9. BASIC ASYNCHRONOUS CIRCUIT DESIGN

9.1. Introduction

As mentioned in chapter 1, the basic sequential circuit model @Qs that of asyn-

chronous machine. In order to be able to design reliable circuits with{361)one has then to

understand the asynchronous circuit theory and the methodology of designing asynchro-

nous state machines. In the first part of this chapter we will briefly review the asynchro-
nous circuits and machines from the point of view of using them for th 36; ased
design.

Since the_\ggl chip has additionally some peculiarities of its own, like the signal dif-
ferentiation, we will enhance the basic theory frbm the first part of this report, to include
all those properties particular to@. This will be done in the second part of this chaipter.

In asynchronous circuits, the input signals x; directly affect the internal state of the
circuit, and cause the change of internal state. The new state stabilizes after time © from
the moment of the input change: A(t+1) = d(A (t))\(((t)). The numerical value of 1
results from the natural delays that exist in the logic elements of the circuit, as s well as in
the connections.

Since as told, the internal states can be both stable and nonstable, we will distin—
guish and define the respective concepts:

The stable internal states

AGG+TD=A({

are those that are held continuously when the state of inputs does not change
The nonstable states

A+t =2A@

are those which occur in the moment of the change of input signal(s).

-2

The entire theory of asynchronous circuits operation prcsented@ is based on
the following conditions. These conditions must be satisfied in order to be able to assume

the proper behavior of an asynchronous circuit:

- only one input can change its state at each moment of time,
'{\-h.q . .
- the next change of inputs can occur not before them-T, required for the stabilization

-

of the internal state of the circuit.

a) _
: Combinatdnal : |
Xp—" ¢ nefuerk I

)f' S — Y4
x'h —— (R w\‘i Iuo."' N ahaJ :

"—'——95\-“

ok HT

e
—

Fig. 9.1.
Sdotond ig.9.1.1.
Tm_f Asynchronous Finite State Machine.

-3-

. A standard realization of an asynchronous state machine, useful for the explanation
of the phenomena occuring in such machines, is in the form of the combinational circuit
with feedback loops (Fig. 9.1.1a). Another model uses static flip-flops (Fig. 9.1.1b).
Realization of@ is another model, a more complex one, of the asynchrono:&sa state
machine. We will discuss all those model, since all of them have applications to design
asynchronous PLDs, either with the existing devices such as 361, 331 and 332, or new

asynchronous devices that fzo are mm-pmpogg}mﬁrpgimmm

9.2, Creation of flow tables.

The flow-table of an asynchronous state machine can be drawn from the natural
language description or from the timing diagram of the circuit’s behavior. Usually, a
separate state of the machine (the so-called complete state) is M com-
bination of the input and output signals. The states, for which the input signals are ident-
ical, but the next (internal) states differ, must be distinguished when the initial flow table

is created. This will be explained in the example.
Example 9.1,

The Voltage Controlling Circuit will be used to explain several design phases in this and

few following examples. The circuit is to control two pass transistor switches, y; and

¥2, that control in turn the voltage level on the capacitor (Fig. 9.2.1).

-4-
. Fig.92.1.
The Schematic

The voltage level is signalized with two sensors x; and x»3. The cycle of work of the

switches is determined as follows:
1. Voltage level below x; (x1 =x5 =0) - none of the switches is ON.

2. Voltage level between x1 and x4 (x1 =1, x =0). The switch is ON, which has not

been ON recently, as a single switch being ON.
3. Voltage level above x, (x| = x5 = 1) - both switches are ON.

As one can see from the above description, there exist four different combinations
of the input and output signals. The number of the complete states, however, will be
greater, sincé when both switches are ON or both are OFF, the circuit has to remember

which one of the switches has been ON recently.
The following complete states can be distinguished:
1. none of the switches is ON, y; was on recently,
2. none of the switches is ON, y, was on recently,
3. switchy; is ON,
4. switchys is ON,
5. both switches are ON, yf has not been ON recently,

6. both switches are ON, y, has not worked recently.

Fig. 9.2.2 presents the cycle of switches’ work and the timing diagram of the

machine, This diagram enumerates also the complete states of the machine. Let us point

- out the difference between the states 1,2 and the states 5,6 which both correspond to the

same combinations of input and output signals. Although they both have the same
input/output combinations, their dynamic behaviors are different. For instance, with the
state of inputs x; = 1, x5 = 0, the machine transits from state 1 to state 4, and with the
same inputs it transits from state 2 to state 3. Let us observe, however, that states 3 and 4

are different, since they have different outputs.

S e [

voH‘aa; lved

Xg_ ‘

g

Y
Ya

Fig.922.
Cycles of Changes of Voltage Level

After specification of the number of complete states one draws the so-called initial
ﬂow: tablé which specifies for each complete state in moment t, the next state in moment t
+ 1. Practically, at first one writes the stable states into the cells corresponding to the
input signals respective to this state (Fig.9.2.3a). (Stable states are denoted with circles in
the figures and they will be surrounded with parantheses in the text). Next, using the

non-stable states, one marks the transitions among the stable states. For instance, if by x,

= x9 = 0 the machine was in state (1) (the switch y; has worked recently), then after

£ RS N o L

-6-

occurrence of signal x; = 1 the machine will transit to state (4) (switch y, works). Dur-
ing the transition time 7, i.e. after changing of the state of inputs and before the change of
the state of the feedback signals, the machine is in a nonsrable state 4. This non-stable
state is then written in the flow table at the intersection of the row in which stands state 1,
and the column corresponding to the actual state of inputs (10), in which the stable state
(4) stands (Fig. 9.2.3b). All possible transitions among the states shall be written to the
flow table, and the dashes shall fill up all the remaining cells of the table (particularly,
the dashes can be directly written into column Q1 of Fig. 9.2.3a because such combina-

tion of input signals can never occur).

-7-

. When the behavior of the machine is specified by a timing diagram, the creation of

the flow table from it is even simpler.

T Xy X2
Ao ot m_Bxy . ANO0 01 1 10V
1 | - 00 - 1 @ Il R
2| - o0 2{@)| - |-|3]o
-’“/,’ . .
3 - @) o sf1|-|s|®]
-] |@e sf2{-]6|@|o
s -le] |n si-1-1®]4]n
6 -1 |n 6|-1|- 3|n
Fig.92.3.:
Creation of Initial Flow Table for the Voltage Level Controlling Circuit
Example 9.2.

The Generator Gating Circuit will be designed. The design task is to create the circuit

es
for gating the generator g (Fig. 9.2.4a), which operatgr as follows:
a) Whensignalb= 0, the output signal y = (.

b) When signal b = 1 occurs on the input, the pulses of the generator occur on the out-

. put y. These pulses must be full and not shortened. Their shape should not be

o b i

-8-

affected by the moment of arising or disappearing of signal b.

c) The generatof’s frequency is much greater than the frequency of the gating signal:
fg >fb-
Solution.

According to the above problem specification, four cases can be distinguished (Fig.

9.2.4b).
1. Signal b= 1 occurs in the interrupt between the generator pulses,
‘2. Signal b =1 occurs during the pulse. In such case, one more pulse should be created
on the output. |
3. Signal b= 1 disappears in the interrupt between the pulses,
4. Signal b = 1 disappears during the pulse, however, the full pulse should occur on the

output.

The complete states of the circuit, created according to this specification,

correspond in the timing diagram to the time intervals in which the input signals do not,

change. These states are enumerated arbitrarily, but a new number is assigned to each

different combination of input and output signals.

gy ISR

-9. -""LS’T

W’

The complete states (i.e. the states corresponding to the same combination of inputs and
outputs), which transit under the same input signals to different next states, must be dis-

tinguished. Next, the table from Fig. 9.2.4¢) is created, analogously as before.

a) - R} o g
L T 12134 3431212534 3461 21
}b" : 'QMM JA ; |
O NI
| o — V7773 . D77
Y——'—%—% M

¢)
,Agboomnio?
T sl-12]o !

2f1 |- s @)o
31 |@)4]- o
41-13 (@) s
s|-[3|G)-|o
sl1]- :@1

Fig.924.
The state machine for generator gating: a) block diagram, b) timing diagram,

c¢) initial flow table

The output signals which correspond to the corresponding complete states are written at {Le.
rightmost column of the table. It should be kept in mind that the timing diagram may

include not all the possible transitions among the states enumerated in it. Therefore, after

writing into the table all the transitions that result from the timing diagram, one cannot

-10-

automatically put dashes into the remaining cells of the table, and treat such transitions as
impossible to occur. Instead, one must consider whether these transitions are essentially

impossible with respect to the assumptions and specifications of the problem. For

instance, in our example there is no transition in the timing diagram from state 6 under

input 11. Such transition is impossible from the problem’s assumptions, because it
would correspond to the occurrence of two pulses b with an interrupt shorter than pulse

g, and it was assumed that f, >> f;. The reader is asked to use the same method to

" analyze also the remaining transitions, which are not shown in the timing diagram.

Example 9.3.

Design of a "D type flip-flop" Circuit. Design an asynchronous circuit, which
input/output behavior will be the same as of the synchronized, D type flip-flop. The cir-
cuit has the "¢ clock input” and the "D signal input". The timing diagram of this circuits
is shown in Fig. 9.2.5a. After enumeration of states, the flow table (Fig. 9.2.5b) is
created. | Dashes are put into the cells of the table, corresponding to transitions that wounld
result from simultaneous changes of two inputs (this is done to satisfy one of the basic
assumptions of asynchronous circuts). The remaining not filled cells (the transitions not
specified in the timing diagram) shall be now analyzed. The easy way to perform such

analysis consists in drawing of the additional segments of the timing diagram, which

would illustrate the not previously considered situations.

-11-

This additional diagram is shown in Fig. 9.2.5c. The arrows point to the transitions.
From state (3) under signal ¢cD = 10 the machine must transit to state 2, because short

o He
pulses D (not containing back edge of signal c) should be ignored. Fig. 9.2.5d presents

the complete initial flow-table.

Y B . .-
o %._2%4 54671218 3 4?%1 2 1
Mt: - = h : 5 . Y
ST A S O ' 0
U)) _
Q 7—,-_-3_-1 _ |0
S o 4 1
S T { S 7 (1
) 183-21»464675 18 1
R - - - 6 7 11
D SESRS 15 i I ‘
y ———'—————uc _ - » . m______
- al)
cD
AN 1 110 Y
11 | - 2 }o
2 [T 1@ -
114132]o
“Ls (O] s |-
L4 1® 7 |
SRS 41 -7 L ' :
711} - '
. 5 | Fig.9.2.5.
1 3 -
» : 0 Type D flip-fiop: a) timing diagram, b) incomplete initial flow-table,

¢) additional timing diagram, d) initial flow table.

-12-
Fig.9.2.5.
Type D flip-flop: a) timing diagram, b) incomplete initial flow-table,

¢) additional timing diagram, d} initial flow table.

9.3. Minimization of flow-tables.

The flow tables, created as in the previous section, should be next minimized. State
Minimization of asynchronous machines is simplier than the minimization of synchro-
nous machines, because the initial flow tables of asynchronous machines have the follow-
ing special properties: |
- the initial flow-tables are of Moore machines,

- in each state row of a table there exists a single stable state cell,

- a non-stable state can stand only in the column 1n which stands the same state (fn..:@/ 6"j
number butﬁﬁzle/(g{gan then occur only in a single column of an initial flow table)
Laitnia

hphn—g > [=
The concept of the pseudoequivalent states is introduced or%mmzzanon
asynchronous machines. The psuedoequivalent states are the compatible states, which

have stable states in the same column, i.e.s G"""d‘?a‘ E—‘a A £ Al)

AiZp3 A (A G 4) & Gor~all X)(B(A; , Xp) = A & \6-78(X =4j1]
S

where

A l=i=

@I<)——> Gor—alj X0 1(804:,) “n2) 5047, Xp) & (A <03 MAD]

.2 MPdes growy &own‘)m '}ﬁ”

-

-13-

The state minimization process which uses the concept of pseudoequivalent states,

' should consider as well the concept of conditional pseudoequivalency.

8‘9 Q] q-(

D RIS
.©|l
-.,‘,4
?

) ' A

1] vi{o)=>]=]- .|-®_€
—4

. ~ R
e

B 0 @ 9 o AN

S
3 <
53
© L

5

lMN@Na
glalelgl<
&L~ /..

.
4
eaz{1{s @ s
(6) 3 _@ 1]- 22 [> @'
N4 - 1'@ (6)3 l__l1 S22
{10) s 31@ 2{=-|n (1o} 4° _:;@ 2| -
f);_‘oom 110) ,)A"ooo1111b
1 {o-}oo|on 1T oJdoo [0l on
2 0101 2fo-]-1101{o
B 3|0 - alw |-of— |-
4 1 -- s{1-|n -1 - -

. ' Fig.9.3.1.

-14-

Minimization of an asynchronous machine:

a) the initial flow-table, b)the flow table after reduction of pseudoequivalent states,
c¢) the merger graph, d) the minimal flow table and output table of Moore machine,
e) the minimal flow table of Mealy machine,

) the stage in synthesis of output table of Mealy machine,

8) the complete output table of Mealy machine.

Determining the conditionally pseudoequivalent states can be executed, as for the
synchronous machines, by using the triangle table. However, it is often not necessary,

because the number of pseudoequivalent states is usually small.

For example, let us consider the table from Fig. 9.3.1a. The pseudoequivalent states

are searched among the states that have stable states in the same column,

States 1 and 6 are not pseudoequivalent, because they have inconsistent output sig-
nals. States 4,5 are pseudoequivalent under the condition of pseﬁdocquivalcnce of states
7 and 9. State 10 is not i)seudoequivalent with states 4 and 5, because of inconsistent
outputs. States 7 and 9 are pseudoequivalent under conditions 4,5 and 3,8. States 3,8 are
pseudoequivalent. All conditions are then fulfilled and the set {4, 5; 7, 9; 3,8 } of pseu-
doequivalent states is obtained. The compatible states of each group of this set are next

joined together (Fig. 9.3.1b). The kil fon 2ach grovp i e wap o wesmel & Hh
bt lewad d ecdk guap (5h4,247,3 (9.
After joining the pseudoequivalent states, the conditional compatibility cannot exist

in the table of an asynchronous machine. Two states are then considered as compatible,

if their respective successor states are equal, or at least one of the successors is not
specified. A merger graph is useful by searching for the maximal groups of compatible
states. In this graph, the continuous lines join the states which are compatible and have
consistent outputs. The interrupted line is used to link two compatible states with incon-
sistent. outputs. By joining the states having consistent outputs (continuous lines), one

obtains the Moore machine. By joining the states with inconsistent output signals (inter-

. rupted lines), the Mealy machine is created. Fig. 9.3.1c presents the merger graph of the

-15-

machine considered.

The maximal set of compatible states for Moore machine is:

¢; ={1,7;1,4;1,3;2,3;6,10}
The maximal set of compatible states for Mealy machine is:
02 =(1,47;13;23;67;2,10)
4his

Let us observe, that in the case of gardsynchronous machine the closure condition is
satisfied for each set of groups of compatible states. In other words, there is no condi-
tional compatibility for asynchronous machines. Therefore, by searching for the minimal
set of compatible states, only the .covering condition must be considered. Let us notice,
that the group 1,3 and the stafc 1 from one of the groups 1,7, and 1,4, can be deleted ﬁ'bm
. the set ¢,. The group 1,3 and the Statc 2 from the groups 2,3 or 2,10 can be deleted from
the set ¢,. In such a way, the following minimal sets of compatible states are obtained:
{1,4;23:;6;7;10},0r {1,7:2,3;4;6; 10} for a Moore machine; and the sets {1,4,7 ;
- 23;6; 10} or {1,4,7 ;2,10 ; 3 ; 6} are obtained for a Mealy machine. Of course, these

sets can be also obtained directly from the merger graph.

- Any of these sets is selected in order to create the minimal flow table. The minimal

table is created identically as for the synchronous machines; by joining the states from

each group of the above set to a single state. In each column of the table, all compatible

next internal states are merged together. Stable and nonstable states can be merged.
~ After merging rows, there can be more than one stable state in one row. Fig. 9.3.1d
presents the minimized flow table of the Moore machine for the example considered. Fig.
9.3.1e presents the respective minimized flow table of the Mealy machine. In the Moore
machine the output signal corresponds to each internal state, creating of the output table

is then straightforward from the flow table.

Creating of the output table for the Mealy machine is more complicated, because

the output signals depend also on the states of inputs. The table is created according to

PSP REPTE SEE S

-16-

the following algorithm:

Algorithm 9.3.1.

1.

One creates outputs for the cells that correspond to stable states from the initial

table. And so, in Fig. 9.3.1e the stable state (1) in column 00 corresponds to the

stable state (1) from the non-minimal table (Fig. 9.3.1b) to which output 0-

corresponds. One writes this output value to the respective cell of the output table.

Therefore, the cell on the intersection of row 1 and column 00 obtains value 0- (Fig.

9.3.1f). Analogously, state 1 in column 01 of the minimal table of Fig. 9.3.1f

corresponds to state (4) of the non-minimal table, so that the respective output 00 is

written to the output table. Dashes are written into the cells of the output table

which correspond to the dashes of the initial flow-table (Fig. 9.3.1f).

Output signals corresponding to the non-stable states are specified as follows:

if in the row with the considered non-stable state, at least one stable state has
the same output as the stable state to which the machine transits, one writes
this output to the respective cell of the flow-table. For instance, let us specify
the output signal corresponding to state 2 in row 1 of the table from Fig.
9.3.1e. State (2), to which the machine transits, has the output 01. In row 1
there exists three stable states, one of them (in column 11) has also output 01.

Output 01 should be then subordinated to state 2.

if all stable states in a row have different values of the outputs than the final
state, then a nonspecified output will be subordinated to a non-stable state. As
an example, let us specify the output for state 4 in row 2 (Fig. 9.3.1e). The
final state (4) has output 11, the stable states in row 2 have output 01, i.e., we
will subordinate output -1 to state 4, because in the first bit the outputs are dif-
ferent, and they are identical in the second bit. We will subordinate both

nonspecified outputs for state 2 in row 3, because state (3) has output 10, and

state (2) has output 01.

LR S i gtrs

e

B R e e - EULERR R

-17-

The resultant Mealy machine’s output table is shown in-Fig. 9.3.1g.

2. 9.3.
The Algonthmw ensures obtammg of a proper output table, but not
Thi> is becacse
necessarily the minimum one. by spec1fy1ng outputi of Afon-

S yn woid L w
stable statc’, only those stable states roxzjy@/ﬁrﬁiac—ra/ from thch there # exsh

S @
eSsertElly 2 transition through the nonstable state, {for which the outputg ae specified.

For instance, by specifying the output of state 4 in row 2, one can take into account in
The Ao e . kg
column 11 only,s‘(ble state (2) (corresponding to state (2) of the non-minimized table). &

m‘to-considc; the state (2) in column 10 (corresponding to state (3) of the
FLRIA O [N csvrary
non-minimized table), d€cause there is no transmon from this statey through the con-
[+, 198 \f
sidered by us unstable state 4 (seerdgain the non-mmxmxzed table).
41, A‘%on%'\- 3.1 “")&0‘ (A M‘-’D u(nm-:‘\\vv\ . Sudh
Fheubove procedure can produce more don’t cares in the output table which is

Ohg Can M‘CA+E A Mﬂtft\'%Mf-

advantageous, because having more don’t cares permits to better minimize the output
functions. It is, however, more time consuming. Application of the non-minimized table
is required at this step, which is inconvenient because of the need to reenumerate the

states.
The complete sequence of steps to minimize a flow table of an asynchronous
machine is given in the following algorithm.

Algorithm 9.3.2. g o bl
8 i the inibeeh e e

1. Find the groups of pseudoequivalent states ‘and join them,

2. Draw-'th¢ merger graph and find the minimal sets of compatible states for Moore
and Mealy machines. Remember that the conditional compatibility does not exist
here.

3. Create the minimal flow table and the output table of the Moore machine and the

m

flow table of the Mealy machine. Keep in mind that a stable statef;' the initial table

remains also stable in the minimal table.

4. Create the output table of the Mealy ‘machine using Algorithm 9.3.1, o¢ wodflyed - Myt 3 AR

-19-

Example 94.
We will minimize the flow table of the Voltage Controlling Machine from Example 9.1

(the initial table is repeated in Fig. 9.3.2a):

.S E ,m- ' - 1
A?sto 0 n_10 -‘E o2
' — - -

? 1 - 4 100 60', o3 ~

200- -3] - s

3l -5 @)

2 -1 @ AT
s|- - IOh < | A o + ’

o[- [1@ =] e
) 0'-)

S\ XaXe

.,A\xp&oo NN 0 ;\\ 00 _0O1 M

091 |Wf - (O] <. Ll
@a211]-11 1::) : 2 T 10.
g 3 3] - 1) 2 3fool=}n
“Wwasls|-]31® s |- 01

) Ya vz

e)
' -KeX2

A\ _00 01 1

-0 .— LR I | (7’4t

00f'1110

AN W ON

o-] - |-1]o
~" YsYe Fig.932.

Minimization of the voltage controlling machine: a) the initial flow-table,

-20 -

b) the merger graph, c) the table of the minimal Mealy machine,

d) the step in creating the output table, e) the complete output table.

Search for pseudoequivalent states. These can be the states 1 and 2 if the étates 34
and 5,6 are pseudoequivalent under the same condition. However, the states 3,4
have inconsistent outputs and hence are not pseudoequivalent. States 1,2 and 5,6
are then not pseudoequivalent. Hence, the states 1,2 and 5,6 are not pseudoe-

quivalent as well. Therefore, there are no pseudoequivalent states in the table.

‘The merger graph is presented in Fib. 9.3.2b. In our case this graph is not
indispensable, because it can be seen directly from the table that only states 1,5 and
2,6 can be joined to obtain a Mealy machine. The initial table is also the minimal

table of a Moore machine.

The table of the minimal Mealy machine is presented in Fig. 9.3.2¢ (parentheses

include enumeration of the states from the initial table).

Fig. 9.3.2d presents the first stage of creating the output table of the machine - writ-
ing down the outputs which corresponds to the stable states. And so, to state (1) in
column 00 correspoﬁds to state (1) in the initial table, then the respective output in
Fig. 9.3.2d is'00. State (1) in column 11 is the state (5) from the initial table, then
output 11 corresponds to it in Fig. 9.3.2d. After specification of outputs which
correspond to the stable states the outputs for the non-stable states should be
specified (Fig. 9.3.2¢). State 4 stands in the first row, in which the stable states have
outputs 00 and 11 (Fig. 9.3.2d). State (4) to which the machine transits has output
01. State (1) from column 00 has identical output ¥, with state (4), and state (1)
from column 11 has identical output ¥, with state (4). Therefore, one subordinates
to the non-stable state 4 the same output as the state 4 has, i.e., 01. Following the

Algorithm 9.3.1, the table from Fig. 9.3.2¢ is finally created. The process of the
table minimization is tesminated. cowelylod

221 -

Example 9.5.
The flow table of the circuit from Example 9.3. will be minimized. Fig. 9.3.3a repeats the
flow table. As it can be observed, there are no pseudoequivalent states. The compatibil-
ity graph is presented in Fig. 9.3.3b. The minimal machine is then the four-state Moore
machine from Fig. 9.3.3c.
Fig.9.3.3.
Minimization of the flow table of the D type flip-flop:

a) the initial flow table, b) the compatibility graph, c) the minimal table.

_22.-

Fig. 9.3.4a presents the minimal flow table of the Moore machine for gating the
generator (Example 9.2). Fig. 9.3.4b,c presents the flow-tables and the output table of
the respective minimal Mealy machine. Checking of these solutions is left to the reader

as an exercise.

AN_0001 11 10 Y ! |
MNOOEREIIES | ‘]
0o - - :

olz
o |3

-l
-

Fig. 9.34.

Minimal table for the generator gating machine:
a) the flow table of the Moore machine, b} the flow table of the Mealy machine,
¢) the output table of the Mealy machine.

-23.

9.4. Assignment of flow tables. Races.

The state assignment process of an asynchronous machine consists, as in dw syn-
chronous circuits, in subordination of sequences of values of memory elements
01, Os, ..., O to the internal states of the machine. The memory elements can be real-
ized as flip-flops or;f,;fdback loops of combinational gates. Therefore, for encoding the

table with K rows (internal states) one assumes at least k signals)where:
2"-1 <K < 2%

Machine of K internal states must have then at least k memory elements.

The assignment of asynchronous machines is a very important process. Because of
the so called races, a wrong assignment can produce a circuit, which -wet‘id not work

correctly.

9.4.1. The races.

The phenomenon of races can occur in an asynchronous machine, because of not
" equal delays in the feedback loops. We will explain the essence of this phenomenon on

an
the example.

-24 -

Fig. 94.1a presents the block diagram of an asynchronous machine with two feed-
back loops. Let us assume that this machine, which realizes the flow table of Fig. 9.4.1b,
was encoded according to Fig. 9.4.1c. For clarity it is assumed that all delays from the

combinational unit y have been collected in the feedback loops so that there are not any

delays inside the logic network (Fig. 9.4.1a).

-25-

| . Fig.94.1.

The phenomena of races: a) the model of an asynchronous machine with two feedback loops,

b) the flow-table of this machine, c) the encoded flow-table,

d) the timing diagram, which assumes T, = Ty (no races),

¢) the timing diagram, which assumes Ty < Ty (critical races).
Let us assume, that the machine is in the stable state (1),ie.: X=0,0; =0,0, =

0. Let in somé moment 7, the input signal changes its state from 0 to 1. According to
the flow table, the machine should then transit to the state 3 (encoded as 11), i.e., both
feedback signals should change from O to 1. If delays T; and %, are equal, then the
machine operates correctly. In time 7, simultaneously 0, and @, change to state zero.
Such case is in real life not possible - one of the delays would always be greater. Let us
assume now, that T > 1. In such a case there will exist some time interval in which O,
will already change its value to 1 and Q5 will yet not change the value. On the input of
circuit y (Fig. 9.4.1¢), there will arise a combination of x =1, Q; = 1, @2 =0 in moment
t3. According to the flow table, the circuit y will create the output signals g1 =1,g2 =0,
which will make the change of the signal O to 1 impossible. The value @y =1,0, =0
vﬁﬂ be then stabilized, i.e. the machine will transit to state (4) rather than to state (3). If
one assumes T3 > T then, analyzing the table in an analogous way, one can see that the
machine will transit to state (2) (the values @, = 0, O, = 1 will stabilize). The
phenomenon described here is called the crirical kg&

Let us assume that the circuit is in state (3) (encoded as (11)) with x = 1, and the
change of x to 0 occurs. The machine should transit to state (1) of code 00. Not depend-
ing on which of the signals 0 or Q, will first change its value to 0 the circuit will attain
the state 1. Let for instance T; < 13, i.e. at first it will be @ = 0. The circuit will transit
to state 2 (code 01), froni which under x =0 it should also transit to (1) (the circuit v still

generates signals g; =0, q; =0). If 1, < 1; then the situation is similar and the transi-

‘ tion (3) > 4 -> (1) will occur. The above phenomenon is called the noncritical race.

-26 -
L
A race can occur in the circuit only if some fransition in the table requires Change of
' at least two feedback signals. If the column to which the machine transits includes two or
more stable states, then the critical race becomes possible, i.e., the race which can lead to

the improper stable state. If there is only one stable state in such a column then only 4% <

noncritical race is possible in it.
L a

It results from the above that e sufficient condition for avoiding e race is such an

assignment of the machine:{: ;;lty/mle feedback signal is changed in each transition among
stable states. However, it should be stressed that this is not the W_
~ avoid critical races.

N T BN ok N\

A\X« Xe Xs Xi AN Xt X2 Xa/ X A X X Xs Xg
R OIERERE (00} 1 1-_2~,4-4_ {00|1® 214
o) 2/3) 3 | « o 281 @] 4. s @4 -
f"’?‘@‘*' M 3 344,__'@1)2@3@4 :
m QO] w «[VO@® w0 <1 |QIO|®]
4 X :)

A Xe Xo Xs Xs
poa1 {(D]3 |54
) 2|3 |@) 4|
pas|1|@ 6]«

CEARE(O][C][O .
o st-1-1214
e l-1-14]4

o v At

-27 -

Considering now a maching with the flow table of Fig. 9.4.2a, it can be easily
noticed that a danger of critical races exisslzi/n columns X, X,, X3. It can be checked
that the encoding of the machine !that would satisfy the sufficient condition of avoiding
critical races is not possible. It is, however, possible to remove races from this table by
introducing the so called cyclical transitions (Fig. 9.4.2).

Fig. 942,
Elimination of races: a), c) the flow tables with races,
b) the flow table with race removed by introducing the cyclic transitions,
e), f), g) the simplified flow-graphs,
d) the table in which the race was removed by adding a new state.

Let us try to encode the states as in the table from Fig. 9.4.2a. The danger of races exists
now in column X; by transition (3) -> 1 -> (1) and in column X5 by transition (1) -> 3
-> (3), because codes of states 3 and 1 differ in two positions. The transition (3) -> 1 ->
(1), i.e. 11 -> 00, can be practically executed in two ways: (11) -> 01 -> (01) ((3) -> .2 ->
(2)), which gives a bad final state (the critical race), or the transition (11) -> 10 -> 00 ->
(00) (which is, (3) >4 -> 1 -> (1)), that gives the proper ﬁﬁal state. Both transitions are
marked with arrows in the table from Fig. 9.4.2a. The introduction of the cyclical transi-
tion consists in forcing of this "proper” transition by writing state 4 in row 3, column X
(Fig. 9.4.2b). This concludes how the critical race has been removed from this column.
Analogously, the race from column X5 can be deleted by introducing the cyclical transi-
tion (1) -> 2 -> 3 -> (3) by writing state 2 in row 1 of this column.

Let us encode now the same machine according to Fig. 9.4.2c. The danger of race
exists now in column Xy by transition (1) -> 2 ;>' (2) and (3) -> 4 -> (4), because codes
of states 1,2 and 3,4 differ in two positions. Transition (1) -> 2 -> (2), i.e., 00 -> 11 can
be now ck_ecutcd in two ways (1) >4 -> (4) ((00) -> 10 -> (10)), or (1) -> 3 -> 4 -> (4).

Both ways lead to the wrong final state. This is an example of the critical race which

cannot be removed by introducing the cyclical transitions. This race can be eliminated

the

-28 -

by adding a new state. The msiﬁon 1) -> 5 -> 2 -> (2) is introduced instead of (1) -> 2
> (2), émd the transition (3) -> 6 -> -> 4 -> (4) instead of (3) -> 4 -> (4). This way, one
obtains the table from Fig. 9.4.2d. This table can be now encoded according to the
sufﬁcient condition for a race-free table. Introduction of additional states causes often

the necessi to increase the number of feedbacks, which usually increases the circuit’s

eamns 10 o : _
complemty[-mmafé?ﬁr avoiding races should be then introduced only in
whern thave (n ko other vy G ound .

cases

By removing races, the attention must be also paid to the columns in which €% the non-

endist
critical races[."lfi/s possible that mee transitions through

celly, Which are unspecified in the states, through which the machine may transit during
the race. These cells should be, therefore, completed (spcc1ﬁed) In tlns ﬁplﬁ the

SN n u“

column X4 of the table from Fig. 9.4.2a. has such property\k'ft-atc 3 @ns column

" there is a dash, and if the machine transits from state (2) to state (4) then one of the possi-

ble transitions will lead through state 3. Because a nonspecified transition exist in this

state then, in some particular case it may happen that thew creation of the realiza-

.-% one ej, :wbscquﬂu‘f i»lra pen /
tion logic § state as a stable state (3), which would lead to a

wrong transition. This transition should be then completed by writing the nonstable state
4 into the cell on the intersection of row 3 and column X 4 (Fig. 9.4.2b). A similar situa-

tion exists in row 2 of the table from Fig. 9.4.2c.

9.4.2.The State Assignment.

It is required that the code taken for the assignment of an asynchronous machine
removes the critical races. This is achieved by applying the sufficient condition for races

elg.mination, by which the machine is encoded in such a way that only one memory e¢le-

ment changes its state by each transition.

The simplest assignment method that applies this condition is the method of hyper-

cubes. The simplified transition graph of the machine should be transformed to the form

in which the nodes of the graph become the vertices, and the arrows become the edges of

w(,(bqfﬂ\:s

29

.- the k-dimensional hypercube (k is the number of memory elements). If the adjacent
codes of Gray code are now subordinated to the adjacent vertices of the hypercube, then

the sufficient condition for eliminating races is satisfied.

P

i 3ome 7ol

-30-

Let us now consider the machine from Fig. 9.4.3a. (There mgy be some confusion
because of three unstable states. For instance in row 5. We cay, however, assume that
there exist some additional columns including only wansient, upistable states, and that for
simplification those columns have not been drawn in tﬁe table). The simplified transition
graph is shown in Fig. 9.4.3b. Three signals are necessary for the assignment of the table
- in this case the hypercube is a standard three-dimensional cube. Transition graph in the
form of the cube is shown in Fig. 9.4.3c, and the encoded transition table of this machine
is presented in Fig. 9.4.3d.

Fig. 943.

State-assignment using the method of hypercubes:

a) the flow table, b) the simplified state-graph,

d) the encoded flow-table.

was Most fransition graphs & is h&possiblc to presen?t/m in the form where all
arrows are aligned with the edges of the hypercube,Some arrows being the diagonals of
the hypercube can also occur, ssd Tn such casg it is impossible to encode the machine in
such a way that only a single feedback signal changes for each transition. js=hose-ewey,
All €6 transitions to which correspond arrows being ##% diagonals of the -h‘/yt‘,\;)f;’cube

should be inspected one by one,/ If a transition occurs only in a column wshieh can

. -_ - -, . . - s - a4 -
include a noncritical race, then tljis transition @&fa remain unmodified. If a critical race is

[~ N
possible in sle column, this rac¢ can be removed by introducing a cyclical transition. If,
in turn, the introduction of a cyclical transition were not possible - a new state would be

added to the graph. Fig. 9.4 2e presents the simplified transition graph of the machine

from Fig. 9.4.2a. The hypeycube reduces here to the square. The diagonal transitions are

'2->4,1->3,and 3 -> I/ It results from the considerations of the previous section that

the cyclical transitions cgn be introduced for transitions 1 ->3 and 3 -> 1, and that transi-

tion 2 -> 4 does not cayse a critical race. The transition graph of this machine after intro-

Lo
Py mee FourKom Ooag e
P

c) the simplified state-graph, presented in the form of a hypercube, @ A

-31-

ducing of the cyclical ransitions is shown in Fig. 9.4.2f.

-
X
Xt Xz Xs
1|()] 2] 4
2|@|@) s
s{1]-4s
4@ |®
sl2)2|®]
IARE OlK;
7218 |6 |®
2 |@]2]+«

QO X Xa Xs Xa | Y
) ooo | 000 | 001 | 00 | 000 |00
Ljoo | 001 | 001 | 101 | 000 |10
gonfon oo | oo jon |n

I @Woo | 010 |10 | o0 |on |o
Mo | 010 j 110 | M | MO0 M
Bm jen|w [m jon |n ¢
1§ 001 | 001 | 101 | 100 |00
{300 000 - | 101 | 00 |10

Ry, 9.4.%.

Y%

3

4

.&_"‘ X X4

A

S 1BHBIE| |8
g(8|e|2[E|F e
sl Jele| |8
e cio ‘
g1818|818|8|8
58 eE gl
48 8 g s R8T
CNONOOME
PGB ICE LR R A
onoHnonl
Bl el Bl Baall Bl
A2345678

A

Fg%_@. %.9.4

-32-

Example 9.6.

The machine from Fig. 9.4.4a will be assigned.
Fig.944.
Example of state-assignment with hypercubes: a) the flow-table,
b), c), d) the placement of the transition graph in the hypercube,

e) the flow-table with races removed, f) the encoded transition rable.

The machine has 6 states so that at least 3 memory elements are required. The transition
graph is drawn as a hypercube - one of the possibilities is presented in Fig. 9.4.4b. The
transitions on diagonals of the hypercube occur: 4->1,6->1,4-> 5,and 3 -> 6. While
4->1,and 6_ -> 1 can produce only noncritical races, the transitions 4 -> 5 and 3 -> 6

can result in critical races.

The race in transition 3 -> 6 can be eliminated (assuming this form of the graph)
only by increasing the hypercube’s dimension. The cyclical transition cannot be intro-
duced, while in column X4 of the flow table the nonstable state 6 occurs only in row 3.
The new state cannot be also added without increasing the hypercube’s dimension, while
all the nodes of the hypercube adjacent to node 3 are already occupied. The transition
graph is, therefore, drawn in a slightly different form (Fig. 9.4.4¢). Now the transitions
on the diagonals are: 2->3,6->4,4->5, and 4 -> 1 (the last one does not cause a criti-
cal race). The races on transitions 4 -> 5 and 6 -> 4 can be easily eliminated by introduc-
ing additional states (in both cases it is impossible to introduce the cyclical transitions).
The race on transition 2 -> 3 is more difficult to delete. It can be eliminated by introduc-
ing an additional state and a cyclical tmnsition. The tra_nsition 2)>8->5->3->R)is
obtained. The transition graph after elimination of races is shown in Fig. 9.4.4d, the
flow-table without critical races is shown in Fib. 9.4.4e. Fig. 9.4.4f presents the encoded

flow-table of this machine.

The assignment method presented above not always leads to minimal solutions.

This is because the principle of changes of single signals Q; in transitions assumed in this

-33-

method is not a necessary condition to eliminate critical races. This method does not
also yield circuits of minimal complexity.

Better assignment results can be obtained by applying partitions of the set of inter-
nal states of the machine. The partition-based method specified below takes into account
both: the races and the circuit’s complexity. It makes use of the partition theory [], as
well as the new concepts of internal and output partitions.

The method makes use of Theorem 9.1.

Theorem 9.1.

If for each X{fX and each pair of states A,, A ,-24 such that
3A,, X)=04;, X;)=A;

the codes of states A, and A; have a common part which do not stand in code of any A,
such that §(A7 , X’)= A" #AJ then the state assignment does not cause the critical

races.
Proof.

By change of state of the machine from A, to A; the feedback signals Q; corresponding
to the common part of the code do not change the state. The undesired change of state
from A, because of not equal delays in the remaining feedback signals would be critical
if there were a path from state A; to the nonstable state 4, # A;. However, according to
the assumption of the theorem, no state A has the common part of code with A, and A;,
which excludes the critical race.

It results from the above theorem that a proper encoding can be obtained by select-
ing the partitions in such a way that a partition always exists in which pairs of states (
Ay, Aj) and 4,, Ap) belong to different blocks. The expressions of the type m -
A_nx , which order placing the two different pairs of states in the different blocks of a

partition will be called the elementary conditions.

-34-

Example 9.7.

In the table from Fig. 9.4.5a (the generator gating circuit of Example 9.2) there is
(1, Xé) =3, 8(3,X3)=3, and 8(2, X3)=2. Then the codes of states 1 and 3 must have
the common part, not occurring in the code of state 2. The partition 7; = {1,3, 2} is thus
found. Next: 8(1, X4) =2, &2, X4) =2, 8(3, X4) =3, determine the partition 7 = (1,2,
3). The flow-table encoded with respect to these partitions is presented in Fig. 9.4.5b. It
can be easily checked that this table is free from all critical races. Several useful

definitions will be now introduced.

-35-
The final family Ty is the set of proper partitions Tr = {1, T2,..., T}, which
. fulfills the conditions:
I, Ty Ty T = 5,

2. Assignment according to partitions from T does not cause critical races.

GONZ .
t) 0o J00){0o)] 10

ErIEEO - @01 [oo]ooj(e)
sy S m -]

L 16 |oo oo

el Tef =k

Fig.94.5.

The State Assignment of the Generator Gating Machine.

-36-

~ The State Assignment of the Generator Gating Machine.

The optimal final family T,y is such a final family, that the assignment according
to its partitions gives:

1. the simplest expressions for transition function of the machine:
0; =8;(Q1. 02, ---» Q> X1, X2, Xn) 3i=1,2,., k5

2. the simplest expressions for the output function:
¥ =M@1, Q2+ s Qoo X10 X0 %) 3= 1.2, m;

Determination of Optimal Final Family from different final families is similar to the
case of synchronous machines. Attention will be now devoted to the generation of final
families,

We will introduce first an additional partition that can be found from the flow-table.

The internal partition 1(X;) is the partition, the blocks B ; of which include only

such states A, that transit into a single state A; under input state X;:

Bj={A, | 8(4,, X;)=Aj}.
For instance, for the table from Fig. 9.4.5a the following internal partitions exist:

X 1) = {123}, "X 2) =m(X),
n(X3) = (13, 2}, 7(X4) = (12, 3).
The assignment with respect to the internal partitions leads to the simplification of the
transition functions of the machine (this takes also place in the case of synchronous
machines).
Theorem 9.2.
If each of the arbitrary two blocks of every internal partition n(X;) is included in two dif-
ferent blocks of some proper partition from set T with k elements then the set T is the
final family Ty and can be selected for the state assignment.

- For instance, for the machine from Fig. 9.4.5a the partitions t; = n(X3) = {13, 2}

and T, = (X 4) = {E, 7.’;} are selected.

-37 -

| . The state assignment with respect to these partitions is identical to one found in Example
9.7. Let us notice that Theorem 9.2 determines stronger condition than those from

Theorem 9.1. Let us illustrate this fact on an example.

-38 -

. . Example 9.8.
| The following partitions exist for the machine from Table 9.4.6a:
n(X2) = { 134, 2}, n(X3) = { 13, 24} = 1y, ®(X4) = { 14, 23} =1,. i
3
;

9 oo .;'“Io)' =

N x Xs X QAN Xa X2 X
1t41)3]4 © (oo 10 [@o)jor |0
2}4 @2 @ . {3401 110 | oo j(o) 1

s I A d? - {an fio ﬂ—,
s Kol 1 2@]' o (4)'16."00 1 (o)

Fig.94.6.

‘ Flow table and transition table for the machine to Example 9.8.

-39 .

When the partitions T, and 1, are considered for state assignment then the condition of
Theorem 9.2 would not be satisfied. These partitions do not satisfy the separation of the
blocks of partition n(X,). Let us however notice that the satisfaction of this condition is
not necessary to avoid critical races. According to Theorem 9.1, the pairs A,, A; and A,,
A, must be separated; which means that 8(4,, X;) = A; and 8(4,, X;) = A, # A;.

Because 8(3,X 2) =1 and &(4,X,) = 1, the pair of states 3,4 cannot be separated
from the state 2. The condition of separation of blocks 134 - 2 can be then split into two
conditions of separation: 13 - 2, and 14 - 2. These conditions are fulfilled by partitions Ty,
and 1. These two partitions are then selected for assignment and the assigned table is
shown in Fig. 9.4.6b.

The reduced family Ty is the family of proper partitions T; which fulfill the condi-
tions: | '

1. there exist only one partition T; such that t; = (X i)

2. 1; is the sum of two or more internal partition.

For instance, the internal partition (X ;) = { 1,23, 4) specifies to Ty the partition T

= { 14, 2_3}, since T2 n{X ;). The partitions X3) = {_T, 23, 45} and nX3) =
{ﬁ, 3,4, §} determine to Ty the partition T = { 123, 45} = (X 3) + 7(X).

The partitions from Tz not always sétisfy the separation of all blocks of internal par-
titions. The pairs of blocks shall be then written out after the creation of T which have
to be separated by some additional partitions, the so-called auxiliary conditions. For the
above examples, these will be the pairs 1 - 4 in the first case, and 1 - 23,3 - 12,4 - 5 in
the second case. The pairs consisting of single states (here 1 - 4 and 4 - 5 are such pairs)

can be omitted by the determination of the auxiliary conditions.

‘The next partitions for assignment can be determined from the additional conditions

so that the final family T is found.

It can happen that more than one final family can be created from the Ty and the

- 40 -

.auxiliary conditions. Then the optimal family Tr,, shall be selected among all the Tr
families, using methods analogical to those of Chapter 5.

It can also happen that no T family can be created from the auxiliary conditions. If
possible, the auxiliary conditions of blocks separation shall be split in such a case into the
elementary conditions (as done in Example 9.8). If this is not possible, the cyclical tran-

| sition shall be introduced. If this is still impossible, then it is necessary to increase the
number of memory elements by introducing an additional partition. It cannot be deter-
mined a priori which of the methods will lead to better solutions. Plenty of examples can
be shown which show the advantages of cyclical transitions, there are also examples for
which the introduction of additional partition give better results. In the worst case the

user has to introduce several cyclical transitions and several additional partitions.

ok

-41 -

Example 9.9,
. For the table from Fig. 9.4.7 one gets the partitions:
TXoo) = (1,34, @)} < (12, 34} = 1,
"Xoy) = (1,24, 3)) <{ 13, 24} =1,
TX 1) = (13,4, @} < (13, 24} =y,
n(X 10) = { 4, 123).
The family of partitions Tp = { 13, T} and the auxiliary condition 123 - 4 is

created.

©
©
©

H BN :
£~
|

1]

Fig.94.7.
Flow table to Example 9.9.

-42 -

. | Fig.94.7.

Flow table to Example 9.9.

This condition cannot be satisfied by the partitions from Ty. It is then split into ele-
mentary conditions. State 1 is stable in colurnn X 19 so that the elementary conditions
12 - 4 and 13 - 4 exist. These conditions are fulfilled by T; and 7, so that these partitions
create the final family Tr = {1, 12 }. |

Because it is the only final family obtained from the T set and the auxiliary condi-

tions, then this is the Tr,,, family as well. Then Tgep = {1, T2 }-

-43 -

Example 9.10.

For the table from Fig. 9.4.8a the following partitions are obtained:
(X o0) = { 14, 235} =7, sX o) = { 1, 25,34},
nX 1) = { 124, 35} = 5, °X 10) = { 12, 34,5).
Then, ©(X 1) + ©(X 10) = { 125, 34}.
Therefore, the family Ty, being as well the Ty, family, is the family { 71, T2, T3 }.
The encoded flow table is presented in Fig. 9.4.8b.

aj : b}

AN Xoo Xor Xu X Q.Q.‘Q,r 00 0 1M 10 .
"1 O] 4 (11000 Jooo |ooo foo1 | 100"
-2 [3|@]4|@] @woor [o000 | o001 foor| 1 |-
-3 @ 415 C;)- o] -.joorf — |
_4 {1 ® 3 010 -] = N

®

© |
2 Gl ®m | m |wofmo |10 |
(3 m 111 {001 {110 | 1M

104 m 001 001] m

{2) 100 1 | 100 | 001] 100
QA

Fig.94.38.
The Flow Table and the Assigned Table to Example 9.10.

- In the columns of this table in which the noncritical races can occur, some transitions

exist that show the states to which the machine can transit during the race. For instance,

-44 -

if the machine is in the state 3 (111) and state X = 01 occurs on input, then the machine
should transit to state (4) (001). Two memory signals g, and Q; are changed in such
transition. If Q; changes as the first then the machine will at first transit to state 001. If
there were an unspecified transition (a dash) in the state (3) for input state 01, then the
further behavior of the machine would not be known. Therefore, to induce the transition
to the proper state one has to specify this cell of the table, by writing state 001 in it.

Also, in row 101 of this column, the state 001 should be written in order to make the
* machine’s behavior safe from the nonspecified result of a race that might occur in case of
a quicker change of signal 0. After the assighment of the table, it must be always
verified whether two or more feedback signals change in some transition. If yes, then
one has to consider all the possible paths resulting from any race that may be produced
by this change. If there exists an unspecified cell in such a path, thén this cell should be
specified by writing to it the state, to which the .machine should transit.

Example 9.11.

Let us consider now the machine from Fig. 9.4.4a, assigned previously using the hyper-
cubes method. The following internal partitions are found from it:
wX2) = { 12, 34, 6 (5)),
n(s) = {335, 36, (1),
(X 4) = { 145, 36, (2)).
| The Ty family cannot be detenninedl from these internal partitions, because there
exist no single proper partition greater than any of the internal partitions, and n(X,) +
X 3) =X 2) + WX 4) =7X3) + X4) = 1.
In such a case one looks for partitions among the proper partitions which are greater
than the internal partitions.
For n(X,) the following partitions exist:
{1234, 56} = 1,
{IQE, 3—'4_5} =12,

-45 -

{1256, 34} = 13,
{ﬁg, §71Hé} = T4,
{-1_5, ﬁ} =15.
For (X 3):

{Eg, 46} =1,
{146, 235} =14,
- For (X 4):

{I_ZZS-, 3_6} =1g.
{236, 145) = 1o.

It results from the obtained Partition Pairs (Fig. 9.4.9) that there is no possibility of

simplifying function §;. We will check then the possibility of simplifying function A.

- 46 -

. {146,235 } - { 126,345 } = { 16,4, 2, 35 }. The states 1 and 6 and 3 and 5 must be
then separated. This can be done using both T3 and .

_L_ﬂu.%

1
2

3
. 4',

5

6

Fig.94.9,
Partition Pairs of the machine from Fig. 94 4.
The output partitions:

m,y = { 146, 235},
T2 = { 12, 45, (36)}.

We have 1 =1 and Ry2 <1T,. Then Tra =TFopt = {1, 77, T3}

- 47 -

. The encoded transition table is presented in Fig. 9.4.10. The same machine was
previously encoded in Example 9.6. Cyclical transitions have been introduced there in
order to avoid the critical races. Now, _the table without cyclic transitions has been
assigned, which simplifies the realization of the circuit.

We must remember, that the introduction of cyclic transitions usuaﬁy increases the

circuit’s complexity.

-

“ty 000} 000 | 00 | wo-f mo foo
“(6)- 001 | 000 | 001 | 100 | oo o=
011 = F -]mjoa |-
(2) oo fooa| oo | m |no |0

(s} no | oooj 100 | 1 | no |n

(3) 11} - J 100 {m | oot

1} - {100 {00} 00 |-
(4) 100.j oco} 00 | w00 | 10 fo1 .
’ - PR >t . . j
Figure 94.10.

The Encoded Transition Table of the machine from Fig. 9.4 4a.

_48 -

Figure 94.11.

The State Assignment for the Voltage Controlling Machine.

We will encode the Voltage Controlling Machine (Example 9.1). The minimal flow
table is repeated in Fig. 9.4.11.
7(00) = n(11) = {if’i,. 34} =14,
®(10) = {14, 23} =15,

Tr = {01, 12}.
TFopt=TR~
a) < B K
AN00 01 1 100 gondo 01 # D
1 =G 4] @ ooloo]- foof o
2.1—1@-, (2) o1]oof ~Joo] o
3 - B2 @ nnl-]n]e
slsl-13|G| @o|n|-|n]lo
F19. Sallt“,
\
\\
\

- 49 -

The encoded table is presented in Fig. 9.4.11b. Fig. 9.4.12 presents the encoded
table of the D flip-flop (Example 9.3, Fig. 9.3.3c). Checking of this solution is left to the

reader.
D o S
QEONDO 00 1 10
1 00-f00]00}01]00
20 |-|njo]oo
31 fnfn|n|wo
410 f{ool-]n|1w0
Fig. 94.12.
The Encoded Table of the D flip-flop.
Example 9.13.

For the table from Fig. 9.4.2a one gets the partitions:
n(X,)=1{ 134, 2},
n(X2) = { 123, 4},

nX3)={ 12, 34} = 1.

-50-

We have Ty = {t; } and additional conditions

13 - 2, 14 - 2 (from partition 7(X 1)),

i N
13 - 4, 23 - 4 (from partition 7{(X,)). l‘"ooo 000 {0011 100 | on "

13) 00_1 000 | 001 | 01 on 1.
K)JO11 Jooo o {011 | on
oo toc| - | - on

ome g - -1 - {on

;.111 . ,'-‘ - - o1 l

v 1M 7 001 - 011'
‘@100 | 100 |-001{ 100 | 011

Fig. 94.13.

The Encoded Table from Fig. 94 .2a.

None of these conditions is fulfilled by partition ;. Itis aléo not possible to fit any
proper partition fulfilling all remaining conditions. Therefore, two solutions exist:
- .introducing cyclic transitions,

- taking more memory elements than their minimal number.

The table of this machine with the cyclical transitions introduced in columns X ; and
X, is shown in Fig. 9.4.2b. The assignment of this table is left to our reader.

Leaving back the assumption of the minimal number of memory elements one can
encode the table according to the internal partitions. Flg 9.4.13 presents the flow table .
encoded in such a way. |

It can be easily checked that the circuit realized according to the tabie of Fig. 9.4.13
is simpler. Therefore, in this case such assignmeﬁt gives better results. However, in the
general case one cannot decide which of the encoding methods gives better results,

therefore both methods must be applied and their results compared to obtain the optimal

results.

-51-

It should be also mentioned that although the assignment method based on parti-
. | tions gives usually good results this does not happen always. An example of a machine :
which cannot be optimally encoded with use of this method is that of Fig. 9.4.3a. This
machine can be easily assigned with the method of hypercubes, while application of the ¥
partitions method will Jead to the introduction of cyclical transitions and additional parti- |

tions. The reader is asked to verify these statements.

9.5, The Realization of the Flow-Tables.

As it was mentioned at the beginning of this chapter, the asynchronous static
machine can be realized in two variants : as the combinational network with feedbacks or

as a circuit with static flip-flops. The circuits designed with the first method are usually

L P CHE T SWE F SR PPN

less complex and will be considered at first.

From the encoded flow table one creates the excitation table, which describes the
functions ¢; = f (Q1,..., O, X1,..., X») (see Fig. 9.4.1a). In the case of the circuit with
feedbacks the table is created by replacing the numbers of the states with respective
codes.

The excitation tables and the output tables (see Section 9.3) describe the combina-
tional circuit, usually a multioutput one. This circuit can be realized with use of the

method from chapter 13, or any synthesis method based on factorization or two-level

logic minimization. One has to remember, however, that an active element must stand
inside each feedback loop (this condition is automatically fulfilled in the case of design
with NORs or NANDS). In asynchronous circuits the phenomenon of hazard is particil—
larly dangerous (see Section 9.7 - not yet done). This is caused by the fact that each
improper signal on the output can be stabilized by the feedback.

Example 9.14.

Let us consider the realization of the machine from Fig. 9.5.1a. The excitation table of

. this machine is presented in Fig. 9.5.1b. The minimal NAND network will be obtained

-53.

. In such realization of function g there exists hazard of type HS1 (which means: Hazard,

Static, in true minterms) in the transition marked by an arrow in Fib. 9.5.1b.

>
8
4
5
~<

©
©
)

Fig.9.5.1.

Hazard in an Asynchronous Circuit.

The effect of this hazard will be the creation of a zero on the output of gate 4 (Fig.
9.5.1c). This zero is given to the input of gate 2 (feedback) and can cause 1 on the output
of this gate. This would mean not transmitting the change of signal a through this gate.
In wrn, this would cause supporting the zero on the circuit’s output, i.e., transition of the

machine to an improper state.

‘. . Let us observe that designing with 361 gives here very good new oportunitics. We

-54 -

will also observe that methodology 2 gives sometimes better results, especially for small

asynchronous machines, such as one from our example.

The graph of the machine from Fig. 9.5.1a is shown in Fig. 9.5.1d. Its correspond-
ing AONG requires four cells (Fig. 9.5.1¢). Let us, however, observe that when one cal-
culates the excitation function on T type flip-flops (Fig. 9.5.1f) from the excitation table
of Fig. 9.5.1b, the excitation function is simple and hazard-free. It could be reaized as in
the left part of Fig. 9.5.1g, but because of 361 technology constraints is transformed to

the form of the right part of Fig. 9.5.1g. The solution requires then two , not four cells.

T0 Q@ —_

To @

Fig.9.5.1.

Hazard in an Asynchronous Circuit.

Q" o |8

00 01110

o 01 110
JQN 06 01 1 _W0iy QO Ot 1 |
o ‘
Qo

2 9 8

R
el
8
Q
Q

10

Q9%

0Ci

o1

1

ajojociat

0

o

g~ Qb * Qg - | i
= Qa{br@

Fig.952.

Realization of the Generator Gating Circuit:

a), b) as a Mealy machine, c), d), e) as a Moore machine.

a), b) as a Mealy machine, c), d), e) as a Moore machine.

-55-

Fig.9.5.2.

Realization of the Generator Gating Circuit:

b h(‘
q) Q\IK_OO 0L 41 10)

i

0

0

1

Q

0 |

1

1

0

ol s

0] 0]

T

L A It (o
QlQlOO 5 T1J0
Y 0 1ol o

l ~Y -~ ~

10 A40]0

in

- 56 -

The question marks are written in Fig. 9.5.1c above those arrows that denote
changes which, as a result of hazard, can not be achieved. In order to eliminate the
hazard, the implicants should be always added to the minimal realization of the asyn-
chronous circuit (see Section 9.7). The hazard-free function q in the considered example
is as follows: |
qg=Qa+ab+0b.

Example 9.15.
We will realize now thé Generator Gating Circuit. Fig. 9.5.2a presents the excitation

function and the output function for the Mealy machine. After elimination of the hazard

there is:
q=0g +gb+0b,
y=0g

The corresponding circuit with NANDs is presented in Fig. 9.5.2b. Fig. 9.5.2¢c-e
presents the realization of the excitation function of this machine realized as a Moore
machine. The SPFs of ¢g; and g, functions are hazard-free. Let us observe that it was
especially resigned from the minimal SPF because the above functions are more con-
venient for factorization. As we see in this case the Mealy realization is slightly less

expensive.
The Generator Gating example on 361.

The T type flip-flop excitation function for the machine from Fig. 9.5.2a,b is shown in
Fig. 9.5.2g. As shown in Fig. 9.5.2!1, it requires two cells and one AND-type Mealy out-
put.

Another option to realize this circuit with 361 is to use a Moore machine. The T
type flip-flop excitation functions calculated from transition functions from Fig. 9.5.2d.e,

are shown in Fig. 9.5i,j. The output function, found from Fig. 9.5.2¢,isy = ;. One

needs then four cells to realize the Moore machine, versus two cells required to realize

the Mealy machine, which is also faster.

" —

-57-

Example 9.10.

We realize the Voltage Controlling Circuit. The excitation functions of this circuit are
presented in Fig. 9.5.3a-c. These functions are minimized as follows:

g1=01%1+Q1 %2+ Q1 Q2 +Q2 X1 X2,

ga=01%1+01x2+Q1 Q2+ Q2 x1 X2,

yi=x2+Q1 X1 X2,

Y2 =X2+03 x1 X3.

By realization of excitation functions ¢ and g2 the hazard was eliminated. The elimina-
tion of hazard in the output functions is not necessary, while the output signals are given
(through power amplifiers) to the motors of high (according to the speed of logic element

operation) inertia. Groups Q@9 x1x2 and é; b 4 1;:; are common for the excitation and out-

put functions.

-58 -

. The expressions for excitation functions can be further factorized:
gy =01 (x1 +x2 +Q2)+ 02 x1 X2,

g2=01 (x; +x9 +Q2)+ Q3 X3 X2

oo n e o n 1w
oojoof - joofw} awloci - | Mo
onjoci - joojo o0t{0}- 1+ 10
1n|n -11_01: njool-injwo
vin|-[nj{o}] . .njo-{ - j-1 o

Q%Y ' . . Y
-foti
Q -
.
o | @ 1
o SERE - fol-1-]o
NEEEERE tof-11]a
i1} -1110 - - kl@?‘

Gz ' b
Fig.9.53.

The excitation functions and output functions for the Voltage Controlling Machine.

To these expressions corresponds the circuit with NAND gates from Fig. 9.5.4a.

This circuit can be farther simplified by replacing Q5 with a bunch of wires coming to

9

)

o

Fig. 954.

The schematics for the Voltage Controlling Machine.

- 60 -

~ In the case when the asynchronous static circuit is realized with"static rs flip-flops

(latches), the excitations of these latches are calculated with use of the excitation array of

Fig. 9.5.5.

SaT)S T
¢ ofo -
o ‘ 1 Q
1t Qo 1
1 o1 - o]
- Fig.955.
Array of static rs flip-flops.

This array is identified as the array for synchronous RS flip-flop. The flow-table

shows what signals must be given to inputs r and s to obtain the expected change of its

state.

-61-

After encoding and thickening the changing values of Q the flow table specifies the
required changes of the flip-flop states. From this table one calculates the excitation

functions of these flip-flops, as follows:
- function 5 has ones for bold ones, and zeros for zeros of @ **".

- function r has ones for bold zeros ones, and zeros for ones of 9***.

Diagram of the Generator Getting Machine with rs flip-flops.

‘ The method of finding the excitation function maps is similar as for the synchronous cir-

-62 -

’ cuits. Finding the realization of the static circuit with flip-flop is usually less laborious
than the synthesis of the circuit with feedbacks. The circuit obtained is however usually

not minimal (Fig. 9.5.6b).

Realization with 361.

From Fig. 9.5.3 b,c one obtains the T type excitation functions from Fig. 9.5.7a,b. They

are realized as shown in Fig. 9.5.8. One can observe the usage of CDEC-cells. The

Mealy outputs are realized by delaying outputs by one clock pulse using D type flip-flop

realized from T type flip-fiop. For instance, implicant Q4 x, being the input to the D

flip-flop is realized as follows:

- T£5Q+Q_D=T=§TEQ+§MQ. ThisisrealizedwimSTARTexten-
sion and Mealy outputs, as shown in Fig. 9.5.8.

Similarly the realization of the second output is realized (see Fig. 9.5.8) The
CDEC-cells have been used again.

a) b) LIE
*, ¥ | Qh 5g o W (o
QAN 2 o W Lo CwTol_ lolo|
w to]-1014 — ' »
an {01~ {010 o CA@} 0
wiol-10fa wl0)-1010
o {O} 100 e i 1) 0
A._Ii‘—'-p
T

-63-

Example 9.17.
The diagram of D flip-flop (encoded flow-table of Fig. 9.4.12a) is presented on Fig. 9.5.9.

Checking of this solution is left to the reader.

F\j ,9.).8

L.
Q —
@y
Q.
G ST
D .
TG Q,
Q
c
D

Fig. 959,

a) The diagram of the type D Jip-flop,
b),c) The excitation functions of T type flip-flops.
d) The realization of logic with 361 .

Description of this example and other examples in VHDL, microcode(361) and in

-cyp format will be done later on, if requested by Alan and Rob.

- 65 -

9.6. Asynchronous dynamical machines.

| . The ST cell of the 351 producing short pulses, can be used to simplify the realiza-
tion of asynchronous machines. We will call such machines - the dynamical machines,
to distinguish it from the previously described static (level mode) machines. We can call

them also the pulse machines.

a} . 'b)gp'
R_olofn-'sog_li a4 4 & % 4+ % &
OO al2le 23] ~|—f1|-|!]-
2|t @Dl 2 |-t |t]—]2]—]|2
1 I == |—-|3]-]3
oot B

TR B S B
el {aj1jtjt]zjriaje
s |l—=f=ttlt{—=13]=]3 |

N —92-—-.."'-) '.'

N R A AT
oloft]ojojolofojno
s l=t=folof—=]ei—=f11s

Fig. 9.6.1.

The creation of the dynamical flow table of the Generator Gating Circuit:

a) the static table, b) the dynamic table, c) minimization, d) the assignment.

- 66 -

1t is convenient to use a dynamic flow table while describing the dynamic machine. It
specifies for each internal state and for each change of input states X" / X* the next
internal state:

A@+1)=08[A@), X -t/ X({®)].

Let us draw the dynamic flow table for the Generator Gating Machine, which
corresponds to the static table of Fig. 9.5.10a - this table is repeated in Fig. 9.6.1a. By
creating the dynamic flow table one must remember that only one input signal can
change at any moment in an asynchronous machine. Therefore, for instance, there is a
transition from state (1) to state (3) with the inputs changing from 01 to 11, and from
state (1) to state (2) with the inputs changing from 00 to 10. However, during the changes
of the input states from 00 to 01 and from 01 to 00, the circuit remains in state 1 (Fig.
9.6.1b).

The dynamic flow table is similar to the flow table of a synchroﬁous machine and is
minimized in a similar way.

As we see, the states 1 and 2 in the table 9.6.1b are compatible and can be joined,
which leads to the table of Fig. 9.6.1c. After the state assignment, this table takes the
form presented in Fig. 9.6.1d.

Fig. 9.6.2a presents the operation of the differentiating element. It is very close to
START:

d(@) = START(g).

dig) = START(D).

The dynamic circuit can be realized using many methods but we will use here a combina-
tion of ST, TO and TE cells of 361. For these elements we shall find the excitation func-.
tion T of T type ﬂip—ﬂop (Fig. 9.6.2b). These excitation function is as foﬂowsﬁ

T,=bd(@)+QdQ),

-67 -

The realization using START cells operating as differentiating elements is shown in

Fig. 9.6.2¢.

3 %

1 — «:‘.[5) = ST}\RTCC,)

T n— dlg) = smer(g)

) d(3) 4(9)) Al |
%:E_ b=0 | b=l b=0 | b:(% o):O _f_L }:0 9,\

b 00, ol 1o AL 00 1o ',Q_’___ iLﬂ
Qx__i.‘l— X T or | M o | ﬁj
o0 |/AN[0o o 0o | o]o

| Z T
VA - tol =1 9]

ST

=4)w >4
ST 5

|

Fig. 96.2.
The Generator Gating Circuit:
a) Explanation of the concept of differentiating element.

b) the dynamic excitation table, c) the realization using START cells and a TOGGLE cell.

T= ol(%) + (9"{(‘?

- 68 -

9.7. Hazards and Hazard Free Logic Synthesis.

This section will be added.

| 9.7. Literature to chapter 9.

General problems of asynchronous automation:

[Unge 69], [Huff 54, [Cald 58].

Creating of initial flow tables:

[Cald 581, [Mele 631, [Koha 70], [Unge 691.

Minimization:

[Frie 751, [Trac 74], [Hart 66], {Klir 661, [Huff], [Kohn 701.
State assignment:

[Huff 54], [Unge 69], [Frie 751, [Sauc 67], [Unge 62], [Koho 701, [Huff 55], [Tan 67].
Elementary machines:

[Marc 671.

Descﬁpﬁon of machines and automata:

[Rhyn 73].

Transition from timing diagram to flow table:

[Koha}.

Different types of asynchronous circuits:

[Ungel.

Counters:

[Ungel.

Minimization of number of columns in flow table:

[Gras 66].

Hazards and races:

. [Koha 70], [Unge 691, [Huff 54], [Trac 74], {Huff 57}, [Unge 59], [Eich 65], [Huff 76],

- 69 -

[McGh 69].

Sources of good design problems:

[Male 70], [Reev 72], [Rhyn 73].

9.8. Review Questions.

1.

2.

10.

11.

12.

13.

14.

15.

What.is async.hronous state machine?

What are the conditions of proper behavior of asynchronous machine?
What are the stable and unstable states?

What are the pseudoequivalent states?

Describe the process of state minimization of asynchronous state machines.
Describe creating of the output table of the minimal Mealy machine.
Explain the example the phenomenon of races.

Types of races and methods of their elimination.

Describe the methods for state-assignment of asynchronous machines.

Explain the application of internal partitions to elimination of critical races.

What are the families: Tg, Tr, and Tpop,? How are they created?

Methods of realization of asynchronous automation.
Explain in an example why hazard is especially dangerous in asynchronous circuit.
Do there exist state machines which can be realized as synchronous and cannot be

realized as synchronous?

How to modify (as slightly as possible) the cdec synthesis program from Chapter 13

to realize the non-hazard circuits.

