elements as atomic gates (discussed in subsection
2.2). Thus, we must be able to ensure that this feedback path is fast enough for a changing element to stabilize
before another input arrives. In current commercial FPGAs this feedback path is routed the same as all other signals,
and meeting the timing contraints can be difficult.

Data

Clk En

R1

R2

Figure 1. A mutual exclusion element (left), and a synchronizer (center) and enabled arbiter (right) built
from it.

It is also important to consider the starting state of the FPGA. After an SRAM-based FPGA is programmed, or
after an antifuse-based FPGA is powered up, the programming will be established, but the signal values may be
incorrect. In a synchronous circuit, we can simply set the latches to some preset state (a feature provided in many
FPGAs), and wait for the circuit to stabilize before starting the clock. Unfortunately, an asynchronous circuit has no
global clock to stall, and the stateholding functions often have no latches to preload. While one could require the
circuit logic to have an explicit reset signal, this would require a large amount of extra logic. An alternative is to
provide an underlying mechanism to hold stateholding functions at a preset value until the circuit settles.

4

2.4. Analog Components

In many asynchronous circuits there are elements used to reliably sample a signal at a given point (a synchronizer),
or to determine which of two signals arrives first (an arbiter). What is special about these elements is that while the
elements may take an arbitrarily long time to respond, the responses must always be correct and hazard-free. For
example, an arbiter has 2 inputs and 2 outputs, and it raises an output when the corresponding input is raised, while
ensuring that at most one output is raised at a time. If an output is raised, it will not be lowered until the
corresponding input is lowered. Unfortunately, this behavior cannot reliably be implemented in a purely digital
circuit. Thus, we cannot use the standard digital logic elements provided in FPGAs to map these elements. One
solution is to include a mutual exclusion element (figure 1) into the FPGA architecture. With the addition of
appropriate digital logic around it, the element can reliably perform synchronization and arbitration functions.

2.5. Decomposition

In order to map a synchronous circuit into an FPGA, it is necessary to restructure it so that its basic elements fit in
the FPGA’s logic elements. This process is called decomposition or technology mapping. For LUT-based FPGAs,
one breaks all logic elements into individual gates with no more inputs than the LUT can handle. For other FPGA
logic blocks, this may require changing what types of gates are used as well. For example, an FPGA whose only
logic element is a NAND cannot implement an XOR directly. Instead, the XOR would be replaced with an
equivalent sum-of-products form, with the proper number of inputs per gate, which can then be implemented by
NAND gates.

a

b

c

d

01010100

1000

0110

1100

1010 1011

0111

1001

0010

1101

0011

abcd

C

C+

-

Figure 2. Example of an incorrect decomposition (center left) of circuit (left). A correct decomposition
is at right.

Unfortunately, while decomposition for synchronous circuits is well understood, these techniques are not sufficient
for all asynchronous methodologies. For synchronous circuits, operations such as De Morgan’s Law, associativity,
and boolean minimization can all be applied. For bounded-delay methodologies [Hollaar82][Nowick91] many of
these techniques can be used, especially purely algebraic operations [Unger69][Kung92]. For other methodologies,
particularly the Quasi-Delay Insensitive [Martin90][Ebergen89] and Speed-Independent [Chu87][Kishinevsky92]
methodologies, even these are suspect. For example, consider the circuit in figure 2 left. It contains a ring-
oscillator of three inverters, and a 3-input AND gate attached to the inverter outputs. In this circuit the AND gate
will never fire. If we use standard decomposition techniques to map this to an FPGA with 2-input LUTs, the AND
gate will be broken into two cascaded AND gates (shown at center left). Note that this resynthesis is one of those
allowed for both synchronous and bounded-delay circuits. As we can see from the state graph at center right, this
circuit can reach state 1011, where the top AND gate might become TRUE. Thus, this decomposition is incorrect.
A correct decomposition is shown at right. While the original circuit is not useful since it never generates an
output, it is representative of a large number of situations in asynchronous circuits where a gate is partially but not
completely activated. That is, there are many situations where a gate comes within one input transition of an output
change, but the circuit changes some other gate input. In fact, a circuit could reach all states within one input of the
gate firing without actually firing the output. In such a situation any simple decomposition can fail, since there is
some new signal transition introduced that is unsensed by the rest of the circuit. What is necessary is to do a more
complex resynthesis of the circuit, ensuring that no gate transition is unsensed. Unfortunately, we are currently
aware of no work that addresses this problem.

5

Technology mapping must also deal with hazards in an FPGA’s logic elements. While a logic element might be
able to implement a given specification, it is possible for the element to introduce new hazards. For example, an
FPGA could include a 4-input AND-OR element, with the logic function (a * b) + (c * d). Such an element could
implement the function (a * c) + (c * d) with the aid of an inverter and proper signal routing. However, this circuit
has a hazard for the transition acd → ac d . Thus, unless the circuit to be mapped does not allow this transition to
happen, the circuit cannot be implemented with this element. Techniques exist for handling such situations in
bounded-delay circuits [Siegel93].

3. The Montage Architecture

As discussed earlier, asynchronous circuits are not well served by current FPGA architectures. Asynchronous logic
implementations must consider hazards, synchronization and arbitration of events, and strict adherence to the timing
assumptions of the design methodologies. Unfortunately, these issues are not addressed in current FPGAs. Some of
the elements required cannot be implemented in the standard digital logic found in these devices. In addition, the
logic and routing elements must be designed more carefully to avoid hazards, since in asynchronous circuits every
transition is important. Finally, routing resources must have predictable, optimizeable delays to help meet timing
assumptions.

(a) (b) (c) (d)

Figure 3. The overall structure of the Montage FPGA shown in a progression of steps. The basic
fanin/fanout structure (a) is augmented with segmented routing channels (b) attached to a third RLB input
and output. The structure (c) is obtained by merging two copies of (b), with data flowing in opposite
directions in the two copies. Shown in (d) are the connections between the two copies at diagonal
crossings.

The Montage FPGA is a version of the Triptych architecture designed to handle synchronous interface and
asynchronous circuits. Since much of Montage is identical to Triptych, we direct readers wishing more information
on the architecture to [Hauck92]. Like Triptych, Montage is an SRAM-based FPGA, which have the advantage over
antifuse-based FPGAs of allowing the chip to be programmed for delay testing without permanently configuring it.
Note that while we discuss a specific instance of the Montage architecture in this paper, we are currently considering
architectural variations, including alteration of the vertical interconnect and increases to look-up table size.

Figure 4. Top half of a segmented channel (on its side). The bottom half is identical to the top.

The Montage global routing structure is identical to the Triptych routing structure, with diagonal connections
between local cells, augmented with vertical segmented channels (figure 3). This structure has proven to be effective
for mapping general synchronous circuits. It is even better suited to asynchronous circuits, where one expects to
find more tightly connected subcircuits, and less random global routing. Also shared with Triptych is the
philosophy of allowing mappings to fix the tradeoff between logic and routing resources by having logic blocks
capable of performing routing functions.

6

FU

Figure 5. Montage routing and logic block (RLB) design. The RLB consists of 3 multiplexers for the
inputs, a functional unit, 3 multiplexers for the outputs, and tristate drivers for the segmented channels.

Montage’s short, diagonal connections are used for most routing, providing fast signal propagation. The vertical
segmented channels are used for longer range connections and large fanout nodes. They are implemented as a set of
segmented “channel wires” (figure 4) that connect the center outputs of RLBs to the center inputs of RLBs flowing
in the same direction in the next column. Needless to say, this flexibility leads to slower signal propagation, and
speed-critical designs will avoid using the vertical channels for critical paths. There are 7 tracks in a vertical channel,
with 6 handling inter-RLB routing and a seventh to carry a pin input. The 6 inter-RLB tracks are broken up into
two tracks each of 8, 16, and 32 RLB high segments. The basic Montage array is 64 RLBs high by 16 wide.

Inputs
Outputs

Vdd

Outputs

Inputs

D-Latch

C1 C2 AI

Clk

Figure 6. The two types of functional units: the logic block (left) and the arbiter unit (right).

A Montage RLB (figure 5) has three inputs and three outputs, and a functional unit (FU) which operates on the
inputs. There are two different types of functional units. The first is a logic block, which implements logic
functions and stateholding elements. As shown in figure 6, the logic block has a look-up table capable of
implementing any function of 3 inputs. The switch logic function block shown was chosen because it does not
suffer from charge sharing. This is important because asynchronous circuits require very clean signals, with
absolutely no extraneous transitions. The function output can be fed through a d-latch. This d-latch can be
configured with one of two clocks in synchronous mode (allowing two independently clocked synchronous circuits to
coexist on a chip), or with a choice of initialization state in asynchronous mode. In the asynchronous initialization
mode the latch is set to a value during programming. The latch holds the function output to this value until the
circuit stabilizes, at which point the latch is bypassed. Each RLB can choose independently how to use the d-latch,
so a single circuit can have two separately clocked synchronous circuits, asynchronous elements initialized with the
built-in circuitry, and unlatched logic blocks. Note that any one of the three logic block inputs can be replaced with
a feedback line carrying the function’s output value. This feature allows asynchronous state-holding elements to be
built. This is done by expressing the state-holding function of n inputs as a combinational function of (n+1) inputs,
where the extra input is the function's previous value. In this way a single logic block can implement any 3-input

7

combinational function, or a 2-input stateholding function such as an asynchronous S-R flipflop or a Muller C-
Element.

a?
c!

b?
C

a?
c!

b?

q!

p!a?

b?

n?

e!

a?
c!

b?
R

d!

a

b
c

C-element / NCEL

a

b

d=a
c
e=b

RCEL

a

b
c

a?
c!

b!

XOR

c a
b

a
c

b
a

b
b

b
b

Toggle Sequencer

a
pt

pt

xa

xn
ca

xa

xn

pt
n
qt

xn

xn

p

aa

aa
pt
pt

aa

ab

ca
xn
cb

cb xn

xb

qt
b

xb

qt

ab

q

qt
qt
ab

q ab

qt

p

pt

aa

qt qt

pt pt

-

-

en
arb

C

ab
C

qt

xn
q!

ca

pt

cb

aa
p!

a?
n?

xb

xa

b?c = a*b + (a+b)*c'

c = a*b + (a+b)*c'

c = a*b + a*b

b=a*c+a*b' c=a*b+a*c'

Figure 7. Ebergen’s basic elements, mapped to the Montage FPGA. Included at top right is a circuit
diagram for the implementation of the Sequencer. Other elements have logic equations for the outputs.

The second type of functional unit is an arbiter block. This block is capable of implementing an arbiter, an enabled
arbiter, or a synchronizer. They can also be combined with logic blocks to form more complex functions such as Q-
flops. All inputs are completely permutable and invertable. Although we expect these blocks to be used
infrequently, the roles they serve in asynchronous circuits are essential, and are not implementable in standard digital
logic. Thus, they must appear as special, built-in blocks in any FPGA which hopes to implement asynchronous
circuits, but which does not allow mappings to program circuits at the transistor level (for an example of an
antifuse-based FPGA which might allow sufficient transistor-level programming to implement an arbiter, see
[Marple92]). As an example of Montage’s power, all of Ebergen’s basic elements [Ebergen89] can be mapped as
shown in figure 7. Since elements in gray are only used for routing, and can easily be used for logic from other
circuit elements, the C-element, NCEL, RCEL, and XOR can all be mapped into a single RLB, a Toggle requires
two RLBs, and the Sequencer ten RLBs. The Sequencer is the only element including an arbiter block, which is
used in the center left RLB of the Sequencer mapping. Since approximately eight Montage RLBs can be fit into the
space of a single Xilinx CLB [Xilinx92] (the basic tile of one of the most popular current FPGAs, which can
implement at most 2 functions in a single CLB), these are very efficient mappings. Larger hand-mappings are
shown in figure 8, including Martin’s Fair Arbiter [Martin90], and a Sutherland-style FIFO [Sutherland89].

Currently we plan to have a 15:1 ratio between the number of logic blocks and arbiter blocks, as shown in figure 9.
This number was chosen based on the relative infrequency of arbiters and synchronizers in typical asynchronous
circuits. Since we found that typical Triptych mappings used at least 25% of their RLBs for routing only, jobs
which the arbiter RLBs in Montage are equally capable of handling, we believe that most unused arbiters will be
absorbed into this factor. However, we have taken care to ensure arbiter blocks occupy the same amount of area as
logic blocks, allowing easy alteration of the arbiter mix in Montage implementations.

8

C

vu
x b

v u
xb

¬aiao

eoei

u

u

co ci

bo¬bi

ao ao

ai

eo

ao
ai
s1

eo

ci
ci
u

ci

ei

u

u

ei

co

u
ei bi

s2 t2

co

bi

s2
bi
bo

ei
ao

t1

s1
ai

t1

ci
t2

bo

bo bo

C

Toggle

C

Toggle

d1 d2 d3 d4

r3

r4

r5

r6

x1 x2

c1 c2 c3

r1

r2

d0

x1
d1

d2
x1

x2
d3

d4
x2

d3
d2
d3

x2
d4
d2

d1

d1

x1
d2

d1
d0
x2

x2
c1

x2
c1
x1

c1
c2
x2

x1
r1
x2

x2
r3
x1

x2
r3 r5

x2

x2
x2

x2

x1
x1

x1

x1

x2
x1
x1

x1
x2

x1

r2

r4

x1

x1

x1
x1

d3
d2

d2

c2

c2
x2

c2
c3

x2

r4

r6

d4
d4

d4
d4

Figure 8. Two example circuits: (left) Martin’s fair arbiter [Martin90], built with two synchronizers
(arbiter blocks have grey outlines), and (right) Sutherland’s micropipelined FIFO [Sutherland89]. Note that
although only two levels of the FIFO are shown, the mapping fits together for longer FIFOs.

An important point to be made about the architecture is how Montage handles bundled data, inserted delays for
bounded-delay circuits, and isochronic forks. For bundled data and inserted delays, the Montage routing structure’s
simplicity makes it easier to design a router which ensures that signals to be delayed take longer paths. Also, since
Montage mappings will typically leave up to 25% of the logic blocks unused, these unused logic blocks can serve as
inserted delays by configuring the blocks as buffers. For isochronic forks, there are different implementations for the
two types of isochronic forks (figure 10). For asymmetric isochronic forks, forks where one end must be reached
before the other, the signal is routed to the critical end of the fork, and then back out from that block to the other end
of the fork. Thus, the dual routing and logic nature of a Montage RLB ensures that the signal reaches one end before
the other. For symmetric isochronic forks, forks where all ends must be reached simultaneously, the ends of the fork
are placed either off the same interconnect line, or off diagonals flowing from a shared source RLB. In this way, the
isochronic fork depends on the delays of very localized elements, delays which can easily be checked during initial
chip verification.

A A A A

Figure 9. Distribution of arbiter (labelled “A”) blocks throughout the Montage array. The complete array
is built by stacking vertically the tile shown above.

4. Montage Mapping Software

As part of the Triptych project we have developed placement and routing tools to support the FPGA architectures.
These include a simulated annealing placement program and an iterative router that optimizes both area and delay.
While the Montage architecture shares much in common with Triptych, and the Triptych mapping tools can largely
be applied to Montage, there are some extensions necessary. Specifically, the placement and routing tools must
ensure isochronic fork constraints, and logic and arbiter functions must be placed in logic and arbiter RLBs
respectively. The latter constraint is easily accomplished by correctly placing the logic and arbiter functions into

9

RLBs during placement initialization, and from then on only considering annealing moves between two logic RLBs,
or two arbiter RLBs, but never between a logic and an arbiter RLB.

1

2

Figure 10. Placement of a symmetric isochronic fork on an interconnect line (left) and on diagonals
(center), as well as an asymmetric fork (right) reaching destination “1” before destination “2”.

A more difficult requirement is for the placement and routing tools to ensure isochronic constraints. For the placer,
we require that all destinations of a symmetric isochronic fork be placed so that the constraint can be met.
Specifically, the destinations must be able to share a single vertical segmented channel, or the diagonals from a
shared neighbor RLB. In order to incorporate this requirement into the annealer's cost function, we could simply add
a penalty for all isochronic forks that do not meet this constraint. Unfortunately, forks with large numbers of
destinations will rarely happen to line up as a proper isochronic fork, and the annealer has little chance of meeting all
the constraints. Our solution is to extend the fork penalty to recognize when a fork constraint is getting close to
being met. Specifically, the penalty is decreased when two or more terminals are positioned so that the constraint
can be met between those pins, with larger locally correct groups decreasing the penalty even more. In this way the
annealer is encouraged to get closer and closer to a proper placement, while allowing it to try different fork
positionings. In practice, fork constraints are almost always met.

Routing of these symmetric isochronic forks also requires special handling. Specifically, we cannot simply attempt
to reach each fork destination individually, since they may take paths inconsistent with the isochronic assumption.
Instead, we check the placement of the destinations of an isochronic fork to determine all valid fork points. For
example, if the isochronic fork ran to exactly two different destinations, and they were 1 cell apart in the same
column, the fork point could either be on a shared vertical segmented channel, or either of the two RLBs that are
direct neighbors of both of these destinations. Then, instead of routing to the function blocks of the destinations, we
route to these fork points. The Triptych router routes individual source-sink pairs by using a straightforward
shortest-path algorithm, which maintains a queue of the neighbors of short paths found so far, and repeatedly
removes the shortest neighbor from this queue. Once a fork point is reached we calculate the cost for routing from
this point to each of the destinations of the symmetric isochronic fork, add that to the cost of the current route up to
this point, and insert it back into the queue. When we finally reach one of these complete routes in the queue, we
know that this is the preferred route and accept it. In this way, we can directly extend all of our work on performance
optimization and congestion avoidance to isochronic fork routing without any extra special-casing.

Placing asymmetric isochronic forks, forks where one destination must be reached before another, simply requires
that the distance metric be extended to properly reflect the resulting routing. Since we will route the signal through
the earlier destination and then on to the later destination, we simply treat this segment between destinations as a
separate signal. A similar extension works for the router, with the addition that the new signal is routed not from a
function block output, but instead from wherever the signal enters the earlier destination's RLB.

By leveraging off of the work we have done for Triptych, we have developed in a fairly short time an integrated
toolset for doing placement and routing of asynchronous circuits with isochronic forks. We have not yet extended
these tools to handle bundled data nor inserted delays.

5. Conclusions and Future Work

As discussed in this paper, the Montage system represents an integrated FPGA architecture and software mapping
system for implementing asynchronous circuits. The architecture provides many of the features necessary for proper
asynchronous designs, including hazard-free logic and routing, elements capable of implementing and initializing
asynchronous stateholding elements, mutual-exclusion elements, and a simple, coherent routing structure that
accomodates the timing constraints of asynchronous methodologies. Our mapping software provides much of the
support necessary to map Quasi-Delay-Insensitive circuits to the Montage architecture, including placement and
routing tools that respect isochronic fork assumptions.

The development of an FPGA for asynchronous circuits opens up several new avenues of exploration. The entire
process of mapping for FPGAs must be re-evaluated for this domain. Most obviously, placement algorithms must

10

take into account the constraints generated by bundled data and inserted delays, and routers must ensure these
constraints are met. Decomposition tools must also be developed for properly breaking down circuit elements into
sizes accomodated by the target FPGAs.

Acknowledgments

This research was funded in part by the Defense Advanced Research Projects Agency under Contract N00014-J-91-
4041. Gaetano Borriello and Carl Ebeling were supported in part by NSF Presidential Young Investigator Awards.
Steven Burns was supported in part by an NSF Young Investigator Award.

References
[Algotronix91] Algotronix Limited, “CAL1024 Preliminary Datasheet”, 1991.

[Brunvand89] E. Brunvand, R. F. Sproull, “Translating Concurrent Programs into Delay-Insensitive Circuits”,
Proceedings of ICCAD’89, pp. 262-265, 1989.

[Brunvand91] E. Brunvand, “Implementing Self-Timed Systems with FPGAs”, International Workshop on Field-
Programmable Logic and Applications, Oxford, 1991.

[Chu87] T. A. Chu, “Synthesis of Self-timed VLSI Circuits from Graph-Theoretic Specifications”, M.I.T. Tech.
Rep. MIT/LCS/TR-393, June 1987.

[Concurrent91] Concurrent Logic, Inc., “CFA6006 Field Programmable Gate Array”, March 1991.

[Ebergen89] J. C. Ebergen, Translating Programs into Delay-Insensitive Circuits, Centre for Mathematics and
Computer Science, Amsterdam CWI Tract 56, 1989.

[Hauck92] S. Hauck, G. Borriello, C. Ebeling, “Triptych: An FPGA Architecture with Integrated Logic and
Routing”, Brown/MIT Conference on Advanced Research in VLSI and Parallel Systems, March 1992.

[Hollaar82] L. A. Hollaar, “Direct Implementation of Asynchronous Control Units”, IEEE Transactions on
Computers, vol. C-31, No. 12, pp. 1133-1141, Dec. 1982.

[Kishinevsky92] M. A. Kishinevsky, A. Y. Kondratyev, A. R. Taubin, V. I. Varshavsky, “On Self-Timed Behavior
Verification”, Proceedings of TAU’92, March 1992.

[Kung92] D. S. Kung, “Hazard-non-increasing Gate-level Optimization Algorithms”, Proceedings of ICCAD’92, pp.
631-634, 1992.

[Marple92] D. Marple, L. Cooke, “An MPGA Compatible FPGA Architecture”, First International ACM/SIGDA
Workshop on Field-Programmable Gate Arrays, Berkeley, 1992.

[Martin90] A. Martin, “Programming in VLSI: From Communicating Processes to Delay-insensitive Circuits”. In
C. Hoare, “UT Year of Programming Institute on Concurrent Programming”, Addison-Wesley, Reading, MA,
1990.

[Nowick91] S. M. Nowick, D. L. Dill, “Synthesis of Asynchronous State Machines Using a Local Clock”, in
Proceedings of ICCD, pp. 192-197, 1991.

[Rosenberger88] F. U. Rosenberger, C. E. Molnar, T. J. Chaney, T.-P. Fang, “Q-Modules: Internally Clocked
Delay-Insensitive Modules”, IEEE Transactions on Computers, vol. 37, no. 9, pp. 1005-1018, 1988.

[Siegel93] P. Siegel, G. De Micheli, D. Dill, “Automatic Technology Mapping for Generalized Fundamental-Mode
Asynchronous Designs”, Proceedings of DAC’93, 1993.

[Sutherland89] I. Sutherland, “Micropipelines”, CACM, Volume 32, Number 6, June 1989.

[Unger69] S. H. Unger, Asynchronous Sequential Switching Circuits. New York NY: Wiley-Interscience, 1969.

[Xilinx92] Xilinx, Inc., “The Programmable Gate Array Data Book”, 1992.

